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SUMMARY
Neural indicators of pain discriminability have far-reaching theoretical and clinical implications but have been
largely overlooked previously. Here, to directly identify the neural basis of pain discriminability, we apply
signal detection theory to three EEG (Datasets 1–3, total N = 366) and two fMRI (Datasets 4–5, total
N = 399) datasets where participants receive transient stimuli of four sensory modalities (pain, touch, audi-
tion, and vision) and two intensities (high and low) and report perceptual ratings. Datasets 1 and 4 are
used for exploration and others for validation. We find that most pain-evoked EEG and fMRI brain responses
robustly encode pain discriminability, which is well replicated in validation datasets. The neural indicators are
also pain selective since they cannot track tactile, auditory, or visual discriminability, even though perceptual
ratings and sensory discriminability are well matched between modalities. Overall, we provide compelling
evidence that pain-evoked brain responses can serve as replicable and selective neural indicators of pain
discriminability.
INTRODUCTION

As typical signals for bodily dangers, painful stimuli need to be

accurately distinguished. Mistaking an intense pain stimulus for

a mild one can sometimes be life threatening. Previously, studies

have examined how pain treatments affect the ability to discrim-

inate between different painful stimuli,1–5 how this pain discrim-

inability differs between different groups (e.g., patients and

healthy people),6–9 and how brain activity responds differently

to different noxious stimuli.10–13 However, how the brain directly

encodes pain discriminability has been overlooked almost

entirely. Objective neural indicators of pain discriminability

have profound theoretical and clinical implications, such as un-

derstanding pain processing in the brain andmeasuring pain dis-

criminability in nonverbal individuals (e.g., comatose patients

and infants).14,15 Crucially, pain discriminability is of clear clinical

relevance. Some chronic pain patients exhibit impaired pain dis-

criminability,16,17 and the improvement in chronic pain is related

to increased pain discriminability.18,19 However, assessing pain

discriminability behaviorally can be unfeasible in certain individ-

uals (e.g., those with cognitive-linguistic deficits) or undesirable

in situationswhere the subjectivity and bias of pain reports cause

deep concerns. Objective neural indicators that quantify pain

discriminability using brain activity may thus be a valuable tool
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in the early screening and diagnosis of chronic pain and even

help to develop pain-relieving treatments.

With the help of noninvasive neuroimaging techniques, such as

electroencephalography (EEG) and functional magnetic reso-

nance imaging (fMRI), previous studies have extensively investi-

gated the functional representations of pain sensation.20–25

Although pain-evoked brain responses (e.g., N2 and P2 compo-

nents in event-related potentials [ERP]) and pain-related brain

areas (e.g., insula, anterior cingulate cortex [ACC], and primary

and secondary somatosensory cortices [S1, S2]) have been

shown todifferentially respond to noxious stimuli of various inten-

sities,10–13 neural responses that directly encodepaindiscrimina-

bility remain nearly unexplored.26 Many vital questions are unan-

swered. First, it is unclear whether the neural activities that could

be sampled using EEG and fMRI techniques reflect pain discrim-

inability, that is, whether such neural activities directly correlate

with pain discriminability across individuals, not just scale with

stimulus intensity within individuals. Second, it is unknown

whether the potential neural indicators of pain discriminability

could be reliably identified in different situations, e.g., in different

populations of participants. Finally, it is unclear whether the po-

tential neural indicators are pain selective or not, that is, whether

such neural responses selectively correlate with pain discrimina-

bility rather than sensory discriminability in general.
s Medicine 3, 100846, December 20, 2022 ª 2022 The Author(s). 1
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Here, we aimed to answer these questions by exploring neural

indicators of pain discriminability using both EEG and fMRI tech-

niques. We applied a signal detection theory (STD) approach to

quantifying sensory discriminability on five large datasets (three

EEG datasets [Datasets 1–3, total N = 366] and two fMRI data-

sets [Datasets 4–5, total N = 399]), in which Datasets 1 and 4

were used for exploration and others for validation. In each data-

set, perceptual ratings and neural responses were collected

when participants received transient stimuli of four sensory mo-

dalities (pain, touch, audition, and vision) and two intensities

(high and low). With multiple independent datasets and multi-

modal sensory stimulations, we were able to not only reveal

neural indicators of pain discriminability but also assess the repli-

cability and pain selectivity of these neural indicators.

RESULTS

EEG indicators of pain discriminability
To identify EEG indicators of pain discriminability, we collected

three large EEG datasets (N = 114, 111, and 141, respectively), in

which painful laser, tactile, auditory, and visual stimuli of two inten-

sities (high and low) were delivered to healthy participants

(Figures 1A and 1C, see STAR Methods for details). Experimental

details for collecting the three datasets were almost identical,

except that data were collected from participants with different

pain sensitivity (Dataset 1: high-pain-sensitivity participants

receiving relatively low-energy laserstimuli [3.0and3.5J];Datasets

2 and 3: low-pain-sensitivity participants receiving relatively high-

energy laser stimuli [3.5 and4.0 J]) usingdifferent EEGdevices (Da-

tasets 1 and 2: Brain Products EEG system [BP]; Dataset 3:

BioSemi EEG system).

Pain discriminability was quantified mainly using a nonpara-

metric measure from SDT, i.e., the area under the receiver

operating characteristic (ROC) curve (AUC) (Figure 1E; see

STAR Methods for details on calculating AUC values).27 As in

many classic behavioral pain studies,1–3,28 we adopted a rating

design in terms of SDT, where participants simply rate the pain

intensity of each stimulus on a numerical rating scale (NRS),

and every rating on the NRS is regarded as an implicit criterion

that participants hold.29,30 We explored EEG responses corre-

lated with pain discriminability using Dataset 1, replicated them

in Datasets 2 and 3, and tested whether they are pain selective

using all datasets with non-painful stimuli.

Pain stimuli can be distinguished in EEG datasets

Take Dataset 1 as an example: pain ratings evoked by high-in-

tensity laser stimuli were significantly larger than those evoked

by low-intensity laser stimuli (Figure 2A, t(113) = 19.953,
Figure 1. Study design, experimental procedure, and discriminability i

(A and B) EEG and fMRI study design. Consisting of five datasets with large sam

discriminability and assess the replicability and selectivity of these neural indicat

(C and D) EEG and fMRI experimental procedures. Participants were given transi

and vision), each composed of two stimulus intensities (high and low, marked in

perceived intensity, using a numerical rating scale ranging from 0 (‘‘no sensation

(E) A schematic diagram describing the calculation of the discriminability index, i

scale can be treated as 11 implicit response criteria participants hold. For a give

estimated to define a point on the receiver operating characteristic (ROC) curve (t

value is defined as the area under the ROC curve.
p < 0.0001, Cohen’s d = 1.869). This result suggested that

participants were able to discriminate between the two noxious

stimuli behaviorally. This observation was confirmed by AUC

results. Across participants, the AUC values (0.804 ± 0.011)

were significantly larger than chance level (i.e., 0.5; Figure 2A,

t(113) = 27.003, p < 0.0001, Cohen’s d = 2.529).

Similar to the behavioral results and consistent with many pre-

vious studies,11,31,32 most brain responses evoked by nocicep-

tive laser stimuli, such as the EEG deflections in the time domain

(i.e., laser-evoked potentials, LEPs), encoded stimulus intensity.

Specifically, high-intensity laser stimuli evoked larger N1, N2,

and P2 waves than low-intensity stimuli (Figures 2B and S1A

and Table S1, all p values < 0.0001). Event-related spectral

perturbation, such as gamma-band event-related synchroniza-

tion (g-ERS), was also larger when elicited by high-intensity laser

stimuli than low-intensity stimuli (Figures S2A and S2C and

Table S1, p = 0.0002). Therefore, laser-elicited EEG responses

could be used to distinguish between noxious stimuli of different

intensities.

LEP responses are replicable indicators of pain

discriminability

Significant correlations across participants were observed be-

tween the pain discriminability index (i.e., AUC) and differential

LEP responses (amplitude differences between high-intensity

and low-intensity laser stimuli) in Dataset 1: (1) N1, Pearson’s

r = 0.448, p < 0.0001; (2) N2, Pearson’s r = 0.547, p < 0.0001; (3)

P2,Pearson’s r=0.434,p<0.0001 (Figure2DandTableS2).These

results were confirmed by a point-by-point correlation analysis,

which showed that differential amplitudes at timepoints surround-

ing N1, N2, and P2 peaks were significantly correlated with AUC

values (Figure 2C). Notably, their correlation coefficients were

topographically distributed similarly to the corresponding LEP

waves: theN1wavewasmaximal over the central temporal region

contralateral to the stimulated side, and N2 and P2 waves were

more centrally distributed with a maximum at the vertex.

