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Pain sensitivity is highly variable among individuals, and it is clinically important to
predict an individual’s pain sensitivity for individualized diagnosis and management of
pain. Literature has shown that pain sensitivity is associated with regional structural
features of the brain, but it remains unclear whether pain sensitivity is also related
to structural brain connectivity. In the present study, we investigated the relationship
between pain thresholds and morphological connectivity (MC) inferred from structural
MRI based on data of 221 healthy participants. We found that MC was highly predictive
of an individual’s pain thresholds and, importantly, it had a better prediction performance
than regional structural features. We also identified a number of most predictive MC
features and confirmed the crucial role of the prefrontal cortex in the determination of
pain sensitivity. These results suggest the potential of using structural MRI-based MC
to predict an individual’s pain sensitivity in clinical settings, and hence this study has
important implications for diagnosis and treatment of pain.

Keywords: pain sensitivity, structural MRI, morphological connectivity, individual difference, multivariate analysis

INTRODUCTION

Pain is a multidimensional subjective experience, which exhibits huge inter-individual variability
(Rainville, 2002; Coghill, 2010). Pain experience is largely determined by an individual’s sensitivity
to pain, which is highly variable across individuals (Nielsen et al., 2009). Investigating the
underlying mechanism of individual difference in pain sensitivity has attracted an ever-increasing
interest, because it can reveal the individual traits of pain sensitivity and will further enable
developing predictive models of individual pain sensitivity. This stream of research has great
medical implications both for healthcare systems (Schulz et al., 2012) and for pharmaceutical
research (Chizh et al., 2009). For instance, accurate prediction of pain sensitivity could reduce the
rate of postsurgical clinical pain (Werner et al., 2010; Abrishami et al., 2011).

Individual differences in pain sensitivity could be attributed to many factors, from genetics to
sociocultural variables. Because pain is processed and perceived in the brain, neural mechanism
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of pain sensitivity is generally recognized as playing a major role
in the representation and modulation of pain (Rainville, 2002;
Apkarian et al., 2005). By using neuroimaging approaches such as
magnetic resonance imaging (MRI) and electroencephalography
(EEG), many studies have succeeded in linking the individual
pain sensitivity to the variability in brain structure and function.
Functional MRI (fMRI) studies indicated that the pain-induced
blood oxygen level-dependent (BOLD) responses of the primary
somatosensory cortex (SI), anterior cingulate cortex (ACC), and
prefrontal cortex (PFC) are positively related to individual pain
sensitivity (Coghill et al., 2003), while some regions within the
posterior parietal cortex also contribute to individual differences
in pain sensitivity by directing attention to painful stimuli
(Oshiro et al., 2007; Lobanov et al., 2013). Structural MRI
studies have shown that the differences in gray matter (GM)
and cortical thickness of the brain are correlated with the
individual differences in pain perception in healthy subjects.
Emerson et al. (2014) found that GM intensity in bilateral
regions of the posterior cingulate cortex, precuneus, intraparietal
sulcus, and inferior parietal lobule and in unilateral regions
of the left SI showed a significant inverse relationship with
pain sensitivity. Another GM analysis also found a strong
correlation between pain sensitivity and cortical thickness of the
SI cortex (Erpelding et al., 2012). A voxel-based morphometry
study (Ruscheweyh et al., 2018) revealed that Pain Sensitivity
Questionnaire scores, which assessed the pain ratings of imagined
painful situations, were positively correlated with GM volume
(GMV) of the parahippocampal gyrus. In summary, these studies
have accumulated abundant evidence of multimodal MRI-based
neural correlates of individual pain sensitivity.

Most of the existing neuroimaging studies of pain sensitivity
focused on the relationship between the individual pain
sensitivity and the structure or function of specific brain regions.
However, pain is a complex experience related to a wide network
of brain regions. Hence, investigating the association between
pain sensitivity and brain connectivity can provide a new sight
into the neural basis of pain sensitivity. A variety of brain
connectivity can be estimated from multimodal MRI data. For
example, functional connectivity is normally estimated from
fMRI as the statistical relationship between fMRI signals of
different brain regions, while structural connectivity can be
inferred from T1 images and diffusion tensor imaging (DTI).
Several studies have demonstrated that functional connectivity
between some specific regions is related to pain perception
and can be used as a neural indicator of individual pain
sensitivity. Tu et al. (2019) used multivariate pattern analysis
to find that resting-state functional connectivity could be
used to predict individual pain threshold with high accuracy
(a correlation coefficient of 0.60 between predicted and real
values of heat pain thresholds). Spisak et al. (2020) identified
and validated a pain-free resting-state functional connectivity
pattern that is predictive of individual differences in pain
sensitivity. On the other hand, structural connectivity can
be constructed using mainly two approaches: tractography
for DTI and structural covariance network analysis for T1-
weighted images. By using the graph analysis of probabilistic
tractography based on DTI, one study found that the anterior

