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A B S T R A C T

Dynamic functional connectivity (dFC) analysis based on resting-state functional magnetic resonance imaging
(fMRI) has gained popularity in recent years. Despite many studies have linked dFC patterns to various mental
diseases and cognitive functions, little research has used dFC in the investigation of low-level sensory perception.
The present study is aimed to explore resting-state fMRI dFC patterns correlated with thresholds of two types of
perception, pain and touch, on an individual basis. We collected and analyzed resting-state fMRI data and
thresholds of pain and touch from 80 healthy participants. dFC states were identified by using independent
component analysis, sliding window correlation, and clustering, and then the thresholds of pain and touch are
correlated with the occurrence frequencies of dFC states. A new permutation analysis is developed to make
identified dFC states more interpretable. We found that the occurrence frequency of a default mode network
(DMN)-dominated state was positively correlated with the pain threshold, while the occurrence frequency of a
static functional connectivity (sFC)-like state was negatively correlated with the touch threshold. This study
showed that the thresholds of pain and touch have distinct dFC correlates, suggesting different influences of
baseline brain states on different types of sensory perception. This study also showed that dFC could serve as an
indicator of an individual’s pain sensitivity, which can be potentially used for pain management.

1. Introduction

Inferring functional brain connectivity from resting-state functional
magnetic resonance imaging (fMRI) has gained enormous popularity in
the past decade [1]. Functional connectivity (FC) is generally estimated
from statistical relationship between fMRI blood oxygen level depen-
dent (BOLD) signals of different brain regions and it is most commonly
calculated as the correlation coefficient between two BOLD signals in
the whole scan [2,3]. However, this static FC (sFC) does not consider
fluctuation in the relationship between BOLD signals [4–6], while there
is much evidence (for example, from electrophysiological studies)
showing that the FC has obvious dynamic behaviors even at rest [7].
Therefore, dynamic FC (dFC) has attracted increasing attention in re-
cent years as a useful tool to probe the time-evolving organization of
the brain.

The most popular method used to estimate dFC is the sliding
window analysis [8], which splits the whole fMRI scan into a series of
data segments and calculates time-dependent correlation for each

segment. Correlation can be calculated between fMRI signals of dif-
ferent brain regions or between components decomposed by using in-
dependent component analysis (ICA) on fMRI signals, resulting in a set
of time-dependent correlation matrices. Next, clustering methods, such
as k-means, are often used to group time-dependent correlation ma-
trices of all time points and all participants into a limited number of
dFC states with consistent spatial connectivity patterns. Subsequently,
some dFC features, such as occurrence frequency and mean dwell time,
can be extracted from these states. These dFC features can then be
correlated with behavioral, cognitive, and pathological variables [9] in
order to reveal neural correlates of cognition and mental disorders from
resting-state fMRI. For example, many clinical studies have shown that
dFC analysis reveals more information about the brain network than the
traditional static FC analysis in many mental disorders, such as bipolar
disorder, schizophrenia, autism spectrum disorder and mild cognitive
impairment [10–13].

Generally, dFC is considered to measure the brain network’s flex-
ibility and adaptability, which are known to be essential in high-level
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cognition and learning. For example, Yang et al. proved that the
duration spent in connectivity states of a posteromedial cortex seed
modulates mental flexibility [14]. Madhyastha et al. showed that
stronger contributions of a dorsal attention subnetwork at rest lead to
better attentional task performance [15]. Cohen reviewed how differ-
ences in dFC variability between different contexts relate to cognitive
demands and behavioral performance and how different patterns of
dFC correspond to individual differences in cognition [16]. But, dFC has
been seldom linked to an individual’s low-level sensory perception.
Actually, sensory perception is influenced by high-level brain functions
through top-down modulation, so it should be naturally regulated by
the brain network’s adaptability to environment and stimulation. For
example, Cheng et al. demonstrated that patterns in dynamic and static
brain communication were related to different characteristics and
timescales of chronic pain using multivariate machine learning [17].
Bosma et al. proved that patients with multiple sclerosis have abnormal
sFC, dFC and disrupted regional BOLD variability in the dynamic pain
connectome [18]. Moreover, Hua et al. compared brain activations
produced by pleasant, neutral and unpleasant touch, to the anterior
lateral surface of lower leg of human subjects [19]. Therefore, it is
reasonable to hypothesize that an individual’s perception level (like
pain and touch) is reflected in his/her dFC patterns.