The robustness and replicability of the above findings were

demonstrated from three different aspects. First, the correlation

results were confirmed using different statistical strategies. On

the one hand, nonparametric correlation analyses replicated

the findings above (Table S2). On the other hand, Bayesian cor-

relation analyses provided decisive evidence for these signifi-

cant correlations: (1) N1, the Bayes factor (BF) for Pearson’s

r = 2.614*104; (2) N2, BF for Pearson’s r = 3.375*107; and (3)

P2, BF for Pearson’s r = 1.170*104 (Figure 2D and Table S2). Sec-

ond, the results obtained from Dataset 1 were fully replicated in

Datasets 2 and 3 (see Figure 2D and Table S2 for statistical re-

sults), which indicated that the correlation results could be
ndex calculation

ple sizes, the EEG and fMRI studies aimed to reveal neural indicators of pain

ors.

ent stimuli belonging to four different sensory modalities (pain, touch, audition,

purple and orange, respectively). After each stimulus, participants rated the

’’) to 10 (‘‘the strongest sensation imaginable [in each stimulus modality]’’).

.e., area under the curve (AUC). Eleven integral ratings (i.e., 0–11) on the rating

n criterion (e.g., 5 in the top left plot), the hit rate and false alarm rate can be

he bottom right plot). Eleven criteria define 11 points on the ROC, and the AUC
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reliably observed in participants with different pain sensitivity

and in independent datasets collected using different EEG sys-

tems. Third, the correlation results were replicated using two

additional pain discriminability measures. Significant correla-

tions were consistently observed between differential LEP re-

sponses and pain discriminability, regardless of whether pain

discriminability was quantified using d0—a parametric measure

from SDT—or simply the pain intensity rating difference between

the high- and low-intensity conditions (see Figures S3B, S3C,

S4B, and S4C and Tables S3 and S4).

Additional time-frequency analyses further confirmed the fore-

going time domain findings. The time-frequency representations

of LEP responses (Figure S2E, 100–350 ms and 1–20 Hz) also

significantly correlated with pain AUC values. However, possibly

due to a low signal-to-noise ratio, there was no consistent evi-

dence for the significant correlation between g-ERS magnitudes

and AUC values. Only features in two small time-frequency re-

gions around 300 ms and 50 Hz showed positive correlations

with AUC values (Figure S2E).

In the three datasets analyzed above, the intensities of laser

stimuli were either 3.0 vs. 3.5 J (Dataset 1) or 3.5 vs. 4.0 J (Data-

sets 2 and 3). To test whether the correlation between LEP re-

sponses and pain AUC values could be generalized to other in-

tensity pairs, we reanalyzed another dataset (N = 95) from a

study we published previously,22 where participants received

laser stimuli of four intensities, 2.5, 3.0, 3.5, and 4.0 J (see the

original study22 for experimental details). When the intensity dif-

ference was 0.5 J (i.e., 2.5 vs. 3.0 J, 3.0 vs. 3.5 J, and 3.5 vs. 4.0

J), LEP responses consistently correlated with pain AUC values

(Table S5). However, the correlation became unstable when the

intensity difference was 1.0 J (i.e., 2.5 vs. 3.5 J and 3.0 vs. 4.0 J),

and they even disappeared when the intensity difference

reached 1.5 J (i.e., 2.5 vs. 4.0 J) (Table S5). These results support

the generalizability of our findings above, but also suggest that

the robust correlation between LEP responses and pain discrim-

inability may exist when the difference in stimulus intensity is

within some appropriate range.

To assess the possibility of using LEP responses to quantify

pain discriminability objectively, we trained a least absolute

shrinkage and selection operator (LASSO) regression model33

to continually predict AUC values using LEP responses in Data-

set 1. Using LEP features (i.e., differences of peak amplitudes

and latencies of N2 and P2 waves) at all electrodes, we found

that the predicted AUC values showed a strong correlation

with the real AUC values (Pearson’s r = 0.536, p < 0.0001; see

Figure S5). The generalizability of the model was demonstrated

by the finding that this model could also predict pain AUC values
Figure 2. Laser-evoked EEG responses reliably correlated with pain d

(A) Distributions of pain ratings evoked by nociceptive laser stimuli of high (purple

datasets, pain ratings evoked by high-intensity stimuli were significantly greate

significantly greater than the chance level of 0.5.

(B) The comparison of laser-evoked potentials (LEP) responses between high- an

intensity laser stimuli evoked larger N2/P2 (left) and N1 (right) waves.

(C) Point-by-point correlations between differential LEP responses (high–low) and

amplitude differences (left: N2 and P2 waves; right: N1 wave) significantly correl

(D) Correlations between differential amplitudes of N1, N2, and P2 waves and AU

with AUC values for all three datasets. ***p < 0.001; ##: Bayes factor (BF) > 10; #
in Dataset 2 (Pearson’s r = 0.423, p < 0.0001; see Figure S5).

This observation suggests a strong predictive power of LEP

responses to quantify pain discriminability objectively and

continually.

Our previous study showed that most LEP responses did not

reflect pain sensitivity across participants.22 This finding was

replicated in the present study: no significant correlations were

observed between mean N1 (Pearson’s r = 0.117, p = 0.215,

BF = 0.250), N2 (Pearson’s r = 0.016, p = 0.866, BF = 0.119),

and P2 amplitudes (Pearson’s r = 0.095, p = 0.317, BF = 0.192)

and mean pain ratings across participants (Figure S1B). Conse-

quently, LEP responses do encode pain variability at the be-

tween-individual level, but their function is more related to pain

discriminability than pain sensitivity.

LEP responses are selective indicators of pain

discriminability

In line with pain perception, participants were able to behavior-

ally (Figure 3A) and neurophysiologically (Figures 3B and S6–

S9 and Table S1) discriminate between high-intensity and

low-intensity stimuli in all other sensory modalities. These obser-

vations were confirmed by AUC values in all sensory modalities,

which were significantly larger than the chance level of 0.5

(see Figure 3A, minimal t = 32.350, maximal p < 0.0001, minimal

Cohen’s d = 2.157).

However, there was little evidence for significant correlations

between differential tactile, auditory, or visual EEG responses

and AUC values in Dataset 1&2 (Figures 3D and S7–S9 and

Table S6). This finding was confirmed by point-by-point correla-

tion analyses, as almost no time points showed significant corre-

lations betweendifferential ERPamplitudes andAUCvalues (Fig-

ure 3C). More evidence against the significant correlations was

accumulated from three different aspects. First, no robust corre-

lation results were obtained using different statistical strategies

(Table S6). Notably, even though there were weak correlations

between differential P2 amplitudes evoked by tactile (Pearson’s

r = 0.176) and auditory (Pearson’s r = 0.179) stimuli and AUC

values in Dataset 1&2 (Table S6), these correlations were signifi-

cantly smaller than the correlation between differential P2 ampli-

tudes evoked by laser stimuli and pain AUC values (Pearson’s

r = 0.434) in Dataset 1 (pain vs. touch: Z = 2.469, p = 0.014;

pain vs. audition: Z = 2.442, p = 0.015). Second, similar results

were obtained in Dataset 3 collected using the BioSemi EEG sys-

tem (Figure 3E and Table S6), thus verifying the replicability of our

findings in an independent dataset collected using different EEG

devices. Third, when quantifying discriminability using d0 and in-

tensity rating differences, no robust correlations were observed

(Figures S3D–S3F and S4D–S4F and Tables S7 and S8). Note
iscriminability

) and low (orange) intensities and distributions of pain AUC values. For all three

r than those evoked by low-intensity stimuli. AUC values in all datasets were

d low-intensity stimuli in Dataset 1. Compared with low-intensity stimuli, high-

AUC values in Dataset 1. Gray-shaded areas denote time intervals at which the

ated with AUC values (false discovery rate [FDR] corrected).

C values. Differential N1, N2, and P2 amplitudes were consistently correlated

##: BF > 100. See Tables S1 and S2 for detailed statistical results.
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that d0 values (Figure S3A) were more normally distributed than

AUC values (Figure 3A), and intensity rating differences showed

few ceiling effects (Figure S4A). The congruent findings among

the three discriminability measures suggest that the apparent

ceiling effect of AUC values in auditory and visual modalities (Fig-

ure 3A) had little, if any, influence on our results.

Although we have provided strong evidence supporting that

LEP responses selectively encode pain discriminability, one

may still argue that the conclusion can be misleading as the

perceptual intensity ratingswerenot strictly comparablebetween

different sensorymodalities (Figures 2A and 3A). To minimize the

possible influence of rating differences between modalities, we

adopted a matching procedure to equalize intensity ratings be-

tween pairs of sensory modalities (i.e., pain vs. touch, pain vs.

audition, and pain vs. vision) (see STAR Methods for details of

the matching algorithm). The matching procedure ensured that

the intensity ratings were comparable between different sensory

modalities (Figure 4). However, pain AUC values were signifi-

cantly smaller than tactile, auditory, and visual AUC values

(maximal p = 0.024), suggesting that participants were behavior-

ally better at discriminating between tactile, auditory, and visual

stimuli of different intensities than painful stimuli (Figure 4).

