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a b s t r a c t 

Determining and decoding emotional brain processes under ecologically valid conditions remains a key chal- 
lenge in affective neuroscience. The current functional Magnetic Resonance Imaging (fMRI) based emotion de- 
coding studies are mainly based on brief and isolated episodes of emotion induction, while sustained emotional 
experience in naturalistic environments that mirror daily life experiences are scarce. Here we used 12 differ- 
ent 10-minute movie clips as ecologically valid emotion-evoking procedures in n = 52 individuals to explore 
emotion-specific fMRI functional connectivity (FC) profiles on the whole-brain level at high spatial resolution 
(432 parcellations including cortical and subcortical structures). Employing machine-learning based decoding and 
cross validation procedures allowed to investigate FC profiles contributing to classification that can accurately 
distinguish sustained happiness and sadness and that generalize across subjects, movie clips, and parcellations. 
Both functional brain network-based and subnetwork-based emotion classification results suggested that emotion 
manifests as distributed representation of multiple networks, rather than a single functional network or subnet- 
work. Further, the results showed that the Visual Network (VN) and Default Mode Network (DMN) associated 
functional networks, especially VN-DMN, exhibited a strong contribution to emotion classification. To further 
estimate the temporal accumulative effect of naturalistic long-term movie-based video-evoking emotions, we di- 
vided the 10-min episode into three stages: early stimulation (1 ∼200 s), middle stimulation (201 ∼400 s), and 
late stimulation (401 ∼600 s) and examined the emotion classification performance at different stimulation stages. 
We found that the late stimulation contributes most to the classification (accuracy = 85.32%, F1-score = 85.62%) 
compared to early and middle stimulation stages, implying that continuous exposure to emotional stimulation 
can lead to more intense emotions and further enhance emotion-specific distinguishable representations. The 
present work demonstrated that sustained happiness and sadness under naturalistic conditions are presented in 
emotion-specific network profiles and these expressions may play different roles in the generation and modula- 
tion of emotions. These findings elucidated the importance of network level adaptations for sustained emotional 
experiences during naturalistic contexts and open new venues for imaging network level contributions under 
naturalistic conditions. 
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. Introduction 

Human emotion represents a dynamic process involving differ-
nt levels of processing and integration ( Cowen and Keltner, 2017 ;
orikawa et al., 2020 ). Determining the specific neurophysiological ba-

is of emotions and their distinct neural representations can facilitate
iscriminating specific emotional states from other mental processes
 Putkinen et al., 2021 ; Saarimäki et al., 2022 ; Vytal and Hamann, 2010 ;
hou et al., 2020 , 2021 ) and help evaluate emotion-specific dysregu-
ations and corresponding treatment approaches ( Reddan et al., 2018 ;
u et al., 2022 ; Zhang et al., 2022 ). To capture the complex and dynamic
ature of emotional processes, an increasing number of functional Mag-
etic Resonance Imaging (fMRI) studies examined cortical and subcor-
ical responses during naturalistic contexts such as narratives or movies
 Jääskeläinen et al., 2021 ; Putkinen et al., 2021 ; Saarimäki et al., 2022 ).
he decodability of emotions using high-dimensional patterns of brain
ctivity is supported by previous studies ( Kragel et al., 2018 ; Kragel and
aBar, 2016 ). Recent neuroimaging studies have shown that distributed
ctivity and functional connectivity (FC) patterns underly emotion per-
eption and processing ( Baucom et al., 2012 ; Kassam et al., 2013 ;
aarimäki et al., 2016 ; Zhou et al., 2020 , 2021 ). However, the existing
MRI-based emotion studies seldom explore how emotions are repre-
ented under sustained and dynamic emotional engagement which bet-
er mirrors emotional processes in everyday life. To better understand
motion-related brain states under a naturalistic condition, we introduce
 long-term naturalistic continuous emotion-evoking paradigm based
n a number of movie clips. We chose comparably long-term movie
lips to establish a naturalistic paradigm, which allows to neurofunc-
ionally map the sustained emotional experience in real-world environ-
ents ( Sonkusare et al., 2019 ). This naturalistic fMRI approach could

ffer a more powerful and reliable strategy to capture the complexity
nd variation of emotions across subjects and allow to generate eco-
ogically valid brain signatures of emotional processes ( Eickhoff et al.,
020 ). 