insula connectivity was related to the individual degree of
pain vigilance and awareness (Wiech et al., 2014). As for
T1-weighted images, morphological connectivity (MC) can be
inferred by calculating the inter-regional similarities of local
brain morphology (Tijms et al., 2012; Batalle et al., 2013;
Kong et al., 2015). Although MC has been shown to be
important neural markers of perception (Li and Kong, 2017)
and neurological diseases (Wang et al., 2020), it has not been
used to study individual pain sensitivity. As compared with fMRI
and DTI, T1-weighted MRI has distinct advantages in its easy
access, high signal-to-noise ratio, and relative insensitivity to
artifacts (e.g., head motion). Thus, MC inherits the advantages
of T1-weighted MRI and is promising to serve as another
canonical tool in characterizing structural connectivity related to
individual pain sensitivity (Alexander-Bloch et al., 2013a; Evans,
2013). There is mounting evidence suggesting the potential
use of MC in predicting individual pain sensitivity. First, the
brain’s morphological information is important in shaping an
individual’s pain experience, because, as mentioned earlier,
several studies (Erpelding et al., 2012; Emerson et al., 2014;
Ruscheweyh et al., 2018) have demonstrated that MRI-derived
local morphological characteristics are related to individual pain
sensitivity. Second, MC is linked to DTI-derived structural
connectivity and fMRI-derived functional connectivity, both of
which are correlated with pain sensitivity, as mentioned earlier
in this article (Wiech et al., 2014; Tu et al., 2019; Yuan et al.,
2019; Spisak et al., 2020). The morphological covariance between
brain regions reflects synchronized development (Alexander-
Bloch et al., 2013a), given that the development trajectory of
the structural covariance is correlated with the rate of change
in cortical thickness and functional connectivity (Raznahan
et al., 2011; Alexander-Bloch et al., 2013b). Moreover, Reid
et al. (2017) have demonstrated that the extent of accordance
between functional connectivity and MC varied remarkably
across seed regions. Considering the close relationship between
pain sensitivity and DTI-derived tractography or fMRI-derived
functional connectivity, it is reasonable to hypothesize that MC
is a possible neural determinant of pain sensitivity and MC
can be used to establish a prediction model for individual
pain sensitivity.

In the present study, we explored the relationship between
MC and individual pain sensitivity based on MRI and behavioral
data (pain thresholds) of 221 healthy participants. For each
participant, two types of pain thresholds (laser and cold) were
acquired as the measurements of pain sensitivity. We constructed
the whole-brain MC networks for each participant and further
used multivariate regression and feature selection methods
to construct an MC-based prediction model and to find the
most predictive MC features of pain sensitivity. Furthermore,
to examine whether regional structural features (i.e., GMV)
and MC could provide shared and complementary predictive
information, we also built prediction models of pain sensitivity
based on GMV features as well as based on both GMV and
MC features. The performances of models based on MC, based
on GMV, and based on both GMV and MC were compared
to determine the best type of structural MRI features for the
prediction of pain sensitivity.
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MATERIALS AND METHODS

Participants
We recruited a total of 221 healthy participants (135 females;
age: 20.84 ± 2.81 years) through college and community
advertisements and paid for their participation. All the
participants were right-handed. Before the experiments,
participants were carefully screened to ensure that they had no
history of chronic pain, neurological diseases, cerebrovascular
diseases, coronary heart disease, and mental disorders, and they
had no contraindications to MRI examination. The study was
proved by the local ethics committee, and all participants gave
their written informed consent before participating in the study.

Measurements of Pain Thresholds
Pain sensitivity of all the participants was measured as two types
of pain thresholds (laser and cold) in two behavioral experiments
before the MRI scan.

Laser Pain Threshold
The laser pain threshold was measured manually using
quantitative sensory testing. A series of infrared neodymium
yttrium aluminum perovskite (Nd: YAP) laser stimuli were
delivered to the back area between the thumb and index finger
of a participant’s left hand. The measurement was started from an
energy level at 1 J with a 0.25 J increase at each stimulus. After
each stimulus, a participant was asked to report the pain rating
from 0 (no pain) to 10 (the worst pain). When a rating of 4 was
reported, the corresponding energy level was recorded as the laser
pain threshold. For each participant, the laser pain threshold was
averaged from two independent measurements conducted in 1 h.