Despite this, significant correlations were always observed be-

tween differential LEP responses and pain AUC values (Figure 4,

TablesS9andS10),while noevidence supported thecorrelations

between differential tactile, auditory, or visual EEG responses

and their respective AUC values (Figure 4, Tables S11 and S12).

Similar results were observed in Dataset 1&2 and Dataset 3,

thus verifying that LEP responses selectively and reliably reflect

pain discriminability.

We have provided evidence that the non-normal distributions of

auditory and visual AUC values posed no serious problems for our

findings. However, the seeming ceiling effect, even in the rating-

matched data, may still cause some concerns. To address these

concerns, we matched AUC values between modalities using all

data in Datasets 1–3. The AUC matching ensured comparable

AUC values between pain and other sensory modalities (Fig-

ure S10). However, we still observed that LEP responses consis-

tently and robustly correlated with pain AUC values, whereas

few ERP responses evoked by non-painful stimuli correlated

with the corresponding AUC values (Figure S10, Tables S13 and

S14). One may note that tactile P2 amplitudes significantly corre-

lated with tactile AUC values after AUC matching. However, the

correlation coefficient between tactile P2 amplitudes and AUC

values (Pearson’s r = 0.229) was significantly smaller than that be-

tween pain P2 amplitudes and AUC values (Pearson’s r = 0.479;

Z = 2.985, p = 0.0028). These findings suggest that the distribution
Figure 3. EEG responses evoked by tactile, auditory, and visual stimul

(A) Distributions of intensity ratings evoked by tactile (left), auditory (middle), an

distributions of sensory AUC values for each modality. For all three modalities,

evoked by low-intensity stimuli, and AUC values were significantly greater than 0

identical experimental settings and stimulus parameters for the three modalities.

(B) The comparison of event-related potentials (ERP) responses between high- a

(C) Point-by-point correlations between differential ERP responses and AUC valu

stimuli weakly correlated with tactile AUC values (FDR corrected).

(D and E) Correlations between differential amplitudes of N2 and P2waves and AU

datasets, no evidence showed that differential N2 and P2 amplitudes correlate

0.32 < BF < 3.2. See Tables S1 and S6 for detailed statistical results.
ofAUCvalueshad little impact onourmainconclusion that LEP re-

sponses selectively reflect pain discriminability.

The results above tested the selectivity of neural indicators of

pain discriminability by correlating ERP responses in non-painful

sensory modalities with the corresponding sensory discrimina-

bility. Another way to test it is to correlate LEP responses with

sensory discriminability in non-painful modalities. Supporting

the selective role of LEP responses in encoding pain discrimina-

bility, we found that LEP responses could not consistently corre-

late with tactile, auditory, and visual discriminability (Table S15).

Furthermore, we tested whether the LASSO regression model

trained using LEP responses in Dataset 1 could predict AUC

values in other modalities in Dataset 1&2. Consistent with univar-

iate correlation results, the trained model could not significantly

predict tactile (Pearson’s r = 0.107, p = 0.1098), auditory (Pear-

son’s r = 0.100, p = 0.1339), or visual AUC values (Pearson’s

r = 0.040, p = 0.5456) (Figure S5).

Similar to previous studies,22,34 we have mainly focused on

vertexpotentials in the above analyses,which are themost prom-

inent deflections evoked by transient sensory stimuli.35,36 How-

ever, focusing only on vertex potentials can be an important

limitation in the present study. We thus conducted new control

analyses to assess the possible relationship between other

components (especially the early components) and sensory dis-

criminability. We first re-referenced EEG signals to Fz to more

accurately isolate early components37–39 and then conducted

point-by-point correlational analyses between the differential

ERP waves (high–low) at all electrodes and AUC values for

each sensorymodality. It turned out that none of tactile, auditory,

and visual ERPs at any electrode significantly correlated with the

corresponding AUC values, while only LEPs showed significant

correlations with pain AUC values within the time intervals of

N1, N2, and P2 waves at a series of electrodes (Figure S11).

fMRI indicators of pain discriminability
To assesswhether EEG findings on pain discriminability could be

generalized to fMRI data, we collected two large fMRI datasets

(N = 212 and 187, respectively), in which participants received

stimuli of four sensory modalities (pain, touch, audition, and

vision) and two intensities (high and low) in the MRI scanner

(Figures 1B and 1D). Experimental details in the two datasets

were almost identical, except that data were collected from

participants with different pain sensitivity using different laser

energies (Dataset 4: high-pain-sensitivity participants receiving

relatively low-energy laser stimuli [3.0 and 3.5 J]; Dataset

5: low-pain-sensitivity participants receiving relatively high-en-

ergy laser stimuli [3.5 and 4.0 J]). We first examined possible
i did not reflect their respective sensory discriminability

d visual (right) stimuli of high (purple) and low (orange) intensities as well as

ratings evoked by high-intensity stimuli were significantly greater than those

.5. Note that Datasets 1 and 2 were pooled together (Dataset 1&2) due to their

nd low-intensity stimuli in Dataset 1&2.

es in Dataset 1&2. Only the differential amplitudes of P2 wave evoked by tactile

C values for different sensorymodalities (D: Dataset 1&2; E: Dataset 3). For both

d with AUC values. ***p < 0.001; xx: 0.01 < BF < 0.1; x: 0.1 < BF < 0.32; ne:
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brain areas responsible for encoding pain discriminability using

Dataset 4 and then replicated the findings using Dataset 5.

Finally, we pooled both datasets to assess the pain-selectivity

of the identified neural indicators.

Pain stimuli can be distinguished in fMRI datasets

In Dataset 4, pain ratings evoked by high-intensity laser stimuli

were significantly higher than those evoked by low-intensity

laser stimuli (Figure 5A, t(211) = 18.830, p < 0.0001, Cohen’s

d = 1.293), suggesting that participants could successfully

discriminate between the two stimuli behaviorally. This finding

was confirmed by the AUC values (0.714 ± 0.009), which were

significantly larger than the chance level of 0.5 (Figure 5A,

t(211) = 23.752, p < 0.0001, Cohen’s d = 1.631).

Similar to EEG findings, laser-evoked neural responses

sampled using the fMRI technique also encoded the stimulus in-

tensity. Specifically, high-intensity laser stimuli led to stronger ac-

tivations than low-intensity stimuli in awide range of brain regions,

including the thalamus, S1, S2, insula, and ACC (Figure 5B; fam-

ily-wise error (FWE)-corrected p < 0.05 at the cluster level, the

same hereinafter). In other words, brain regions whose neural re-

sponses are highly associated with pain processing40–43 also

contain information to distinguish noxious stimuli of different

intensities.

Laser-evoked BOLD responses are replicable indicators

of pain discriminability

In Dataset 4, significant positive correlations between differential

blood-oxygen-level-dependent (BOLD) responses and pain

AUC values were observed in the bilateral thalamus, S1, S2, in-

sula, and some regions in ACC, cuneus, cerebellum, and so on

(Figure 5B). In contrast, no brain areas showed significant nega-

tive correlations with pain AUC values. Notably, almost identical

results were obtained when we assessed the correlations be-

tween differential BOLD responses and d0 values as well as be-

tween differential BOLD responses and intensity rating differ-

ences (Figures S12B and S13B).

We then focused our analysis on brain regions associated with

pain processing, namely, the bilateral thalamus, S1, S2, insula,

and ACC. All of them had subareas significantly correlated with

pain AUC values in Dataset 4 (Figure 5C). Defining these sub-

areas as regions of interest (ROIs), we extracted their BOLD re-

sponses and correlated these responses with pain AUC values in

Dataset 5 to assess the replicability of the findings in Dataset 4.

There was substantial and robust evidence that BOLD re-

sponses in the left thalamus, left S1, left insula, and ACC were

significantly correlated with pain AUC values (Figure 5C and

Table S16). Moreover, there was also evidence, albeit weak,

that BOLD responses in the right thalamus, right S1, and right

insula were significantly correlated with pain AUC values

(Table S16). Taken together, these results provided compelling
Figure 4. The selectivity of EEG indicators of pain discriminability

(A and B) N2 and P2 selectively correlated with pain discriminability after pain and

(B), the matching procedure equalized ratings for pain and touch, although pain A

Dataset 1&2 and Dataset 3, differential N2 and P2 amplitudes evoked by noxious

obtained in favor of the correlation between differential N2 and P2 amplitudes an

(C and D) N2 and P2 selectively correlated with pain discriminability after pain an

(E and F) N2 and P2 selectively correlated with pain discriminability after pain and v

x: 0.1 < BF < 0.32; ne: 0.32 < BF < 3.2; ##: 10 < BF < 100; ###: BF > 100. See T
evidence suggesting the replicability of fMRI indicators of pain

discriminability.