In this study, we explore possible dFC correlates of two types of
sensory perception: pain and touch. Specifically, we examined whether
the perceived level of noxious stimuli (i.e., pain threshold) and the
perceived level of non-noxious stimuli (i.e., touch threshold) are cor-
related with any dFC patterns on an individual basis. Pain is in-
dividualized sensory and emotional experience [20], and different
people have different levels of pain sensitivity, which can be measured
by pain thresholds in well-designed experiments. In recent years, many
pain studies have used MRI/fMRI to find neural correlates of pain
sensitivity. For example, it has been reported that individuals with high
pain sensitivity have less gray matter in the precuneus and posterior
cingulate cortex (PCC) [21]. However, it remains unknown whether an
individual’s pain sensitivity is related to dFC. It will also be very in-
teresting to examine whether pain threshold and touch threshold,
which respectively indicate an individual’s sensitivity to nociceptive
and non-nociceptive stimuli, have the same dFC correlates and under-
lying neurophysiological mechanisms.

To this end, we collected resting-state fMRI data and behavioral
data (pain/touch thresholds) from 80 healthy participants. The sensa-
tions of touch and pain were respectively evoked by mechanical pres-
sure and laser stimuli, and their thresholds were determined by parti-
cipants’ self-report. We used a dFC analysis framework to assess the
reoccurred dynamic characteristics of FC, and the dFC analysis frame-
work includes spatial-level group ICA to define brain networks of this
group of participants, sliding window analysis to estimate dFC, and k-
means clustering to estimate discrete dFC states. The basic idea of ICA is
to separate underlying components that have been mixed together
based on the assumption of independence of sources [22]. ICA has been
popularly applied on fMRI data to isolate spatially independent com-
ponents, each of which is represented as a set of brain regions sharing
the same response pattern [22]. Group ICA is an ICA variant developed
for the analysis of multisubject fMRI data and it can decompose mul-
tisubject resting-state fMRI data into functionally homogeneous regions
[23,24]. Group ICA enables a whole-brain analysis for multiple subjects
without resorting to atlas-based ROI analysis methods which may
merge distinct areas [25] or fail to capture inter-subject spatial varia-
bility [26]. Next, dFC state features, such as occurrence frequency, were
extracted and further correlated with the thresholds of pain and touch.
To increase the interpretability of dFC states, we used the permutation
analysis to quantify differences of dFC states and find dominant net-
works in each dFC state. By using above dFC analysis pipeline, we
identified distinct dFC patterns for pain threshold and touch threshold,
suggesting different baseline neural correlates of these two types of
sensory perception.

2. Materials and Methods

2.1. Experimental design

A total of 80 healthy participants (32 males, 48 females, age:
22.11 ± 4.54 years) were recruited in this experiment. All participants
were free of acute or chronic pain, nervous system diseases, cere-
brovascular diseases, coronary heart disease and mental disorders. All
participants gave their written informed consent and the experimental
procedures were approved by the local ethics committee. The imaging
data were scanned using a 3.0 T GE-scanner. Resting-state fMRI data
was collected using a standard gradient echo planar imaging sequence
with following imaging parameters: 43 oblique slices, thickness/
gap=3/0mm, acquisition matrix= 64×64, time of repetition (TR)
=2000ms, time of echo (TE) =30ms, flip angle= 90°, field of
view=192×192 mm2, total volume=300, acquisition time
=10min. In the whole scan, participants were asked to remain mo-
tionless, keep their eyes open, stay awake, relax their minds, and stare
at the "+" sign with head fixation. However, due to the failure of data
collection and head motion with more than 2.0 mm maximum dis-
placement in any direction of x, y, and z or 2° of any angular motion
throughout the scan [27–29], five participants were excluded and only
data from the remaining 75 healthy participants (28 males, 47 females,
age: 22.25 ± 4.64 years) were used in the subsequent analysis.