Cold Pain Threshold
The cold pain threshold was obtained from the cold pressor test.
Each participant was instructed to complete the cold pressor
test with his/her left hand. A participant immersed his/her left
palm and upper arm in room temperature water (22 ± 0.5◦C)
for 30 s to eliminate the difference in hand temperature. Then,
the participant was asked to quickly place the same hand into
the cold water (2 ± 0.1◦C). We recorded this moment as time
point 1. Another moment when the participant started to feel
pain was recorded as time point 2. The cold pain threshold was
measured as the duration between the time the participant placed
the hand on the cold pressor (time point 1) and the time when
the participant first felt pain (time point 2).

Pain Sensitivity Score
We also summarized these two types of pain thresholds as one
single composite measure of individual pain sensitivity. Laser
pain threshold and cold pain threshold were normalized, and
then their arithmetic mean was computed for each participant
as his/her pain sensitivity score. A higher pain sensitivity score
indicated lower pain sensitivity.

MRI Acquisition
Structural MRI data were acquired using a GE 3.0 T scanner.
High-resolution structural T1-weighted images were collected

using a three-dimensional magnetization-prepared rapid
gradient echo (3D-MPRAGE) sequence with following imaging
parameters: 176 sagittal slices, time of echo (TE)= 2.992 ms, time
of repetition (TR) = 6.896 ms, inversion time T1 = 450 ms, 1
mm slice thickness with no gap, acquisition matrix = 256× 256,
1× 1 mm in-plane resolution, acquisition time= 4.36 min.

Data Analysis
Structural MRI Preprocessing
Structural MRI preprocessing was performed with SPM12
(Statistical Parametric Mapping; Wellcome Department
of Imaging Neuroscience, University College London,
United Kingdom)1 running under Matlab R2014a (Mathworks,
Sherborn, MA). The structural images were segmented into GM,
white matter, and cerebrospinal fluid by applying a registration
to the MNI stereotactic space and a subsequent non-linear
deformation. The non-linear deformation parameters were
calculated via the inbuilt high dimensional Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL) algorithm (Ashburner, 2007). Then, the warping
functions generated by DARTEL were used to spatially
normalize the GM segments and modulate them by the
Jacobian determinant. Finally, the segmented GM images were
smoothed with an 8 mm full width at half maximum Gaussian
kernel. The smoothed GM images of all participants were used
for further analyses.

Brain Parcellation
The whole-brain parcellation was achieved by using the
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). Cerebellar regions were excluded for incomplete
coverage of the cerebellum of several participants. A total of
90 regions of interest (ROIs) were defined by the AAL atlas
and used in subsequent analyses. Furthermore, when we used
the Connectivity Visualization Tool2 to visualize the MC, the
90 ROIs were clustered into 16 lobes (prefrontal, motorstrip,
insula, parietal, temporal, occipital, limbic, and subcortical in
both left and right hemispheres) according to their coordinates.
The details of 90 ROIs and 16 lobes were provided in
Supplementary Table 1.

Feature Extraction and MC Estimation
In this study, we extracted two types of features, GMV and
MC, from pre-processed GM images for the prediction of
pain thresholds. GMV of each ROI was extracted as the local
morphological feature. MC measures the inter-regional relations
of local brain morphology at the individual level, and its
calculation can be summarized in the following steps. First, the
GM intensity at each voxel within one ROI was quantified in
smoothed GM images. Second, the regional probability density
function for each ROI was estimated using the kernel density
estimation implemented in the Scipy package3. The kernel width
was adaptively estimated from the data using Scott’s rule (Scott,

1http://www.fil.ion.ucl.ac.uk/spm
2https://bioimagesuiteweb.github.io/webapp/connviewer.html
3http://www.scipy.org/
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2010). Finally, the MC for each pair of ROIs was defined as
the similarity between the two probability density functions of
this pair of ROIs. In this work, the similarity of two brain
regions was quantified by the Kullback–Leibler divergence. The
Kullback–Leibler divergence was calculated as:

KL
(
p, q

)
=

∫
X

(
p (x) log

(
p (x)
q (x)

)
+ q (x) log

(
q (x)
p (x)

))
, (1)

where p (x) and q(x) were the probability density functions of
two ROIs p and q. The MC matrix for each individual was a
90 × 90 symmetric matrix. Only the lower triangular matrix,
which has 4005 MC features, was taken for subsequent analysis.
Furthermore, we conducted the correlation analysis between
the MC features and GMV features to find the relationship
between these features.

Prediction of Pain Thresholds
After local morphological characteristics (i.e., GMV) and
structural connectivity (i.e., MC) were extracted from structural
MRI, we used feature selection and machine learning techniques
to identify features that are most predictive of pain thresholds and
to establish models for predicting pain thresholds from GMV and
MC features. The whole procedure of pain threshold prediction
analysis includes the following steps.