To assess the possibility of using fMRI responses to quantify

pain discriminability objectively, we trained a LASSO regression

model33 using first-level t maps of the contrast ‘‘high pain-low

pain’’ in Dataset 4. The predicted AUC values showed a signifi-

cant correlation with the real AUC values (Pearson’s r = 0.348,

p < 0.0001; see Figure S5). The trained model could also predict

pain AUC values in Dataset 5 (Pearson’s r = 0.227, p = 0.0018;

see Figure S5), demonstrating its generalizability.

Laser-evoked BOLD responses are selective indicators

of pain discriminability

In line with EEG findings, participants could also behaviorally and

neurophysiologically discriminate between high-intensity and

low-intensity stimuli in tactile, auditory, and visual modalities

(Figure 6). Intensity ratings evoked by high-intensity stimuli

were all significantly larger than those evoked by low-intensity

stimuli (Figure 6A, minimal t = 28.798, maximal p < 0.0001, min-

imal Cohen’s d = 1.442). Furthermore, AUC values in all sensory

modalities were significantly larger than the chance level of 0.5

(Figure 6A, minimal t = 37.573, maximal p < 0.0001, minimal Co-

hen’s d = 1.881). As compared with low-intensity stimuli, high-in-

tensity tactile, auditory, and visual stimuli led to stronger activa-

tions in a wide range of brain areas, e.g., bilateral insula and ACC

(Figures 6B–6D).

However, almost no brain regions showed significant correla-

tions with tactile, auditory, or visual AUC values (Figures 6B–6D).

The only exception was that, in the visual modality, a few areas in

the occipital lobe (e.g., the middle occipital gyrus, lingual gyrus,

and cuneus gyrus) correlated significantly with visual AUC values

(Figure 6D). Notably, similar results were obtained when sensory

discriminability was quantified using d0 values and intensity rat-

ing differences, which, unlike AUC values, showed few ceiling ef-

fects (Figures S12 and S13).

As in the EEG studies,we also accounted for intensity rating dif-

ferences across modalities using a matching procedure, which

ensured that intensity ratingsbetweendifferent sensorymodalities

wereequalized (Figure7A).However,painAUCvaluesweresignif-

icantly smaller than tactile, auditory, and visual AUC values

(maximal p = 0.002, Figure 7A). Despite this, significant correla-

tions were observed between differential laser-evoked BOLD re-

sponses in the foregoing pain-related brain regions and pain

AUC values,while almost nobrain regions showed significant cor-

relations between differential tactile, auditory, or visual BOLD re-

sponses and their respective AUC values (Figures 7B–7D).

We also tested the selectivity of fMRI-based neural indicators

of pain discriminability by correlating laser-evoked fMRI signals

with sensory discriminability in non-painful modalities. Almost

no cluster correlated significantly with tactile, auditory, or visual
tactile intensity ratings were matched. For both Dataset 1&2 (A) and Dataset 3

UC values were significantly smaller than tactile AUC values. Notably, for both

laser stimuli correlated with pain AUC values. However, no evidence could be

d tactile AUC values.

d auditory intensity ratings were matched.

isual intensity ratings werematched. *0.01 < p < 0.05; ***p < 0.001; ns: p > 0.05;

ables S9–S12 for detailed statistical results.
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Figure 5. Laser-evoked fMRI responses reliably correlated with pain discriminability

(A) Distributions of pain ratings evoked by nociceptive laser stimuli of high (purple) and low (orange) intensities and distributions of pain AUC values. For both

datasets, pain ratings evoked by high-intensity stimuli were significantly greater than those evoked by low-intensity stimuli. AUC values in both datasets were

significantly greater than 0.5.

(B) Brain regions showed stronger activation by high-intensity stimuli than low-intensity stimuli (top), and brain regions showed significant correlations between

their differential blood-oxygen-level-dependent (BOLD) responses and AUC values (bottom) in Dataset 4.

(C) Pain-related regions of interests (ROIs), defined according to the correlation results in Dataset 4, including the bilateral S1, S2, thalamus, insula, and ACC.

Differential BOLD responses in several pain-related ROIs (i.e., left S1, left thalamus, left insula, and ACC) also strongly correlated with AUC values in Dataset 5,

thus verifying the replicability of the findings obtained in Dataset 4. For whole brain analyses, the significance threshold was set at p = 0.001 at the voxel level and

pFWE = 0.05 at the cluster level. ***p < 0.001; ne: 0.32 < BF < 3.2; #: 3.2 < BF < 10; ###: BF > 100. See Table S16 for detailed statistical results.
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AUC values (Figure S14). Furthermore, the LASSO regression

model that significantly predicted pain AUC values failed to

predict tactile (Pearson’s r =�0.010, p = 0.8415), auditory (Pear-

son’s r = 0.003, p = 0.9452), or visual AUC values (Pearson’s

r =�0.019, p = 0.7061) (Figure S5). Collectively, our findings sug-

gest that BOLD responses evoked by nociceptive laser stimuli

selectively reflect pain discriminability.

DISCUSSION

Quantifying pain discriminability mainly using SDT-derived mea-

sures in five large datasets (two exploration datasets and three

validation datasets), we found that brain responses evoked by

painful laser stimuli reliably correlated with pain discriminability,

while almost no significant correlations were observed between

brain responses and sensory discriminability in tactile, auditory,

and visual modalities. These observations were well replicated

and validated using different statistical strategies and discrimi-

nability indices in independent datasets sampled using different

techniques (i.e., EEG and fMRI) and devices (i.e., BP and

BioSemi EEG systems). Moreover, the observations could be

generalized to participants with different pain sensitivity and

settings with different stimulus parameters. Crucially, the neural

indicators of pain discriminability were pain selective since the
10 Cell Reports Medicine 3, 100846, December 20, 2022
brain responses could not track the sensory discriminability in

tactile, auditory, and visual modalities, even though perceptual

ratings and AUC values were well matched between modalities.

Altogether, we provided compelling evidence that most EEG

(i.e., N1, N2, and P2 amplitudes) and fMRI brain responses

(e.g., BOLD activations in the thalamus, S1, insula, and ACC)

evoked by painful laser stimuli are replicable and selective neural

indicators of pain discriminability.

Brain responses evoked by noxious stimuli reliably
encode pain discriminability
In previousEEGand fMRI studies, themajority of brain responses

elicited by transient noxious stimuli reflect pain perception at the

within-individual level,20,44–47 but they fail to reflect the pain vari-

ability across individulas.22,48 Consequently, these brain re-

sponses do not reflect pain-specific neural activity, but rather

they reflect other physiological outcomesof the arrival of the tran-

sient nociceptive volley to the cortex besides pain, such as auto-

nomic responses and motor responses.49–51 Notably, all these

observations and subsequent interpretations were derived in

the framework of pain sensitivity—the ability to perceive the

same noxious stimulus as more (or less) painful than others—

both at the within-individual and between-individual levels.

Moving beyond this traditional framework, we explored neural



Figure 6. fMRI responses evoked by tactile, auditory, and visual stimuli did not reflect their respective sensory discriminability

(A) Distributions of intensity ratings evoked by tactile (left), auditory (middle), and visual (right) stimuli of high (purple) and low (orange) intensities as well as

distributions of sensory AUC values for each modality. For all three modalities, ratings evoked by high-intensity stimuli were significantly greater than those

evoked by low-intensity stimuli, and AUC values were significantly greater than 0.5. Note that Datasets 4 and 5 were pooled together due to their identical

experimental settings and stimulus parameters for the three modalities.

(B–D) Brain regions showed stronger activation by high-intensity stimuli than low-intensity stimuli (top), and brain regions showed significant correlations between

their differential BOLD responses and AUC values for each sensory modality (bottom). Although tactile (B), auditory (C), and visual (D) stimuli of high intensity

evoked stronger activations in a series of brain regions (e.g., bilateral insula and ACC) than low-intensity stimuli, almost no brain regions showed significant

correlations with AUC values. The only exception was that, for the visual modality, some areas in the occipital cortex correlated significantly with visual AUC

values. ***p < 0.001.

Article
ll

OPEN ACCESS
indicators of pain discriminability: the ability to distinguish painful

stimuli of different intensities. Extending a previous preliminary

study showing significant correlations between LEPs and pain

discriminability,26 we provided solid evidence that the majority

of EEG and fMRI brain responses elicited by nociceptive laser

stimuli consistently reflect the variability in pain discriminability

across participants. The replicability of the discovered neural in-

dicators was demonstrated using different statistical strategies

and discriminability indices in five large datasets (all Ns > 100)

sampledbydifferent techniques (i.e., EEGand fMRI) anddevices.

Importantly, results from EEG datasets agreed well with those
from fMRI datasets, considering that N1, N2, and P2 waves in

LEPs are mainly generated from the S1, S2, insula, and

ACC,52,53 whose activities also encoded pain discriminability.