Recent network level based perspectives on emotional brain pro-
esses suggest that dynamic interactions between brain regions play
 significant role in emotional experience and regulation. To exam-
ne complex changes within integrative brain networks and interpret
arge-scale neuronal communication, FC has gained increasing inter-
st. This approach provides a powerful tool to examine connectivity
hanges and complex integrative brain networks and to further deter-
ine the role of large-scale networks in emotional states, as has been
emonstrated robust across individuals and task paradigms ( Betti et al.,
013 ; Vanderwal et al., 2017 ; Wang et al., 2017b ). FC reflects func-
ional interaction between anatomically separated brain regions and is
hought to reflect the temporal dependency of brain regions in terms
f neural activation patterns. FC has been increasingly suggested to
epresent a robust biomarker for mental processes and their dysregula-
ion, including emotion ( Magalhães et al., 2021 ; Putkinen et al., 2021 ;
aarimäki et al., 2022 ; Zhuang et al., 2021 ), cognition ( Cohen, 2018 ;
tak et al., 2020 ; Zimmermann et al., 2018a ), developmental changes
 Ciarrusta et al., 2020 ; Liu et al., 2021 ; Teeuw et al., 2019 ), and
rain disorders ( Du et al., 2018 ; Xu et al., 2021 ; Zheng et al., 2018 ;
hou et al., 2018 ; Zimmermann et al., 2018b ). The feasibility of an-
lyzing FC at the level of concordant patterns of temporal variations
nder both mental states of rest and task has been demonstrated
 Cohen and D’Esposito, 2016 ). Recently, a number of FC-based emotion-
elated brain network studies have been conducted ( Pessoa, 2017 , 2018;
utkinen et al., 2021 ; Saarimäki et al., 2022 ). For example, Putkinen
t al. examined the emotion-related neurofunctional basis of four sep-
rate emotions evoked by music (happiness, sadness, fear, and ten-
er) and observed that brain activity patterns in the auditory and pri-
ary motor cortices correlated with the respective emotional states

 Putkinen et al., 2021 ). Saarimäki et al. introduced multivariate pat-
ern analysis to develop a cross-subject emotion recognition approach
hat was based on whole-brain FC profiles. The study collected brain
2 
ctivity in 16 subjects during fMRI while the subjects were presented
ith 1-minute emotional audio narratives from six emotion categories

anger, fear, disgust, happiness, sadness, and surprise) ( Saarimäki et al.,
022 ). The results showed that the most accurate emotion classifica-
ion could be obtained from the Default Mode Network (DMN), indi-
ating an important contribution of the DMN in emotional processing
nder naturalistic conditions. Collectively, these studies have demon-
trated the feasibility to detect emotional changes via FC patterns in
aturalistic environments. The high discriminative power of FCs has
oreover been demonstrated in the classification of emotion-related
iseases ( Wang et al., 2020 ; Zeng et al., 2012 , 2014 ). However, most
revious emotion decoding studies relied on a few minutes of fMRI
ata, such as 45-second music ( Putkinen et al., 2021 ) or 1-minute nar-
atives ( Saarimäki et al., 2022 ). Although these studies demonstrated
he feasibility to decode specific emotions from FC patterns, the per-
ormance varied between emotional categories, in particular the speci-
city and accuracy for sadness remained limited. For instance, despite
 high accuracy obtained for most emotions in Saarimäki et al.’s study
 Saarimäki et al., 2022 ), it revealed a classification accuracy of sadness
18%) was close to chance level (16.67%). One possible reason might
e the different time frames of emotional experiences and thus the dif-
culty in robustly evoking strong and engaging feelings of sadness with
xperimental stimuli as short as one minute. In contrast to emotions
uch as fear, surprise, or general negative affect which can be reliably
nduced by short and sparse stimuli ( Čeko et al., 2022 ; Xin et al., 2020 ;
hou et al., 2021 ), a strong subjective experience of sadness may re-
uire a longer time frame and more contextual information. To this
nd, longer immersive experimental stimuli may facilitate the induc-
ion of robust emotional experiences and allow more robust decoding
 Waugh and Kuppens, 2021 ; Waugh et al., 2012 ). 