Model Development
We used a popular and effective multivariate regression method,
partial least squares regression (PLSR), to model the relationship
between high-dimensional structural MRI features (GMV, MC,
or their concatenation) and one of three types of pain thresholds
(laser, cold, or their summary, pain sensitivity score). The PLSR
model is formulated as:

y = Xα+ E (2)

where y is an N × 1 vector containing one type of pain threshold
of N participants, X is an N × K matrix consisting of K
structural MRI features (GMV, MC, or their concatenation) of N
participants, α is the K × 1 PLSR coefficient vector (of which each
entry denotes the contribution of the corresponding feature to the
prediction result), and E is the error term.

In the PLSR model of Eq. (2), features could be the mean
GMV of all voxels in each ROI (K = 90), the whole-brain MCs
(K = 4, 005), or the concatenation of these two types of features
(GMV+MC, K = 4, 095). The labels of the prediction model
could be the laser pain thresholds, the cold pain thresholds, or
the composite pain sensitivity scores. The SIMPLS algorithm (De
Jong, 1993) was used to compute the PLSR model coefficients.
The number of latent components in the PLSR analysis was
estimated using the coefficient of determination, which calculates
the percentage of the variance of the values fitted by the latent
components and the total variance of the dependent variables.

Feature Selection
There are two types of candidate features, GMV and MC,
for the prediction of pain thresholds. To compare the model
performance under different types of features, we first separately

used GMV and MC as features in the prediction analysis
and then used a combination of GMV and MC features for
prediction. Further, it is necessary to identify a subset of most
predictive and discriminative features from a large number of
features (especially for MC features), because feature selection
can improve the model accuracy and can increase the model
interpretability. Considering that each coefficient in the PLSR
coefficient vector represents the predictive capability of the
corresponding feature, we ranked all features in a descending
order according to their absolute values and then selected a
certain number of features with large magnitudes as the feature
subset for prediction. We compared the model accuracy with
different numbers of features and finally selected the number of
features with the highest accuracy to build the prediction model.
To improve the efficiency of the feature selection operation for
high-dimensional MC features (K = 4, 005), we first examined
the model accuracy under different numbers of features from
1 to 4,005 with a searching interval of 100. After we used the
coarse-scale search to find the “optimal” number of features,
which had the highest accuracy under a searching interval of
100 and was denoted as m100, we started a new round of search
in a narrower range from (m100 − 100) to (m100+100) and
with a smaller searching interval of 10. Such a feature selection
procedure was repeated with a decreasing searching interval (100,
10, 1) until the exact number of features was determined. For
GMV, the feature selection procedure was similar to that of MC,
but only two searching intervals, 10 and 1, were used. Note that,
because we used leave-one-individual-out cross-validation (see
below for details) to train and test the pain prediction model, the
ranked PLSR coefficients and the selected features are different
for each participant. To select features at the group level (i.e.,
to select the same subset of features for all participants), we
averaged PLSR coefficient vectors of all participants, ranked the
averaged coefficients, and then found the subset of features with
the highest prediction accuracy at the group level. The BrainNet
viewer4 (Xia et al., 2013) and Brain Connectivity Toolbox5 (Shen
et al., 2017) were used to visualize the selected GMV features
and MC features.

Cross-Validation
We trained and tested the PLSR models based on the leave-one-
individual-out cross-validation. At each run, we randomly used
one participant’s data for testing and the remaining participants’
data for training. Because we had a total of 221 participants,
the procedure was repeated 221 times to make sure that each
participant’s data were used as test samples for once.

Performance Evaluation
The accuracy of these prediction models was measured by two
metrics: mean absolute error (MAE) and mean relative absolute
error (MRAE). MAE and MRAE are, respectively, calculated as:

MAE =
1
N

N∑
i=1

∣∣ŷi − yi
∣∣, (3)

4http://www.nitrc.org/projects/bnv/
5http://www.brain-connectivity-toolbox.net/
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MRAE =
1
N

N∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (4)

where yi is the measured pain threshold of the ith participant,
ŷi is the pain threshold estimated from the PLSR model, and
N is the total number of individuals. MAE is a measure of the
overall distance between predicted and true values, while MRAE
expresses how large the absolute error is as compared with the
true values. We used both MAE and MRAE for performance
comparison because they had their own limitations: MAE was
dependent on the magnitude of pain thresholds while MRAE
could be influenced by small values close to zero (which was true
for the pain sensitivity score). Further, we calculated Pearson’s
correlation coefficients between the predicted thresholds and the
true values across all participants, because Pearson’s correlation
coefficients were not influenced by the range of pain thresholds
and data normalization. The prediction performance of models
with different types and numbers of features was compared using
a two-sided Wilcoxon rank-sum test.