These findings introduce a reinterpretation of themajority of brain

responses evokedby transient noxious stimuli. They could reflect

the ability of an individual to discriminate between different

transient noxious stimuli. Moreover, machine learning results

showed that laser-evoked brain responses could be used to

accurately predict pain discriminability for a given individual.

Therefore, we could evaluate pain discriminability objectively

using laser-evoked brain responses only (i.e., without the
Cell Reports Medicine 3, 100846, December 20, 2022 11



Figure 7. The selectivity of fMRI indicators of pain discriminability

(A) Distributions of intensity ratings and AUC values of pain and a non-pain sensation after their ratings were matched (left: pain vs. touch; middle: pain vs.

audition; right: pain vs. vision). Thematching procedure equalized ratings for each pair of sensorymodalities. However, pain AUC valueswere significantly smaller

than non-pain AUC values for all comparisons.

(B–D) Brain regions showed significant correlations between differential BOLD responses and AUC values after pain ratings were matched with tactile (B),

auditory (C), and visual (D) intensity ratings. For all comparisons, differential BOLD responses evoked by nociceptive laser stimuli significantly correlated with pain

AUC values, while almost no significant correlations were observed for the three non-painful sensory modalities. Only a few areas in the occipital cortex

significantly correlated with visual AUC values for the visual modality. ***p < 0.001; **0.001 < p < 0.01; ns: p > 0.05.
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requirement of collecting subjective pain ratings), which would

greatly extend the applications of these brain responses

in clinical practice, such as the development of new pain

therapeutics.
12 Cell Reports Medicine 3, 100846, December 20, 2022
Brain responses evoked by noxious stimuli selectively
encode pain discriminability
In contrast to brain responses evoked by painful laser stimuli

that reliably correlated with pain discriminability, almost no
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significant correlations were observed between brain responses

evoked by tactile, auditory, and visual stimuli and their respective

sensory discriminability, even though participants could discrim-

inate between stimuli of different intensities behaviorally and

neurophysiologically in these sensory modalities. These findings

were also highly replicable, as similar results were obtained

using different statistical methods and discriminability indices

in independent datasets. Most importantly, consistent results

were obtained even when a rating matching procedure was

adopted to equalize perceptual ratings between different sen-

sory modalities, thus eliminating the possible influence of rating

differences between modalities on our findings. These results

were also replicated when using discriminability measures

(i.e., d0 and intensity rating difference) that showed few ceiling ef-

fects and when manually matching AUC values between modal-

ities, thus effectively ruling out the influence of AUC distributions

on our findings. Taken together, the relationship between neural

responses evoked by transient noxious stimuli and pain discrim-

inability is probably pain selective.

These findings appear, at first glance, not in accord with pre-

vious studies, which showed that themajority of brain responses

evoked by nociceptive laser stimuli do not represent an obliga-

tory pain signature but are highly associated with stimulus

salience.54–58 This interpretation is mainly driven by the fact

that similar neural responses can also be evoked by equally

salient but non-painful tactile, auditory, or visual stimuli.34,55,57

Given that these multimodal neural activities are also activated

in situations where no pain is present, it is an incorrect reverse

inference to conclude that they represent an obligatory pain

signature.14,59 In the present study, whereas no evidence

showed that neural responses evoked by non-painful tactile,

auditory, or visual stimuli could reflect their corresponding sen-

sory discriminability, neural responses evoked by painful laser

stimuli reliably encoded pain discriminability. However, previous

studies havemainly focused onwhether brain responses evoked

by nociceptive laser stimuli selectively reflect pain sensitivity.

Bear in mind that pain discriminability is distinct from pain sensi-

tivity, and these two concepts can be independent. One can

have a high pain sensitivity, yet simultaneously have a low pain

discriminability. For example, one may rate a nociceptive laser

stimulus of 2.0 J as 7.5 on the 0–10 NRS and another stimulus

of 2.5 J as 7.6. This person is presumably highly pain-sensitive

but can hardly discriminate between the two stimuli. Conse-

quently, our findings and previous ones are not really inconsis-

tent. Instead, their seeming inconsistency highlights an essential

but frequently ignored discriminative function of transient pain-

evoked brain responses. In agreement with our findings, Beck

et al. also showed that the correlations between stimulus-

evoked brain responses and discriminability values were larger

in pain than in touch.26

Why do brain responses selectively encode pain
discriminability?
The finding that pain discriminability is selectively encoded by

laser-evoked brain responses begs a thorny question: why

does the neural processing of pain discriminability differ from

the discriminability of other sensory modalities? One possibility

is that discriminability is simply more important for pain percep-
tion. In real life, intensity discriminability is a predominant func-

tion of pain perception. In contrast, touch, audition, and vision

encode plentiful information other than intensity, for example,

texture and humidity for touch, timbre and pitch for audition,

color and shape for vision. Discriminating painful stimuli also

seems to have a more significant survival value, as mistaking

an intense pain stimulus for a mild one can sometimes be life

threatening. The importance of pain discriminability may warrant

the nervous system selectively encoding this information,

perhaps starting from the early stage of pain processing. Indeed,

we observed significant correlations between pain discriminabil-

ity and the earliest part of the neural responses sampled using

EEG (N1 wave in LEPs60) and fMRI (BOLD responses in the thal-

amus61) techniques.

However, this interpretation cannot easily explain the finding

that the significant correlation between brain activity and pain

discriminability became unstable or even disappeared when

the intensity differences in the two painful stimuli reached 1.0 J

or larger. This observation is theoretically reasonable. Suppose

that we had delivered stimuli with extremely large intensity differ-

ences (e.g., 2.0 and 5.0 J). It would be nearly impossible for brain

responses to correlate with pain discriminability, since all healthy

participants would be perfectly able to distinguish these two

stimuli (i.e., AUC = 1 for all participants). Moreover, we observed

that pain AUC values were consistently smaller than tactile, audi-

tory, and visual AUC values even after intensity ratings were

carefully matched between modalities. This observation is in

agreement with many psychophysical studies showing that

humans have superb sensory discriminability in non-painful mo-

dalities.62–65 For example, human eyes can even discriminate

between one and two photons.66 Our findings can thus be re-

stated as showing that the brain contains little information about

discriminability when stimuli can be trivially discriminated (as in

touch, audition, and vision, or pain when intensity differences

are large), as cortical processing may be unnecessary in such

a trivial task. Instead, the task can be achieved in the brainstem

or at the spiral cord level.67–69 On the contrary, when the discrim-

ination requires more effort (as in pain when intensity differences

are not so large), the conscious perceptual processing in the

cortex may be required, since higher cognitive processes like

decision-making may be involved in completing the difficult

task. Future studies are needed to explore the reasons for the

observation that pain discriminability is selectively encoded in

the brain and to empirically test all possible interpretations.

Limitations of the study
The limitation of the present study is that we did not collect

clinical data to assess the clinical applicability of the neural indi-

cators of pain discriminability we discovered. Our findings that

brain responses evoked by painful laser stimuli can serve as

objective measures of pain discriminability may have far-reach-

ing clinical implications. Objectively assessing pain discrimina-

bility based on neural responses would be eminently desirable

in specific clinical populations, such as non-communicative

patients and patients with disorders of consciousness. Notably,

previous studies have reported that some chronic pain patients

(e.g., low back pain patients) have impaired pain discriminabil-

ity,16,17 and the improvement in chronic pain is associated with
Cell Reports Medicine 3, 100846, December 20, 2022 13
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better pain discriminability.18,19 Furthermore, sensory discrimi-

nation training has been shown to reduce pain and reverse

cortical reorganization caused by chronic pain.70,71 Therefore,

the availability of a physiological and objective assessment of

pain discriminability may also be helpful in the early screening

and diagnosis of chronic pain and the development of individ-

ual-specific strategies for pain-relieving treatments.

To realize these potential clinical applications, future clinical

studies should be performed in at least two aspects. First, it

would be necessary to test the impact of chronic pain on the neu-

ral indicators of pain discriminability. If these neural indicators

are implicated in chronic pain, pathological alterations of these

brain responses may prove beneficial for early objective

screening and diagnosis of chronic pain. Second, it would be

interesting to examine the role of these neural indicators in

pain-relieving effects of discrimination training. Future studies

may target these neural indicators using individual-based neural

modulation techniques to alleviate suffering for chronic pain

patients.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d The data used for all figures and tables of the paper has been deposited on the Open Science Framework (https://doi.org/10.