On the other hand, recent studies using naturalistic paradigms with
he presentation of movie clips ( Demirta ş et al., 2019 ; Gilson et al.,
018 ; Kim et al., 2018 ; Ren et al., 2018 ; Sonkusare et al., 2019 ) have
hown that the estimated FC during movie-watching exhibits high test-
etest reliability and may allow to capture brain function under more
aturalistic contexts thus better mimicking brain processes during real-
ife ( Di and Biswal, 2020 ; Di et al., 2021 ; Wang et al., 2017b ). In the
ontext of emotion research, naturalistic movies in combination with
MRI could offer a more powerful and reliable tool for capturing the
omplexity and variation of emotions across subjects and under ecolog-
cally more valid emotion processing conditions ( Eickhoff et al., 2020 ).
o describe the dynamic functional integration of neural systems dur-

ng induced sadness, Raz et al. (2012) employed films with respective
engths of 10 min and 8.27 min to induce sadness in more naturalistic
ontexts and employed a multi-layered dynamic approach to success-
ully track sadness based on predefined brain systems, including limbic,
edial prefrontal and cognitive networks. This study underscored the
otential of using continuous and complex stimulation to unravel the
motional experience of sadness. However, to our knowledge, a whole-
rain network analysis under naturalistic long movie stimulation (e.g.
0 min) for distinguishing emotions and exploring the emotion-related
emporal effects has not been conducted. In turn, the current evidence
or emotion-related cortical and subcortical engagement in naturalis-
ic contexts - especially for long and dynamic emotional experiences
emains elusive ( Kragel and LaBar, 2014 ; Lindquist and Barrett, 2012 ;
indquist et al., 2012 ). To this end, the present study aimed to address
he following open questions: 

1. Which brain networks and connections exhibit emotion-specific con-
tributions to the sustained emotional state on the whole-brain level?

2. To which extent do the network level profiles vary over time during
the sustained emotion induction procedure? 

To address these questions, we designed a naturalistic emotion in-
uction paradigm including 12 different 10-minute movie clips (6 happy
nd 6 sad movie clips) and simultaneously recorded fMRI data in n = 52
ealthy subjects. We primarily focused on two distinct basic emotions,
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appiness, and sadness, which cover the positive and negative valence
imensions. To capture the hemodynamic brain changes during the
ovie clips on the whole-brain FC network level, a high spatial resolu-

ion parcellation with 400 cortical regions ( Schaefer et al., 2018 ) and 32
ubcortical regions ( Tian et al., 2020 ) was adopted to examine emotion-
elated network level changes. Next, a cross-subject cross-episode emo-
ion classification model based on whole-brain-level FC analysis was de-
eloped and evaluated using a strict cross-subject leave-one-subject-out
ross-validation. This data-driven analysis using the whole-brain FC pat-
erns for the classification of two distinct basic emotions (happiness and
adness) allowed validation of the decoding models. The current study
urther allowed us to better examine the communications between dif-
erent key brain regions during emotional processing under a naturalis-
ic stimulation paradigm with movie clips. The decodability and gener-
lizability of different functional networks on emotions across different
ubjects and movie clips were examined at different stimulation stages
hile the contributions of the brain areas during continuous emotion

voking under naturalistic movie clips could be determined and impor-
ant discriminating whole-brain FC patterns could be evaluated. 

. Materials and methods 

.1. Participants 

A total of 52 healthy right-handed subjects (male/female: 26/26;
ge: 19 to 28 years old, 23.52 ± 2.05; with normal or corrected-to-normal
ision) from Shenzhen University were recruited to participate in the
xperiment. Exclusion criteria for subject recruitment included neuro-
ogical or psychiatric diagnosis, heavy alcohol consumption within the
ast six months, cardiovascular disease, and severe visual impairment.
ig. 1. Schematic overview of the study. (a) The experimental paradigm. For each subj
rder. For each subject, 6 movie clips, including 3 happy movie clips and 3 sad mov
lips. (b) The functional neural system and pathways of interest were defined based
anel shows the coarse-level 7 network organization; the right panel shows the m
odels were established based on the calculated whole-brain functional connectivity

o demonstrate the model robustness and generalizability. (d) Episode-based emotion
ased, and subnetwork-based FC profiles. (e) Stimulation-stage-based emotion classi
his end, FC profiles were extracted for different stimulation stages, i.e. early stimulat
egional contribution to the emotion classification, with cold(er) colors indicating low

3 
ll the subjects signed the informed consent before starting the exper-
ment, and the experiment was approved by the Ethics Committee of
he Health Science Center, Shenzhen University. The experiment was in
ine with the latest version of the Declaration of Helsinki. After quality
ontrol, data from one subject (female; age: 19 years old) was excluded
ue to excessive head motion (refer to the given exclusion criteria for
ata preprocessing presented below). 