RESULTS

Measurements of Pain Thresholds
For all participants, the laser pain thresholds were 2.58 ± 0.53
(mean ± SD), the cold pain thresholds were 9.59 ± 0.38, and
the pain sensitivity scores were 0.41 ± 0.14. We calculated
Pearson’s correlation coefficients between age and different
types of pain sensitivity thresholds, but found no significant
relationship between age and any pain threshold (P > 0.05 for all
correlations). Similarly, a two-sample t-test revealed that gender
had no significant effect on pain thresholds (P> 0.05 for all tests).
Further, we calculated Pearson’s correlation coefficients of three
types of thresholds and found that each pair was significantly
correlated (laser pain threshold vs. cold pain threshold: R= 0.22,
P = 0.0011; laser pain threshold vs. pain sensitivity score:
R= 0.76, P< 10−10; cold pain threshold vs. pain sensitivity score:
R= 0.71, P < 10−10).

Prediction of Pain Thresholds
Figure 1 and Table 1 show the performance of pain threshold
prediction based on three different sets of features: GMV, MC,
and GMV+MC (the concentration of the GMV feature vector
and the MC feature vector). We have the following three major
observations from Figure 1 and Table 1. First, prediction errors
based on MC were significantly lower than those based on GMV,
no matter which type of pain threshold was predicted. Second,
prediction errors based on GMV+MC were also significantly
lower than those based on GMV for all pain thresholds. Third,
although prediction errors based on GMV + MC were slightly
lower than those based on MC only for all pain thresholds, there
was no significant difference between prediction errors of MC
and GMV + MC. Fourth, we can see that laser pain threshold
showed higher MAE but lower MRAE than pain sensitivity score,
which should be due to the different ranges of laser thresholds
and pain sensitivity scores. The range of pain sensitivity score was

0–1, and many scores were close to 0. According to the calculation
of MRAE, a very small pain sensitivity score (close to 0) will lead
to a very large MRAE. On the other hand, the range of laser
threshold is 1.75–4.25, which is not close to zero. As a result,
MRAE of laser pain threshold did not have very large values,
and it was smaller than MRAE of pain sensitivity score. Figure 2
shows the linear correlations between predicted and real pain
thresholds of all the participants in different prediction models,
and the correlation values were provided in Table 1. Correlation
results of using all types of features for all types of pain threshold
measure are significant. The prediction performance in terms
of correlation coefficients based on MC or GMV + MC was
significantly better than that based on GMV, no matter which
type of pain threshold was predicted. However, there was no
significant difference between the correlation coefficients based
on MC and GMV + MC (P = 0.322 for laser pain threshold,
P = 0.289 for cold pain threshold, and P = 0.310 for pain
sensitivity score).

Predictive GMV and MC Features
Figures 3, 4 show the optimal GMV and MC feature subsets,
respectively, selected for pain threshold prediction. According
to the coefficient ranking in PLSR models, we selected different
numbers of features to make predictions and the selected optimal
feature set could achieve the best prediction performance.
Supplementary Figure 1 shows the prediction error of the model
built with different numbers of features for the prediction of laser
pain threshold, cold pain threshold, and pain sensitivity score.

As shown in Figure 3, GMV features of 38 ROIs were selected
for prediction of laser pain thresholds, and they were mainly
in the PFC, precuneus, temporal lobe, median cingulate cortex,
thalamus, and hippocampus; GMV features of 32 ROIs were
selected for prediction of cold pain thresholds, and they were
mainly in the PFC, temporal lobe, lingual gyrus, supplementary
motor area, and parahippocampus gyrus; GMV features of 41
ROIs were selected for prediction of pain sensitivity scores, and
they were mainly in the PFC, precuneus, thalamus, temporal lobe,
and lingual gyrus.

On the other hand, as shown in Figure 4, there were 460,
508, and 485 MC features selected for prediction of laser pain
thresholds, cold pain thresholds, and pain sensitivity scores,
respectively. According to the number of selected MC features
in each pair of lobes, we listed those pairs of lobes having
the top 5 largest number of selected MC features in Table 2.
Supplementary Tables 2–4 provide complete results about the
selected MC features in each pair of lobes.