17605/OSF.IO/S4UGW).

d All original analysis code (i.e., code for computing discriminability indices, matching ratings between pairs of modalities, and

predicting pain discriminability with LEP and fMRI responses usingmachine learning) has been deposited on the Open Science

Framework (https://doi.org/10.17605/OSF.IO/S4UGW).

d Any additional information required to reanalyze the data reported in this paper is available from the Lead contact upon reason-

able request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Five large datasets, which have not been published before in their entirety, were collected for this paper. Datasets 1, 2, and 3 were

for EEG studies and included 366 healthy participants in total: (i) Dataset 1, 114 participants (40 males) aged 20.7 ± 2.3 years

(mean ± SD); (ii) Dataset 2, 111 participants (54 males) aged 20.9 ± 2.3 years; (iii) Dataset 3, 141 participants (54 males) aged

21.8 ± 4.7 years. Datasets 4 and 5 were for fMRI studies and collected from 399 healthy participants: (i) Dataset 4, 212 participants

(One participant did not provide the demographic information. For the rest 211 participants, 76 males, aged 21.5 ± 4.2 years); (ii) Da-

taset 5, 187 participants (One participant did not provide the demographic information. For the rest 186 participants, 84 males, aged

21.0 ± 3.3 years). All participants were pain-free and had no history of chronic pain, neurological or psychiatric illness. They all gave

written informed consent and were paid for their participation. The procedures were approved by the local ethics committee at the

Institute of Psychology, Chinese Academy of Sciences.

METHOD DETAILS

EEG studies
We collected three large EEG datasets, in which signals were recorded from healthy participants with different pain sensitivity using

different EEG systems (Figure 1A). Dataset 1 included participants with high pain sensitivity and was recorded using the BP EEG sys-

tem. Datasets 2 and 3 included participants with low pain sensitivity and were recorded using the BP EEG system and the Biosemi

EEG system, respectively.
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Sensory stimulation

In each experiment, participants received transient stimuli belonging to four different sensorymodalities: nociceptive laser, non-noci-

ceptive tactile, auditory, and visual. For each sensory modality, two stimulus intensities (i.e., high and low) were delivered (Figure 1C).

In other words, each participant underwent eight experimental conditions (4 modalities32 intensities).

Painful stimuli were transient radiant heat pulses (wavelength: 1.34mm; pulse duration: 4ms) generated by an infrared neodymium

yttrium aluminum perovskite (Nd: YAP) laser (Electronical Engineering, Italy). The laser beamwas transmitted by an optic fiber, and its

diameter was set at approximately 7mm. Laser pulses were delivered to a pre-defined square (5 3 5cm2) on the left hand dorsum.

After each stimulus, the laser beam was displaced by approximately 1cm in a random direction to avoid nociceptor fatigue or sensi-

tization. Two stimulus energies (3.0 and 3.5J) were used in Dataset 1, which included participants with high pain sensitivity. Two

higher stimulus energies (3.5 and 4.0J) were used in Datasets 2 and 3, which included participants with low pain sensitivity (see below

for the procedure used to assign participants to the two datasets). Non-nociceptive tactile stimuli were constant current square-wave

electrical pulses (duration: 1ms; model DS7A, Digitimer, UK) delivered through a pair of skin electrodes (1cm interelectrode distance)

placed on the left wrist, over the superficial radial nerve. The same two stimulus intensities (2.0 and 4.0mA) were used in all three

datasets. Auditory stimuli were brief pure tones (frequency: 800Hz; duration: 50ms; 5ms rise and fall time) delivered through a head-

phone. The same two stimulus intensities (76dB SPL and 88dB SPL) were used for all participants. Visual stimuli were brief flashes of

a gray round disk in a black background (duration: 100ms) on a computer screen. The stimulus intensities were adjusted using the

greyscale of the round disk, which corresponded to RGB values of (100, 100, 100) and (200, 200, 200), respectively.

After eachstimulus, participantswereasked to verbally rate the perceived intensity using anNRS ranging from0 (‘‘no sensation’’) to 10

(‘‘the strongest sensation imaginable [in each stimulusmodality]’’). Stimulus intensities of tactile, auditory, and visual stimuli were deter-

mined based on a pilot behavioral experiment to ensure that the perceived ratings of low and high intensity stimuli were approximately 4

and 7 out of 10, respectively. However, since nociceptive laser stimuli of 4.0Jwere unbearable for someparticipants, we divided all par-

ticipants into twogroups, i.e., highand lowpainsensitivityparticipants.High-pain-sensitivityparticipantswere thosewho rated4.0J laser

stimuli >8. All remaining participants, who rated the 4.0J stimuli%8, were assigned to the low-pain-sensitivity datasets.

Rating and AUC matching procedures

Since the perceptual ratingsmay not be comparable between different sensorymodalities, any difference in the relationship between

EEG responses and discriminability indices across modalities could be due to the difference in perceptual ratings. To control for this

possible confounding factor, we adopted a rating matching procedure to equalize intensity ratings between pairs of sensory modal-

ities (i.e., pain vs. touch, pain vs. audition, and pain vs. vision) in the BP Dataset (including all data from Datasets 1 and 2) and the

BioSemi Dataset (i.e., Dataset 3), respectively.

Thematchingprocedurewasadapted fromapreviousstudy.24 Take thematchingbetweenpainand touchasanexample – suppose

Participant X rated the high- and low-intensity laser stimuli as 6 and 4 on average, respectively. We search for all participants whose

mean ratings for high-intensity tactile stimuli arewithin the range of 5.5–6.5 ANDmean ratings for low-intensity tactile stimuli arewithin

the range of 3.5–4.5. In other words, the absolute averagematching error should be% 0.5 for both high- and low-intensity stimuli. As-

sume that M participants would be qualified according to the absolute matching error criterion. Among them, N participants have the

smallest absolutematching error. If N = 1, Participant X is finally pairedwith this single participant; if N > 1, Participant X is finally paired

with a random member (say, Y) in the N participants, given that Participant Y has not been paired with any other participant.

We also used an AUCmatching procedure to account for the apparent ceiling effect of the discriminability measure (i.e., AUC; see

Discriminability measures below for more information; Figure 4). The AUC matching procedure was almost identical to the rating

matching procedure, except that the absolute averagematching error was 0.1 instead of 0.5 since AUC can only take values between

0 and 1. Tomaximize statistical power, we pooled all participants in the three EEG datasets (N = 366) in the AUCmatching procedure.

Experimental procedures

Experimental procedures were identical in the three datasets (Figure 1C). Participants were seated in a comfortable chair in a dim,

silent, and temperature-controlled room. The experiment consisted of three blocks, and, in each block, 40 sensory stimuli (5 stimuli

for each modality and intensity) were delivered while the EEG signals were recorded. After each block, participants were allowed to

take a brief break. The order of stimulusmodality and intensity was pseudo-randomized in each block. Each trial beganwith a fixation

cross, which, after 3000ms, was followed by a transient sensory stimulus. 3000ms after the stimulus, participants were required to

verbally rate the perceived intensity using a 0–10 NRS within 5000ms. Between 1000ms and 3000ms after the rating period, a new

trial started. The inter-stimulus interval thus ranged between 12000ms and 14000ms.

EEG recording

EEG data were acquired via 64 AgCl electrodes positioned according to the International 10–20 System, using the nose as reference

(band-pass filter: 0.01Hz–100Hz; sampling rate: 1000Hz; Brain Products EEG system, Germany for Datasets 1 and 2; BioSemi EEG

system, Netherlands for Dataset 3). Electrode impedance was kept lower than 10kU. Electrooculographic signals were simulta-

neously recorded using two surface electrodes, one placed �10mm below the left eye and the other placed �10mm from the outer

canthus of the left eye.

fMRI studies
To assess whether EEG findings could be generalized in fMRI data, we collected two large fMRI datasets (i.e., Datasets 4 and 5), in

which signals were collected from healthy participants with high or low pain sensitivity, respectively (Figure 1B).
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Sensory stimuli used in the fMRI studies were identical to those in the EEG studies, except that visual stimuli were presented on a

screen via an MRI-compatible projector. Since participants in Dataset 4 were more pain-sensitive, they received painful laser stimuli

of 3.0J (low intensity) and 3.5J (high intensity). Participants in Dataset 5 were less pain-sensitive and received laser stimuli of 3.5J (low

intensity) and 4.0J (high intensity).

Experimental procedures

Experimental procedures in Datasets 4 and 5 were identical, and both were similar to the EEG studies (Figure 1D). The experiment

comprised two blocks, and in each block, 40 sensory stimuli (5 stimuli for eachmodality and intensity) were delivered in theMRI scan-

ner. The order of stimulus modality and intensity within each block was pseudo-randomized. Each trial began with a 6000ms fixation

cross, which was followed by a transient sensory stimulus. 10000ms after the stimulus, participants were asked to move a slide to

rate the perceived intensity using the 0–10 NRS shown on the screen within 5000ms. A new trial started after an interval of 1000ms or

2000ms. The inter-stimulus interval thus ranged between 22000ms and 23000ms.