The thresholds of sensory perception were collected by two beha-
vioral experiments. First, the touch threshold was measured manually
by using a set of von Frey filament (0.008 g – 300 g, corresponding to
0.08mN – 2940mN) to generate different strengths of transient me-
chanical pressure. The filament was touched vertically onto the back
area of left hand until slightly bent. Each touch stimulus had a duration
about 1 s and three consecutive stimuli were delivered in about 10 s.
The transient pressure was given in an ascending order (starting from
0.008 g filament) and the participants were asked to report their feeling
after each stimulus. When “feeling touch” was reported in any one of
three consecutive stimuli, the corresponding pressure strength was re-
corded as the touch threshold. The result was averaged from two in-
dependent measurements conducted in one hour. Second, the pain
threshold was measured manually by using laser equipment.
Specifically, a series of laser stimuli were delivered to the back area
between thumb and index finger of left hand. The measurement was
started from energy level at 1 J with a 0.25 J increase at each stimu-
lation. A participant was asked to report the pain ratings after each
stimulation from 0 (no pain) to 10 (the worst pain). When a rating of 4
was reported, the corresponding energy level was recorded as the pain
threshold. The result was averaged from two independent measure-
ments conducted in one hour.

2.2. fMRI data preprocessing

All data processing processes were carried out in MATLAB-R2017a
(The MathWorks, Inc., Natick, MA, US). The T1 weighted and resting-
state fMRI data were preprocessed using the SPM8 (https://www.fil.
ion.ucl.ac.uk/spm) and DPABI (http://rfmri.org/dpabi) [30]. The pre-
processing procedure was as follows. The first 5 volumes were removed,
remaining 295 volumes, to avoid T1 equilibration effects. Slice timing
correction used the middle slice as the reference. Head motion correc-
tion was then used to obtain the six-dimensional rigid body motion
parameters. The T1 images was segmented and co-registered with
functional images. Then, the images were spatially normalized into
Montreal Neurological Institute space, resliced to 3mm×3mm×3
mm voxels, and smoothed with an FWHM of 6mm. Variance normal-
ization was used to remove the remarkable between-subject difference
in the magnitude of signals and it was achieved at each voxel by line-
arly detrending and conversion to z-score (subtracting the mean from
each of the individual data points and dividing the result by the stan-
dard deviation).
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2.3. Group ICA analysis

The preprocessed resting-state fMRI data were concatenated, and
spatial-level group ICA was performed using GIFT4.0b (http://mialab.
mrn.org/software/gift) toolbox. The data were decomposed into num-
bers of independent components (ICs), which were fMRI time-series and
spatial-maps decomposed from fMRI data and used to construct spa-
tially-independent functional brain networks. We set the number of ICs
to 100 for a detailed functional network separation [31]. The infomax
ICA algorithm was repeated 100 times in ICASSO and the best run was
selected to ensure the estimation stability. After estimating the ag-
gregate spatial maps, spatiotemporal regression back reconstruction
was performed to obtain the subject specific spatial maps and time
courses. Additional post-processing steps were performed on the time
courses of selected ICs, and these post-processing steps included de-
trending linear, quadratic, and cubic trends, conducting multiple re-
gressions of the 6 realignment parameters and their temporal deriva-
tives [32], despiking detected outliers [33], and low-pass filtering with
cut-off frequency of 0.15 Hz.

For the classification of intrinsic connectivity networks (ICNs),
which expanded upon the concept of restingstate networks to include
the set of large-scale functionally connected brain networks [34,35].
We identified the useful components and the noise components ac-
cording to whether the main power of time courses was in the low-
frequency range and whether the peak coordinates of spatial maps were
located in the gray matter. Then, we assigned the components to cor-
responding ICNs according to the location of peak coordinates and their
overlap with ICNs obtained by previous studies [36].

2.4. dFC state analysis

The sliding window analysis approach was used to divide ICs time
courses into several short segments to estimate dFC. A 30 TR (60 s)
window, created by convolving a rectangle with a Gaussian (σ=3 TR)
and a step of 1 TR were used, resulting in 265 windows or segments.
The results with other window sizes from 40 s to 80 s (20/25/35/40 TR)
were provided in Section 1 of the Supplementary Materials. In each
window, Pearson’s correlation coefficients were calculated between
each pair of ICs time courses. The correlation coefficient matrix had a
dimension of 43×43×265, where 43 was the number of retained ICs
and 265 was the number of windows. Due to the symmetry of the
correlation matrix, the subsequent analysis only used the upper triangle
of the matrices at each time point.