Furthermore, Table 3 shows the common and different pairs
of lobes having most selected MC features for the prediction of
laser and cold pain thresholds. Note that MC features selected
for the prediction of pain sensitivity score were not considered
in Table 3, because pain sensitivity score is a composite measure
of both laser and cold pain thresholds. It can be seen from
Table 3 that MC features within prefrontal lobes, within occipital
lobes, and between prefrontal and occipital lobes are predictive
of both laser and cold pain thresholds, while laser and cold pain
thresholds also have some specific predictive MC patterns. For
example, MC related to the parietal lobes may be more predictive
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FIGURE 1 | Prediction errors of using different feature sets (GMV, MC, and GMV + MC) to predict three types of pain thresholds (laser pain threshold, cold pain
threshold, and pain sensitivity score). **Indicates P < 0.01, *** indicates P < 0.001, two-sided Wilcoxon rank-sum test.

TABLE 1 | Prediction performance in predicting three types of pain thresholds
using three feature sets.

Feature
set

MAE
(mean ± SD)

MRAE
(mean ± SD)

Correlation
coefficient

Laser pain threshold MC 0.28 ± 0.23 0.11 ± 0.11 0.73

GMV 0.40 ± 0.32 0.16 ± 0.15 0.32

MC+GMV 0.28 ± 0.22 0.11 ± 0.10 0.75

Cold pain threshold MC 0.38 ± 0.30 0.25 ± 0.30 0.78

GMV 0.62 ± 0.46 0.42 ± 0.48 0.24

MC+GMV 0.37 ± 0.28 0.24 ± 0.26 0.80

Pain sensitivity score MC 0.08 ± 0.06 0.23 ± 0.25 0.75

GMV 0.11 ± 0.09 0.33 ± 0.41 0.38

MC+GMV 0.07 ± 0.05 0.22 ± 0.25 0.77

of laser pain threshold, while MC related to the temporal lobes
may be more predictive of cold pain threshold. Importantly, we
can see from Table 3 that the prefrontal lobes (i.e., PFC) are
involved in almost all listed pairs of lobes with most predictive
MC features, suggesting the key role of PFC in the study of
pain sensitivity.

DISCUSSION

In this study, we investigated the predictive power of the brain’s
inter-regional structural connections, as measured by MC, in the
prediction of individual pain sensitivity, as measured by three
types of pain thresholds, laser pain threshold, cold pain threshold,
and their summarized score. Our results revealed that MC is
capable of accurately predicting an individuals’ pain thresholds

and, importantly, its predictive capability is significantly higher
than the brain’s regional morphological features (i.e., GMV).
Therefore, MC can provide a new insight into the neural basis
of pain sensitivity, and it holds the potential in predicting an
individual’s pain sensitivity in clinical practice.

MC as New Neural Correlates of Pain
Sensitivity
Previous studies have shown that MRI-based regional
morphological features can be used to predict pain sensitivity
(Erpelding et al., 2012; Emerson et al., 2014; Ruscheweyh et al.,
2018). However, there is still no study exploring the individual-
level relationship between pain sensitivity and MC, which
contains the brain’s higher-order structural cortical information.
Because pain sensitivity is related to a wide network of brain
regions, using brain connectivity measures to predict pain
sensitivity is promising. Considering resting-state functional
connectivity has been used in the prediction of individual pain
thresholds (Tu et al., 2019; Spisak et al., 2020) and there is a
close relationship between functional connectivity and MC (Reid
et al., 2017), we hypothesized that MC could be a new type of
MRI-based neural predictors of individual pain sensitivity.

Although MC has not been used to correlate pain sensitivity
in literature, it is widely used as a measure of individual-
level structural connectivity to investigate perception, cognition
and neurological disorders (Li and Kong, 2017; Wang et al.,
2018; Wang et al., 2020). However, the physiological meaning
underlying inter-regional MC is complex and has not been
completely understood. There are two possible explanations for
MC. One stems from the axon tension theory (Van Essen, 1997),
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FIGURE 2 | The linear correlation between predicted and real pain thresholds. (A) Prediction of laser pain threshold. (B) Prediction of cold pain threshold.
(C) Prediction of pain sensitivity score. Each blue dot denotes one participant. Red lines are linear fitting lines.

which proposes that anatomically connected brain areas are
pulled by a mechanical force, resulting in similar morphological
properties. Another explanation is that regions with similar
morphological distributions might reflect coordination between
areas in development (Lerch et al., 2006; Alexander-Bloch et al.,
2013b) and learning (Draganski et al., 2004; Mechelli et al., 2004).