MRI acquisition

Whole brain MRI data were collected using a 3.0 Telsa MRI system (Discovery MR 750; General Electric Healthcare, Milwaukee, WI,

USA) at the Research Center of Brain Cognitive Neuroscience at Liaoning Normal University, China. Functional imageswere obtained

using a T2*-weighted Gradient Echo sequence (repetition time = 2000ms, echo time = 29ms, interleaved slices = 43, slice

thickness = 3.0mm, inter-slice gap = 0mm, acquisition matrix = 64 3 64, flip angle = 90�, field of view = 192 3 192mm2, in-plane

resolution = 3 3 3mm2). A high-resolution, 3D T1-weighted image was also acquired using a spoiled gradient-recalled echo

(SPGR) sequences (field of view = 256 3 256mm2, in-plane resolution = 1 3 1mm2) before functional imaging acquisition.

QUANTIFICATION AND STATISTICAL ANALYSIS

EEG studies
EEG data processing

EEG data were processed in MATLAB (R2016a; MathWorks, USA) using the EEGLAB toolbox.72 Continuous EEG data were band-

pass filtered between 1 and 30Hz for time-domain analyses, and between 1 and 100Hz for time-frequency analyses. Subsequently,

EEG data were segmented into epochs extending from 1000ms before to 2000ms after stimulus onset. Each epoch was baseline

corrected using the prestimulus interval. Bad electrodes (i.e., Fp1, Fp2, F1, and F2 in some participants) were replaced using spher-

ical interpolation. Trials contaminated by eye blinks and movements were corrected using an independent component analysis al-

gorithm (‘‘runica’’) implemented in the EEGLAB toolbox.72

For each participant, single-trial EEG waveforms of each of the 8 conditions (4 modalities32 intensities) were averaged. Baseline-

to-peak amplitudes of themain negative and positive ERPwaves (e.g., N2 and P2waves) weremeasured in each participant for each

condition. N2 and P2 waves were defined as the most negative and positive deflections at Cz between 100ms and 600ms after stim-

ulus onset. To extract the component that is particularly tight to the afferent spinothalamic nociceptive input, we also measured the

peak amplitude of the N1 wave in LEPs. N1 was defined as the most negative deflection preceding the N2 wave in LEPs, and

measured at the central electrode contralateral to the stimulated side (i.e., C4), referenced to Fz.37 To examine early components

in other modalities, we also re-referenced EEG signals evoked by non-painful stimuli to Fz, following recommendations by previous

studies.38,39 Scalp topographies at N1, N2, and P2 peak latencies were computed by spline interpolation. Differential ERP amplitudes

were calculated by subtracting the amplitudes evoked by low-intensity stimuli from those evoked by high-intensity stimuli for each

sensory modality (i.e., high–low). Mean ERP amplitudes of laser-evoked N1, N2, and P2 waves were also obtained by calculating the

averaged amplitudes evoked by low and high intensity stimuli (i.e., [high+low]/2) to assess whether LEPs could reflect pain sensitivity

across individuals.

To identify event-related spectral perturbations associatedwith sensory discriminability, we also performed a time-frequency anal-

ysis on single-trial EEG responses. Specifically, a time-frequency distribution (TFD) of the EEG responseswas obtained using a short-

time Fourier transform (STFT) with a fixed 200-ms Hanning window. For each EEG trial, the STFT yielded a complex time-frequency

estimate F(t, f) at each point (t, f) of the time-frequency plane, extending from�500ms to 1000ms (in steps of 2ms) in the time domain

and from 1Hz to 100Hz (in steps of 2Hz) in the frequency domain. The resulting spectrogram, P(t, f) = |F(t, f)|2, represents the signal

power as a joint function of time and frequency at each time-frequency point. The spectrogramwas then baseline-corrected (baseline

interval: �400ms � -100 ms) at each frequency using the subtraction method.73 According to previous studies,22,74 the magnitudes

of two time-frequency features (i.e., gamma-band event-related synchronization [g-ERS] and alpha-band event-related desynchro-

nization [a-ERD]) were extracted for each participant, by computing the top 20% of all time-frequency points within their respective

time-frequency regions-of-interest (TF-ROIs): g-ERS (100ms–300ms, 60Hz–90Hz at Cz), a-ERD (500ms–900ms, 7Hz–13Hz at POz).

Differential magnitudes of event-related spectral perturbations were calculated by subtracting the magnitudes evoked by low-inten-

sity stimuli from those evoked by high-intensity stimuli for each sensory modality (i.e., high–low).

Discriminability measures

For each sensory modality, discriminability was quantified using two SDT-derived measures (i.e., AUC, d0). Like the difference

threshold in traditional psychophysics, these measures quantify the ability to discriminate between different stimuli. While the differ-

ence threshold holds constant sensation (i.e., just noticeable difference) and uses the difference in physical intensities between the
Cell Reports Medicine 3, 100846, December 20, 2022 e3
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two stimuli to quantify discriminability, these measures fix the physical intensities and quantify discriminability using the difference of

sensation between stimuli. However, unlike the difference threshold, SDT is a powerful tool for separating discriminability from

response criteria (e.g., the tendency to report one stimulus as more painful) and thus minimizing the influence of response criteria

on discriminability.4,75 Practically speaking, measuring the difference threshold could be more time-consuming and may also be un-

suitable using a laser device, as the laser energy can’t be set arbitrarily. For the Nd: YAP laser (Stimul 1340, Electronical Engineering,

Italy) that was equipped in our lab, the smallest energy difference between two stimuli is 0.25J (e.g., 3.00 vs 3.25J), which may be too

large to precisely measure the difference threshold for some participants. These considerations prompted us to quantify discrimina-

bility using the SDT-derived measures.

AUC is an oft-used nonparametric measure of discriminability.8,28,76 Importantly, we did not use the typical SDT design in which

participants are required to identify one of two alternative stimuli (e.g., the stronger stimuli of two intensities).27 Rather, we used a

rating design in the framework of SDT,27 which is particularly suitable for computing AUC values29 and has been used extensively

in many classic pain behavioral studies.1–3,28 In the rating design,1–3,28 participants report how painful a pain stimulus is on a numer-

ical rating scale. This is equivalent to treating every numerical rating (0–10) on the scale as an implicit criterion. In order to compute

AUC values, for a given criterion (e.g., 5), ratings greater than or equal to this criterion (i.e., 5–10) in the high-intensity condition are hit

responses, while ratings greater than or equal to this criterion in the low-intensity condition are false alarms (Figure 1E). The hit rate is

obtained by dividing the number of hit responses by the number of total trials in the high-intensity condition. The false alarm rate is the

proportion of false alarms in the low-intensity condition. A hit rate-false alarm rate pair defines a point on the ROC curve. Since there

are 11 integral ratings on the NRS, there will be 11 points on the ROC curve, and the AUC value is defined as the area under the ROC

curve.

To demonstrate that our findings were not influenced by the choice of discriminability measure, we also quantified the discrimina-

bility using d0, a more widely-used parametric measure in SDT. Briefly, d0 = Z(hit rate)–Z(false alarm rate), where Z( ) is the inverse

cumulative distribution function of the standard normal distribution.27 To define hit responses and false alarms, we first pooled

perceived ratings in high- and low-intensity conditions for each sensory modality and each participant. Then, we defined a series

of cutoffs based on rating percentiles (from 5% to 95%, in steps of 5%, 19 cutoffs in total).26 For a given cutoff percentile, ratings

in the high-intensity condition were treated as hit responses if higher than the defined cutoff percentile, and ratings in the low-intensity

condition were regarded as false alarms if higher than the cutoff percentile. As such, 19 d0 values could be computed, and themean of

these 19 d0 values was calculated as the measure of sensory discriminability.26 Note that we added a flattening constant of 0.5 to the

formula computing hit rates and false alarm rates since Z values would be infinite if hit rates or false alarm rates were 100% or 0%.77

As a result, hit rates were defined as (hit response counts+0.5)/(total number of trials in the high-intensity condition+0.5*2), and false

alarm rates as (false alarm counts+0.5)/(total number of trials in the low-intensity condition+0.5*2).

The main advantage of SDT-based measures (AUC and d0) is that discriminability can be separated from individual response, and

thus the potential influence of individuals’ response criteria on discriminability can be controlled and minimized.4,75 However, these

measures (especially AUC) may suffer from the ceiling effect if there is little overlapping of intensity ratings between stimuli. Unlike

AUC and d’, the rating difference (high–low), a very crude measure of discriminability, is unlikely to be saturated at some extreme

values and thus does not suffer from the ceiling effect.We thus also adopted the rating difference as the third discriminability measure

to assess the robustness of our findings based on SDT-based measures.

Computing these three measures unbiasedly requires that the number of intensity ratings in all four modalities is identical. Luckily,

only one participant in Dataset 2 failed to provide a rating in one trial in the high-intensity tactile condition, and two participants in

Dataset 3 did not report ratings in one trial (in the low-intensity auditory and low-intensity laser conditions, respectively). We imputed

these three missing values from the mean rating in the respective condition for the corresponding participant.