.2. Stimuli 

Twelve 10-minute complex and naturalistic movie clips with strong
nd reliable emotion eliciting effects were selected from 12 different
atural-colored movies. The 12 different 10-minute movie clip candi-
ates included 6 happy stimuli (positive emotion) and 6 sad stimuli
negative emotion). There was no content overlap between the selected
ovie clips. The 6 happy stimuli were from the movies of “Mr. Popper’s
enguins ”, “Ted ”, “The Onion Movie ”, “Liar ”, “A Thousand Words ”, and
Absolutely Anything ”, and the 6 sad stimuli were from “Miracle In
ell No.7 ″ , “Prayers For Bobby ”, “The Classic ”, “Grave Of The Fireflies ”,
Only The Brave ”, and “The Last Train ”. More details about the selected
timuli are reported in Appendix I of the Supplementary Materials. 

.3. Experimental paradigm 

The experimental paradigm is shown in Fig. 1 (a). For each subject,
he fMRI experiment under naturalistic stimulation included a total of
 episodes (corresponding to 6 movie clips). The 6 movie clips were
andomly chosen from the selected 12 different 10-minute movie clips,
ncluding 3 happy stimuli and 3 sad stimuli. The average selection rate
f each stimulus was 8.33 ± 1.28%. The total stimulation duration in the
ect, the experiment included 6 movie clips (episodes) presented in a randomized 
ie clips, were randomly selected from a total of 12 different 10-minute movie 
 on the Schaefer 400 parcellations fMRI atlas ( Schaefer et al., 2018 ). The left 
ore fine-grained 17 subnetwork organization. (c) Next emotion classification 
 (FC) matrices. The leave-one-subject-out cross-validation method was adopted 
 classification models were constructed based on whole-brain-based, network- 
fication models were employed to determine changes over the timecourse. To 
ion, middle stimulation, and late stimulation. The brain heatmaps visualize the 
er contribution and hot(ter) colors reflecting a higher contribution. 
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MRI experiment was 60 min for each subject, and the stimuli presenta-
ion order was randomized to counterbalance the order effect. Consid-
ring the difficulty in matching the sound quality and in warranting the
nderstanding of the audio in the MRI environment the movie clips were
resented without audio (similar approach see also ( Horikawa et al.,
020 ; Mandelkow et al., 2016 ; Saarimäki et al., 2016 )). To facilitate
n understanding of the content, subtitles were incorporated into the
ovies. For a single episode, it comprised a 30-second baseline (sub-

ects looked at the white cross shown in the center of a black screen to
lear their mind), 10-minute movie playing (subjects passively viewed
he movie clips with full engagement), and subjective feedback (subjects
ated their emotional experience evoked by the presented movie clips
sing a 5-point happy-sad scale; more details are reported in Appendix
 of the Supplementary Materials). At the end of one episode, the sub-
ects could take a self-paced break. Throughout the whole procedure,
he subjects were requested to remain still. 

Brain images were recorded using a Siemens Prisma 3 Tesla MRI
canner with a 64-channel head coil. High-resolution T1-weighted
tructural images covering the entire brain were acquired using a
agnetization-prepared rapid acquisition gradient echo (MPRAGE) se-

uence with the parameters as: voxel resolution = 1 ×1 ×1 mm 

3 , rep-
tition time (TR) = 2300 ms, echo time (TE) = 2.26 ms, field of view
FOV) = 256 ×232 mm 

2 , flip angle (FA) = 8° During the experimental
ask, the functional images were acquired using a single gradient
cho-planar imaging (EPI) sequence, with the parameters as: voxel
esolution = 2 ×2 ×2 mm 

3 , TR = 1000 ms, TE = 30 ms, FOV = 192 ×192mm 

2 ,
A = 90° Each volume of EPI functional images consisted of 65 slices.
uring scanning, all subjects were instructed to remain awake, keep

heir eyes open, and be in full engagement with the presented movie
lips. All subjects completed six functional scans according to the se-
ected 6 different 10-minute movie clips presented via E-Prime version
.0. Movie clips were counter-projected on a screen and viewed through
 mirror mounted on a head coil. 