The performance of the proposed prediction models based on
MC features is satisfactory and encouraging among similar MRI-
based pain sensitivity prediction models in literature, despite
the features and the type of pain threshold used in these
prediction models are different. Tu et al. (2019) predicted the
heat pain thresholds of 24 individuals from resting-state fMRI
connectome, and they achieved a correlation coefficient of 0.60
between predicted and real pain thresholds. Spisak et al. (2020)
used resting-state functional connectivity to achieve a correlation
coefficient of 0.63 between predicted and real values of pain
sensitivity scores, which were composed of heat, cold, and
mechanical pain thresholds, of a total of 116 individuals. Another
study (Schulz et al., 2012) applied multivariate pattern analysis
on time–frequency transformed single-trial EEG responses to
predict individuals’ pain sensitivity, which was measured by a
simplified dichotomous model, and it achieved an accuracy of

83% in classifying individuals with high pain sensitivity and with
low pain sensitivity. Although these predictive models cannot
be directly compared because they used different features and
measures of pain sensitivity, we can still see that our proposed
MC-based model has excellent and promising results (for
example, correlation coefficients between actual and predicted
pain thresholds > 0.73) in continuous prediction of different
measures of pain sensitivity.

MC Features Predictive of Pain Sensitivity
We first briefly discussed the selected GMV features. According
to the ranking of prediction coefficients, we found that GMV
in the PFC have higher predictive power in the prediction
of all three measures of pain sensitivity. As identified in the
previous studies, PFC is the key region that underlies executive
functions such as planning, problem solving, and social control
(Goldman-Rakic, 1996). A study (Lorenz et al., 2003) suggested
that the PFC may exert active control on pain perception by
modulating cortico-subcortical and cortico-cortical pathways.
Also, Coghill et al. (2003) found that the pain-induced BOLD
responses of the PFC are positively related to individual
pain sensitivity, suggesting that PFC is both structurally and
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FIGURE 3 | Selected GMV features for the prediction of different measures of pain sensitivity. There were 38, 32, and 41 GMV feature regions selected for the
prediction of laser pain thresholds, cold pain thresholds, and pain sensitivity scores, respectively.
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FIGURE 4 | Selected MC features for the prediction of different measures of pain sensitivity. There were 460, 508, and 485 MC features selected for the prediction of
laser pain thresholds, cold pain thresholds, and pain sensitivity scores, respectively. The two half circles represent two brain hemispheres, and the red lines represent
the MC between two corresponding regions.

functionally correlated with pain sensitivity. In addition, there
is evidence that patients with chronic low back pain have
regional GM alterations in the PFC (Apkarian et al., 2004;
Schmidt-Wilcke et al., 2006; Seminowicz et al., 2011; Ivo et al.,
2013; Ung et al., 2014).

As for pain-predictive MC features, we finally selected
around 500 MC features for the prediction of each measure
of pain sensitivity. By ranking pairs of lobes according to
the number of selected MC features they had, we found that

TABLE 2 | List of pairs of lobes having most selected MC features for the
prediction of different measures of pain sensitivity.

Laser pain threshold Cold pain threshold Pain sensitivity score

Prefrontal_L–Occipital_R Prefrontal_L–Prefrontal_R Prefrontal_L–Prefrontal_R

Prefrontal_L–Occipital_L Prefrontal_R–Occipital_L Temporal_L–Temporal_R

Occipital_L–Occipital_R Prefrontal_R–Temporal_L Prefrontal_L–Parietal_L

Prefrontal_L–Prefrontal_R Prefrontal_L–Occipital_L Prefrontal_L–Temporal_R

Prefrontal_L–Parietal_L Prefrontal_R–Occipital_R Prefrontal_L–Occipital_R

Prefrontal_R–Parietal_L Prefrontal_R–Subcortical_L Prefrontal_R–Temporal_L

Prefrontal_R–Occipital_R Temporal_L–Temporal_R
Occipital_L–Occipital_R

Those pair of lobes having the top five largest number of selected MC features are
listed in this table. Because some pairs of lobes have the same number of selected
features or the same selection ration, more than five pairs of lobes are listed for the
prediction of each measure of pain sensitivity.

TABLE 3 | List of common and different pairs of lobes having most selected MC
features for the prediction of different measures of pain sensitivity.