Next, k-means clustering could be used to group the time-dependent
FC matrices into a limited number of clusters, which are referred to as
“states” in dFC analysis. The centers of states represent recurring FC
patterns, and dFC features, such as the occurrence frequency of each
state, could then be extracted. More precisely, the dFC matrices of all
participants were first concatenated for k-means at the group-level.
Then, the k-means was achieved in two steps. In the first step, the initial
points of k-means were randomly set, which was repeated 100 times,
and the result with the lowest within-cluster sums of point-to-centroid
distances was retained. In the second step, the initial points were set as
the centroids of the first-step k-means so that the adverse impact of
small fluctuations can be avoided. The iteration number of k-means was
set to 1000 to ensure the convergence. The optimal number of clusters
(i.e., the number of dFC states) was determined by the elbow method,
which calculates the ratio between inter-class distance and intra-class
distance [37]. In the present study, the number of states was set to 4 by
using the elbow method, and the details could be found in Section 2 of
Supplementary Materials. After 4 dFC states were identified, the oc-
currence frequency of each state was obtained by calculating the per-
centage of the corresponding state among all time points for each
participant. Because some subjects did not have some certain states (23
subjects did not have state 1, 46 subjects did not have state 2, 2 subjects
did not have state 3, and 1 subject did not have state 4), the occurrence

frequency of subjects who had at least one window assigned to that
state was used in subsequent correlation analysis.

2.5. Permutation analysis for characterizing dFC states

To further elucidate the differences between dFC states at the net-
work (ICNs) level, we conducted a permutation test on dFC states.
Because there are 7 ICNs, we have 28 network-pairs between these 7
ICNs: 7 within-network pairs and 21 between-network pairs. We aver-
aged the FC value in each network-pair to obtain a 7× 7 dFC state
matrix at the level of networks for each participant. Then, the network-
level FC matrices of all participants were randomly divided into four
clusters with the same proportion as the actual k-means results (state1:
38%, state2: 13%, state3: 36%, state4: 33%) so that we obtained four
randomly clustered dFC states. The random k-means clustering (per-
mutation) process was repeated for 10,000 times. We calculated the
difference of FC values between any two network-level dFC states in
each permutation, and generated a probability density function of FC
difference between any two states at each network-pair. The actual FC
differences between two states were located in the permutation-based
probability density functions to obtain their significance levels (p-va-
lues). If one state had a significantly higher FC than another state at one
network-pair, this state had a strength ranking score of 1 at this net-
work-pair. So, each network-pair of each state has a strength ranking
score from 0 to 3. For example, if one state’s FC is significantly higher
than those of all other three states at one network-pair, this network-
pair of this state has a strength ranking score of 3. By such a permu-
tation analysis and sorting of FC for each network-pair, we could de-
termine the distinct network-level FC values for each state so that a
better characterization of dFC states can be achieved. In addition, to
check the correlation between dFC states and sFC, we also calculated
the Pearson’s correlation coefficients between each dFC state and sFC.

2.6. Correlation and decorrelation analyses

Next, we calculated the Pearson’s correlation coefficients between
the dFC features and the thresholds of pain and touch with covariates
including age, gender and head motion (framewise displacement [33]).
Because there are 8 correlations (2 thresholds × 4 states feature), false
discovery rate (FDR) was used to correct the problem of multiple
comparisons. Furthermore, because pain threshold and touch threshold
were significantly correlated, these thresholds were decorrelated using
principal component analysis (PCA), resulting in two decorrelated ei-
genvectors (PC1 and PC2). The Pearson’s correlation coefficients be-
tween two decorrelated eigenvectors and the features of four states
were calculated as well.

3. Results

3.1. Group ICA components

By using group ICA and selecting ICs, we retained 43 of the 100 ICs
that make up seven ICNs: sub-cortical network (SCN), auditory network
(AND), somatomotor network (SMN), visual network (VSN), cognitive
control network (CCN), default mode network (DMN) and cerebellar
network (CBN). The SCN contained 5 ICs, mainly located in putamen
and thalamus. The ADN had 1 ICs, located in the temporal region. The
SMN contained 10 ICs, mainly located in precentral, postcentral and
supplementary motor areas. The VSN contained 9 ICs, mainly located in
occipital regions, fusiform and cuneus. The CCN contained 10 ICs,
mainly located in the frontal lobe and insula. The DMN contained 7 ICs,
mainly located in precuneus and frontal lobes. The CBN had 1 ICs lo-
cated in cerebellum region. The ICs and the ICNs could be seen in Fig. 1,
and the specific location and distribution of each ICs could be found in
Section 3 of Supplementary Materials.
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3.2. dFC states

Through the sliding window method and k-means, 4 dFC states were
recognized, which were shown as the group-level k-means centroids in
Fig. 2. The results showed that state 1 accounted for 38%, sate 2 ac-
counted for 13%, state 3 accounted for 16% and state 4 accounted for
33%. However, the proportion of time occupied by various dFC states
(i.e., the occurrence frequency) in different participant was different.
For comparison, sFC estimated from the whole fMRI scan was also
showed in Fig. 2.