Machine learning

We trained least absolute shrinkage and selection operator (LASSO) regression models33 to predict pain AUC values using prepro-

cessed LEP signals in Dataset 1. The LASSO is a regularizationmethod that shrinks the linear regression coefficient estimates toward

zero. Mathematically, LASSO regression minimizes the following loss function:

Loss =
Xn
i = 1

 
yi � b0 �

Xp
j = 1

bjxij

!2

+ l
Xp
j = 1

��bj

��
where yi is the predicted variable (or feature) of participant i, b0 and bj are the linear regression coefficient estimates, xij is the j-th

predictor for participant i, and l is the tuning parameter.

We used differences of peak amplitudes and latencies of N2 and P2waves between high- and low-intensity conditions in Dataset 1

as predictors. As such, 236 predictors (2 peaks [N2 andP2]3 2 features [amplitude and latency]3 59 electrodes) were thus extracted

for each participant. 10-fold cross-validation was used to evaluate model performance. That is, 114 participants in Dataset 1 were

randomly divided into 10 groups with an almost equal number of participants, and one group was used as the test set, the other nine

as the training set. The same procedure was repeated 10 times to ensure that every group was in the test set once. In each repeat, we

first selected in the training set 20% of features that had the largest absolute values of univariate Pearson’s correlation coefficients

with pain AUC values, and then normalized all LEP predictors using z-scores to control the scale differences between different

features. These z-scored features were then used to train the LASSO regression. Note that the feature selection (i.e., top 20% of
e4 Cell Reports Medicine 3, 100846, December 20, 2022
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features) and normalization parameters were derived from the training set and applied to the test set to avoid data leakage. To deter-

mine the optimal tuning parameter l, we selected 100 l values log-uniformly distributed in the [10�5, 10�0.5] interval and tuned l using

nested 10-fold cross-validation. The predictive performance of the final model was assessed using Pearson’s correlation coefficient

between the predicted and real pain AUC values. To examine the generalizability of the model, we applied the model to predicting

pain AUC values in Dataset 2. The selectivity of the model was assessed by applying the model to predicting tactile, auditory, and

visual AUC values in Dataset 1&2.

Statistical analysis

To assess whether participants were able to discriminate between two stimuli of different intensities, perceptual ratings and neural

responses (e.g., N1, N2, and P2 amplitudes) evoked by high-intensity stimuli were compared with those evoked by low-intensity

stimuli using paired-sample t-tests. Moreover, AUC values were compared with the chance level of 0.5 using one-sample t-tests.

To identify EEG indicators of sensory discriminability, we correlated differential EEG responses (high–low) with AUC values using

both parametric (Pearson’s r) and nonparametric (Kendall’s tau-b) correlation analyses. Correlation results were confirmed using

point-by-point parametric correlation analyses with false discovery rate (FDR) correction.78

Bayesian correlation analysis was also conducted to provide direct evidence for or against the null hypothesis. Bayesian correla-

tion analysis was conducted under the uninformative prior distribution of Beta(1, 1) to explicitly provide evidence for or against the null

hypothesis of no correlation.79 The Bayes factor (BF), a key index in Bayesian statistics, quantifies the relative likelihood of collecting

the data given the alternative hypothesis over the null hypothesis.79 Different BF values were interpreted in the way recommended by

Kass & Raftery80: (i) 1–3.2: barely worth mentioning evidence for the alternative hypothesis; (ii) 3.2–10: substantial evidence; (iii)

10–100: strong evidence; (iv) > 100: decisive evidence. The reciprocal of BF values less than 1 can be interpreted as evidence for

the null hypothesis. For example, a BF of 0.2 (i.e., 1/5) indicates substantial evidence for the null hypothesis.

To determine whether the rating matching procedure was successful, we performed a two-way repeated-measures ANOVA

(‘‘modality’’: pain and touch, for instance; ‘‘intensity’’: low-intensity and high-intensity). Intensity rating differences between pairs

of sensory modalities (e.g., pain vs. touch) were considered equalized if there was not a significant interaction effect. If the rating

matching procedure was successful, we then performed the correlation analyses to demonstrate the pain-selectivity of the correla-

tion between EEG responses and AUC values using the rating-matched datasets. Additionally, we directly assessed the possible

difference of correlation coefficients between different sensory modalities using the r.test function in the R package psych (ver 2.1.6).

Point-by-point correlation analyses were conducted in MATLAB (R2016a; MathWorks, USA). All other statistical analyses were

conducted in the open-source statistical software jamovi (ver. 1.8.1.0) (https://www.jamovi.org/). Bayesian analysis was performed

based on the JSQ-BAYESIANMETHODSmodule (ver. 1.0.2) in jamovi. Machine learningmodelingwas conducted in Python (ver. 3.9;

https://www.python.org/) using the sklearn library (ver. 1.1.2; https://scikit-learn.org/stable/).81

fMRI studies
Image preprocessing

fMRI data were preprocessed and analyzed using Statistical Parametric Mapping 12 (SPM12) (Wellcome Trust Center for Neuroi-

maging, London). The first three volumes in each run were discarded to allow for signal stabilization. Images were slice-time

corrected using the second slice and realigned to the mean slice. The resulting images were normalized to the Montreal Neurological

Institute (MNI) space (resampling voxel size = 33 33 3mm3)82 and then smoothed with a 6-mm full-width at half maximum (FWHM)

Gaussian kernel.

fMRI analysis

First-level analyses were conducted using the general linear model. Regressors included eight conditions (4modalities32 intensities)

convolved with the canonical hemodynamic response function and six head motion estimates. Moreover, we high-pass filtered im-

ages with a cutoff period of 128s and accounted for temporal autocorrelations using the first-order autoregressive model (AR(1)).

Second-level analyses were performed to determine brain regions responding to stimuli of different intensities and brain regions

associated with sensory discriminability. To these ends, four contrast images for four sensory modalities were first constructed

for each participant: (1) pain: high intensity (high)–low intensity (low); (2) touch: high–low; (3) audition: high–low; (4) vision: high–

low. Contrast images were then submitted to one-sample t-tests to assess the effect of stimulus intensity for each sensory modality.

To identify brain regions responsible for sensory discriminability, contrast images entered linear regression models with AUC values

as the predictor for each sensory modality. In whole-brain analyses, the significance threshold was set at p = 0.001 at the voxel level

and pFWE = 0.05 at the cluster level.

As in the EEG studies, the discriminability was quantified using three indices (i.e., AUC, d0, and rating differences) for each sensory

modality. Additionally, the same rating matching procedure was performed to rule out the possible confounding factor due to the

difference of perceptual ratings between modalities. To ensure that participants were able to discriminate between two stimuli of

different intensities, perceptual ratings evoked by high-intensity stimuli were compared with those evoked by low-intensity stimuli

using paired-sample t-tests. AUC values were compared with the chance level of 0.5 using one-sample t-tests. To assess the repli-

cability of our findings, we used Dataset 4 to explore neural indicators of pain discriminability and used Dataset 5 to replicate the

results obtained in Dataset 4. We first defined a series of ROIs, which were obtained by calculating the conjunction of brain regions

with significant correlation with pain discriminability in Dataset 4 ANDbrain regions widely-accepted for pain processing (i.e., bilateral

thalamus, S1, S2, insula, and ACC).40,43,83–85 Average BOLD responses in these ROIs were then extracted and correlated with pain
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AUC values in Dataset 5 using the same correlation analyses specified in the EEG studies. To account for the problem of multiple

comparisons in the ROI-based correlation analysis, we corrected correlation results using the Holm correction method.86 The

anatomical locations of pain-related regions were defined using the Harvard-Oxford Atlas87 distributed with FSL. The probability

maps were thresholded at 50%.88

Machine learning

Wealso trained a LASSO regressionmodel33 to predict pain AUC values using laser-evoked fMRI signals in Dataset 4. Themodel was

developed in a way similar to the LASSO regression model in the EEG studies. To account for the variation of fMRI signals, we used

unthresholded first-level t maps for the contrast ‘‘high pain–low pain’’ as predictors. We first selected a set of brain areas that are

related to the term ‘‘pain’’ using the association test (FDR-corrected p < 0.01) in the Neurosynth meta-analysis database89

(https://neurosynth.org/) and extracted brain signals in this Neurosynth ‘‘pain’’ mask. We then further selected 20% of voxels that

showed the largest absolute values of correlation coefficients with pain AUC values. Signals in these voxels were standardized

across participants and submitted to principal component analysis to reduce the feature dimensions. A small number of principal

components were retained so that they could explain 80% of variance of signals in the top 20% of voxels. These components

were used as features in the LASSO regression model. 10-fold cross-validation was also used to evaluate model performance.

The predictive performance of the final model was assessed using Pearson’s correlation coefficient between the predicted and

real AUC values. To examine the generalizability of the model, we applied the model to predicting pain AUC values in Dataset 5.

The selectivity of the model was assessed by applying it to predicting tactile, auditory, and visual AUC values in Dataset 4&5.
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