Both laser and cold
pain thresholds

Laser pain
thresholds only

Cold pain
thresholds only

Prefrontal_L–Occipital_L Prefrontal_L–Occipital_R Prefrontal_R–Occipital_L

Occipital_L–Occipital_R Prefrontal_L–Parietal_L Prefrontal_R–Temporal_L

Prefrontal_L–Prefrontal_R Prefrontal_R–Parietal_L Prefrontal_R–Subcortical_L

Prefrontal_R–Occipital_R Temporal_L–Temporal_R

some PFC-related MC features, such as those of prefrontal–
occipital and prefrontal_L–prefrontal_R are most predictive
in the prediction of both laser and cold pain thresholds.
These results further confirmed the crucial role of PFC in
the determination of pain sensitivity. Not only the local
structural features, but also the MC features of PFC are able to
accurately predict the level of pain sensitivity. Apart from these
shared predictive connections, we observed different patterns
of predictive MC for different pain thresholds. For example,
prefrontal–parietal MCs are more effective in the prediction of
laser pain threshold than in the prediction of cold pain threshold.
On the other hand, MCs between temporal and prefrontal
are more useful in the prediction of cold pain threshold. As
discussed in previous studies (Dubin and Patapoutian, 2010;
Tu et al., 2019), the heat pain and cold pain are mediated
by partially different sensory pathways; this may cause the
difference in selected MC features in prediction of different
pain thresholds.

By comparing the prediction performance of models based on
MC and GMV, we found that MC features are more predictive
than GMV features. However, the predictive performance of
combining these two kinds of features is not significantly higher
than that of only using MC. The reason may be that some
predictive MC features and GMV features are highly correlated.
Supplementary Figure 2 shows the cross-participant correlation
between MC features and GMV features. We can see that,
for example, frontal–subcortical MCs, which are found to be
predictive of pain sensitivity in the present study, are significantly
related to GMV features of almost all regions. Therefore, MC
and GMV features may provide shared but not complementary
predictive information. Also, when we used the combination of
these two types of features for prediction, the feature subset we
finally selected were mostly MC features. So, the combination of
GMV and MC features provided no more predictive information
than only MC features did. These results suggested that MC could
provide exclusive useful information about the mechanism of
pain sensitivity, and such information cannot be extracted from
local morphological measures.
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Limitations and Future Work
Some limitations of the present study are mentioned here.
First, the cerebellum was not included in the whole-brain
morphological analysis because several participants had
incomplete coverage of the cerebellum. Previous studies have
suggested that the cerebellum has a role in pain and nociceptive
processing (Moulton et al., 2010; Tu et al., 2019), so MC between
cerebellum and other regions may also be predictive of pain
thresholds. Second, the AAL atlas, which was widely used in
structural MRI studies, was used in our study to construct MC.
However, the prediction performance could be affected by the
selection of atlases in the quantification of structural brain
connectivity. It is not easy to ascertain the most suitable atlas,
so it would be useful to compare the prediction results by using
different atlas-based structural connectivity. Further, previous
studies (Min et al., 2014; Zeng et al., 2018) have demonstrated
that methods using multiple atlases could outperform those
using a single atlas. For example, Min et al. proposed a data-
driven atlas selection scheme to obtain the most distinctive
and representative atlases, and the proposed multi-atlas-based
method achieved a significantly better performance (91.64%)
than the methods that only used one atlas (87.05%) in Alzheimer’s
disease diagnosis. Thus, it would be possible to use multiple
atlases and associated multi-atlas-based methods to further
improve the prediction performance. Third, the prediction
analysis was based on data from only one site, so the developed
MC-based prediction models may have problems of replicability,
generalizability, and overfitting. It is desired to use data from
multiple and independent sites for model validation. Fourth,
pain sensitivity and brain structural networks change with age,
but this study only acquired data from young people aged from
17 to 28. Thus, it would be useful to study the stability of pain
characteristics in a cohort with more diversified demographical
characteristics, such as age. Fifth, the regression model used in
this study to predict pain thresholds is based on the simple PLSR.
We also used another popular regression model, support vector
regression (SVR), to predict pain thresholds, and the SVR-based
results (prediction accuracy and MC features selected) were
similar to those based on PLSR (see Supplementary Table 5 and
Supplementary Figure 3 for details). It may also be possible to
use deep neural networks to construct the prediction model, but
deep neural networks have difficulty in producing interpretable
features and their performance are limited by the number of
data samples. In the future, it is possible and desired to develop
and apply deep learning models with good interpretability on
“big” pain neuroimaging data to predict pain thresholds. Finally,
because the exact physiological meaning of individual-level
MC is still unclear, it is necessary to combine different MRI
modalities, such as fMRI and DTI, and medical data, such
as gene expression data, to explore the mechanism of pain
sensitivity from different and complementary perspectives.

CONCLUSION

In conclusion, this study used T1-weighted inter-regional MC
as a new type of feature to predict individual pain sensitivity

as measured by laser and cold pain thresholds and found
that a set of MC features could provide more predictive
power than local morphological characteristics. Examining the
relationship between MC and pain sensitivity is important for
a better understanding of pain’s neural mechanisms, and our
finding may facilitate the development of individualized pain
treatment and management.
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