3.3. Characterizations of dFC states

We used permutation analysis to further explore the differences
between dFC states at the network level. The results were showed in
Fig. 3, which indicated that states 2 and 3 generally had stronger FC
than states 1 and 4 in almost all network-pairs. The strongest FC in state
2 was concentrated in SCN, ADN and SMN, while the strongest FC in
state 3 was concentrated in DMN. Therefore, state 3 is referred to as a
DMN-dominated state hereinafter. Moreover, we calculated the corre-
lations between dFC states and sFC. The results showed state 4 was
most correlated with sFC (R=0.93, p < 0.001), while other states
were also correlated with sFC (state 1: R= 0.92, p < 0.001; state 2:

Fig. 1. The ICs spatial map. 43 ICs were grouped into 7 ICNs.
There were 5 ICs in the sub-cortical network (SCN), 1 ICs in
the auditory network (ADN), 9 ICs in the visual network
(VSN), 10 ICs in the cognitive control network (CCN), 10 ICs
in the somatomotor network (SMN), 7 ICs in the default mode
network (DMN), and 1 ICs in the cerebellar network (CBN).

Fig. 2. A. The static FC (sFC) estimated from the whole fMRI scan. B. Four dFC states obtained by sliding window analysis and group-level k-means. The proportion of
four states were 38%, 13%, 16% and 33%, respectively.
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R=0.77, p < 0.001; state 3: R= 0.88, p < 0.001). Therefore, state 4
is referred to as a sFC-like state hereinafter. From the above results, we
could know the differences between four dFC states and their dominant
network-pairs, which provided a better characterization and inter-
pretation of dFC states.

3.4. Correlations and decorrelation analyses

The correlations between pain or touch thresholds and occurrence
frequencies of states were showed in Fig. 4. We found that the occur-
rence frequency of state 3 was significantly positively correlated with
the pain threshold (R= 0.36, p=0.002, pFDR = 0.008), but not sig-
nificantly correlated with the touch threshold (R=0.10, p=0.406,
pFDR = 0.008). On the other hand, the occurrence frequency of state 4
was significantly negatively correlated with the touch threshold (R =
-0.34, p= 0.003, pFDR = 0.008), but not significantly correlated with
the pain threshold (R = -0.18, p= 0.118, pFDR = 0.008).

We further found that there was a positive correlation between pain
threshold and touch threshold (R= 0.24, p=0.038). We used PCA to
decompose pain and touch thresholds into two decorrelated eigenvec-
tors. The correlations between decorrelated eigenvectors and occur-
rence frequencies of dFC states were shown in Fig. 5. The occurrence

frequency of state 3 was significantly positively correlated with PC1
(R=0.35, p=0.002, pFDR = 0.019) but not significantly correlated
with PC2 (R = -0.03, p= 0.792, pFDR = 0.019). The occurrence fre-
quency of state 4 was significantly negatively correlated with PC1 (R =
-0.28, p=0.016, pFDR = 0.019) but not significantly correlated with
PC2 (R = -0.25, p= 0.031, pFDR = 0.019).

4. Discussion

In the present study, we investigated the correlation between dFC
states and pain/touch thresholds on an individual basis. It was found
that pain threshold and touch threshold are correlated with the oc-
currence frequency of different dFC states, suggesting different me-
chanisms underlying these two types of perception.

4.1. dFC correlates of sensory perception

dFC analysis has been popularly used in past several years as a new
type of baseline neural correlates of behavioral and cognitive variables
[14–16,38,39]. However, dFC is seldom adopted to study low-level
sensory perception, which may be due to the following reasons. First,
dFC is indicative of the brain network’s flexibility and adaptability,

Fig. 3. Comparison of FC strength between four dFC states. Permutation test compared any two states at each network-pair to obtain the strength ranking score of FC
strength for each network-pair. If one state had a significantly higher FC than another state at one network-pair, this state had a strength ranking score of 1 at this
network-pair. So, each network-pair of each state has a strength ranking score from 0 to 3. For example, if one state’s FC is significantly higher than those of all other
three states at one network-pair, this network-pair of this state has a strength ranking score of 3.

Fig. 4. Correlations between occurrence frequency of dFC
states and pain/touch thresholds. Only the correlation results
of state 3 and state 4 are shown here because these two states
have significant correlations with pain/touch thresholds. A.
The occurrence frequency of state 3 was not significantly
correlated with touch threshold (R=0.10, p=0.406) but
significantly correlated with pain threshold (R= 0.36,
p= 0.002). B. The occurrence frequency of state 4 was sig-
nificantly correlated with touch threshold (R = -0.34,
p= 0.003) but not significantly correlated with pain
threshold (R = -0.18, p= 0.118). Note that FDR-adjusted
significance level is p < 0.008 and significant correlations
are marked with *.
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which are generally believed to be related to high-level cognitive ac-
tivities because cognition needs large-scale re-organization of brain
networks. Second, sensory perception is more often studied at a trial-
by-trial level (i.e., to study responses to multiple trials of stimuli de-
livered to one individual), but dFC is estimated on an individual basis.

In this study, we hypothesized that an individual’s perception level
is correlated with dFC and this hypothesis was developed based on
three lines of reasoning. First, low-level sensory perception is modu-
lated by high-level brain functions through top-down modulation. So,
perception should also be related to dFC patterns, which are closely
related to high-level cognition, at least in an indirect manner. Second,
the brain keeps organizing its connections to adapt to changes in ex-
ternal environment, which obviously include delivery of sensory sti-
muli. Therefore, as an indicator of the level of dynamic organization of
the brain, dFC may also be able to modulate an individual’s perception
level. Third, many previous studies have revealed that, fluctuations of
brain networks modulate the brain responses and perception to forth-
coming sensory stimuli on a trial-by-trial basis. In another word, pre-
stimulus brain networks predict the perception level in response to a
sensory stimulus (such as visual stimulation [40], somatosensory sti-
mulation [41], pain stimulation [42]). Hence, we speculated that, such
a relationship between FC fluctuations and sensory perception can also
be observed on an individual basis.

This hypothesis was supported by our experimental results, in-
dicating that the occurrence frequency of certain dFC states is related to
the overall perception level of pain or touch. These results suggest that,
dFC, as a window to probe the brain’s adaptability, does not only
modulate high-level cognition, but also determines low-level sensory
perception on an individual level.

4.2. Distinct dFC correlates of pain and touch thresholds

Pain and touch are perceived via different receptors in the skin, but
their activations in the brain are largely overlapped [43]. Therefore, to
find pain-specific brain activation patterns has been a central topic in
the research of pain neuroimaging [44–46]. This study showed that, on
an individual level, pain and touch have different dFC correlates, im-
plying their different neural basis. According to our results, the occur-
rence frequency of dFC state 3, which was mainly dominated by DMN,
was significantly positively related to the pain threshold. This state 3
showed strong positive connectivity within DMN and negative con-
nectivity between DNM and other networks. The role of DMN has been
well documented in literature, and it could play an important role in
attention, expectation, vigilance, memory, and so on [47–49]. The role
of DMN in pain perception has also been well studied, mainly by

checking the sFC on an individual level or pre-stimulus FC on a trial-by-
trial level. For example, Alshelh et al. reported disruption of DMN dy-
namics in acute and chronic pain states [50]. Our previous work also
showed the pre-stimulus fMRI signals in the DMN negatively predicted
the perceived intensity of subsequent painful stimuli [51]. This study
revealed the role of DMN in pain from another aspect: the occurrence
frequency of a DMN-dominated dFC state is positively related to the
overall level of pain perception. This may suggest that, if an individual
has more frequent DMN connections at rest, which may be indicative of
higher vigilance or attention, his/her sensitivity to pain is lower.

On the other hand, the touch threshold is not correlated with the
DMN-dominated state 3, but it is related to a sFC-like dFC state 4. The
occurrence frequency of state 4 is negatively correlated with touch
threshold, implying that if the sFC-like state 4 appears more frequently,
the individual has a smaller touch threshold. Because state 4 is similar
to sFC, the occurrence frequency of state 4 could be indicative of the
stability or stationarity of FC. These suggest that, if an individual has
less fluctuant FC at rest, the individual sensitivity to touch is higher.

Because touch threshold and pain threshold were correlated, they
might share some common behavioral characteristics and underlying
neural mechanisms. By using PCA to decompose two thresholds into to
two orthogonal components, we found that the main component, PC1,
is significantly positively correlated with the occurrence frequency of
state 3 and significantly negatively correlated with the occurrence
frequency of state 4. Hence, PC1 should be the common behavioral
characteristics of pain and touch thresholds, and it is modulated by
both the DMN-dominated state 3 and the sFC-like state 4. On the other
hand, PC2 is correlated with neither the occurrence frequency of state 3
nor the occurrence frequency of state 4. We speculate that PC2 explains
the different behavioral characteristics of pain and touch thresholds and
it is not correlated with dFC features. Since touch and pain thresholds
are different linear combinations of PC1 and PC2, these two thresholds
exhibit different correlations with dFC features.

4.3. Limitations and future work

In the present study, dFC was estimated using a sliding window size
of TR=30 (60 s). Wilson et al. proved that a time window between 30
and 100 s is a comparatively good window length for dFC [52], and
Shirer et al. demonstrated that cognitive states may be correctly iden-
tified from covariance matrices estimated on as little as 30− 60 s of
data [25]. Therefore, we selected a window size of 60 s in the present
study. We also examined the results with other window sizes (40 s, 50 s,
70 s, and 80 s), and we found that the dFC analysis results remained
stable for window sizes between 50 s and 70 s. Results with other

Fig. 5. Correlations between occurrence frequency of dFC
states and decorrelated eigenvectors (PC1 and PC2) trans-
formed from pain and touch thresholds using PCA. Only the
correlation results of state 3 and state 4 are shown here be-
cause these two states have significant correlations with pain/
touch thresholds. A. The correlation between pain threshold
and touch threshold and two decorrelated eigenvectors PC1
and PC2. B. The occurrence frequency of state 3 was sig-
nificantly positively correlated with PC1 (R=0.35,
p= 0.002) but not significantly correlated with PC2 (R =
-0.03, p=0.792). C. The occurrence frequency of state 4 was
significantly negatively correlated with PC1 (R = -0.28,
p= 0.016) but not significantly correlated with PC2 (R =
-0.25, p= 0.031). Note that FDR-adjusted significance level is
p < 0.019, and significant correlations are marked with *.
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window sizes were provided in Section 1 of the Supplementary Mate-
rials. Furthermore, the number of states was determined using the
elbow criterion of the cluster validity index, which was computed as the
ratio between within-cluster distance to between-cluster distance. We
also provided clustering results of k= 3 to 5 in Section 2 of the Sup-
plementary Materials. These results demonstrated that k=4 can obtain
four stable states, while k=3 could merge distinct dFC states and k= 5
could generate redundant states.

We only found one dFC feature was associated with sensory per-
ception thresholds and the correlation coefficient was about 0.35. The
correlation is not large, which may due to the small number of subjects
(N= 75). We checked some recent related papers and found that sig-
nificant but small (for example, R < 0.4) correlations between dFC
features and behavioral or cognitive parameters were commonly re-
ported [53–55]. In our study, because the significant correlations
passed a strict significance level (FDR corrected 0.05), we believed that
the significant correlations found in this study were meaningful. We
also calculated the correlation between pain/touch thresholds and an-
other dFC feature, mean dwell time, but no correlation could pass the
significance level.

One limitation of this study was the fact that it was only focused on
pressure touch and laser-evoked pain, but it should certainly be ex-
tended to other sensory modalities (visual, auditory, etc.) and other
pain stimulation modalities (cold pain, electricity-evoked pain, etc.). It
will be interesting to check the common and specific dFC patterns in
modulating the perception levels of different sensory modalities and
pain simulation stimulation.

As for future work, the rapid developments of dFC analysis pipelines
and methods enable extraction of more meaningful information from
dynamic patterns of FC. For example, by using fuzzy meta-state analysis
on time-varying coefficient coefficients, more dFC features can be es-
timated [56]. Hence, advanced dFC analysis frameworks may poten-
tially reveal more dFC correlates of individualized levels of perception.

5. Conclusion

In the present study, we found that the occurrence frequency of a
DMN-dominated dFC state was significantly correlated with an in-
dividual's pain threshold, while the occurrence frequency of a sFC-like
dFC state was significantly correlated with an individual's touch
threshold. These results suggest that dFC is a useful tool to investigate
low-level sensory perception on an individual basis. The study also
showed that dFC could also be an indicator of an individual’s pain
sensitivity, which could be potentially used for pain management in
clinical uses.
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