.4. fMRI preprocessing 

The functional images were preprocessed using SPM ( Friston, 2003 )
nd DPARSF ( Yan et al., 2016 ) in MATLAB. Given that the scanner in-
luded dummy scans to stabilize the magnetic field, the first five vol-
mes of each time series were not discarded. The structural images
ere first stripped of the skull and segmented into gray matter (GM),
hite matter (WM), and cerebrospinal fluid (CSF) based on the results of

he stripped skull. Then, all the functional images of each episode were
ligned with the first volume of functional images using six head-motion
arametric linear transformations, and the functional images of each
ubject were coregistered with the structural images. To remove the lin-
ar drift and reduce the interference of head movements and other phys-
ological signals, nuisance covariate regression was conducted using the
riston 24-parameter model. The functional images were then normal-
zed to Montreal Neurological Institute (MNI) space. A Gaussian kernel
f 6 mm (FWHM) was adopted for spatial smoothing and a bandpass fil-
er of 0.008–0.15 Hz was conducted for eliminating the low-frequency
rift and high-frequency noise and improving the signal-to-noise ratio of
he blood-oxygen-level-dependent (BOLD) signal ( Wang et al., 2017b ).
ata with excessive head motion were discarded according to the fol-

owing exclusion criteria: (1) an episode with a maximum translation
f more than 2 mm or rotation of more than 2°; (2) for one subject, if
ore than 2 episodes (total 6 episodes) were discarded, data from this

ubject would be fully excluded. Following these quality assessment cri-
eria, data from n = 51 subjects (total 293 samples, subjects × episodes)
ere retained for the following whole-brain FC analysis. 

.5. Definition of regions of interest 

To ensure whole-brain coverage, the FC estimation was conducted
sing a brain parcellation atlas with 400 regions of interest (ROI) from
4 
he Schaefer 400 fMRI atlas that covers large-scale functional networks
 Schaefer et al., 2018 ). Schaefer 400 ROIs parcellation integrated both
ocal gradient and global similarity from rest-state and task-state FC. Ac-
ording to the clearly defined coordinates of the location of structural
ubdivisions in the whole-brain cortex, the parceled ROIs could be fur-
her categorized into 7 networks or 17 subnetworks at the coarse or fine
evel, respectively. As shown in Fig. 1 ( b ), the coarse-level 7 networks
ncluded Visual Network (VN), SomatoMotor Network (SMN), Dorsal
ttention Network (DAN), Ventral Attention Network (VAN), Limbic
etwork (LN), FrontoParietal Network (FPN), and Default Mode Net-
ork (DMN). The fine-level 17 subnetworks included VN-a, VN-b, SMN-
, SMN-b, DAN-a, DAN-b, VAN-a, VAN-b, LN-a, LN-b, FPN-a, FPN-b,
PN-c, DMN-a, DMN-b, DMN-c, and Temporal Parietal Network (TPN).
esides, consistent with previous studies ( Luppi et al., 2022 ; Luppi and
tamatakis, 2021 ), 32 subcortical ROIs were also considered based on
he recently developed Melbourne subcortical functional parcellation at-
as ( Tian et al., 2020 ), which was obtained based on resting-state and
ask-state functionally connectivity and was consistent with the parcel-
ation methodology in Schaefer 400. The 32 subcortical ROIs covered
 subcortical regions, including the hippocampus, thalamus, amygdala,
audate nucleus, putamen, and globus pallidus. All the 32 ROIs were
rouped into the Subcortex Network (SN). In total, 8 networks (7 corti-
al networks and 1 subcortical network) and 18 subnetworks (17 corti-
al subnetworks and 1 subcortical network) were included reflecting a
road and more fine-grained level of organization, respectively. Then,
or each episode, the corresponding fMRI data could be represented as
 𝑟 × 𝑡 matrix, where 𝑟 and 𝑡 referred to the number of ROIs and time
ength ( 𝑟 = 432 and 𝑡 = 600 ). 

.6. Functional connectivity estimation 

In this study, we investigated whether the alternations of FC at differ-
nt functional networks are associated with emotional states based on
32 ROIs (400 cortical regions and 32 subcortical regions). The func-
ional signal time series of each ROI was extracted by averaging the
OLD signals of all voxels within the ROI according to the template,
esulting in a BOLD time series of the size of 𝑟 × 𝑡 ( 𝑟 was the number
f ROIs and 𝑡 was the BOLD time series length) for each subject per
pisode. Here, an 𝑟 -by- 𝑟 FC matrix was obtained by Pearson’s correla-
ion between the averaged BOLD time series of each pair of ROIs. Fur-
her, Fisher’s z-transform was applied to improve the normality of these
orrelation coefficients. Upper triangle elements of the FC matrix will
e used as features to classify emotions in a cross-subject cross-episode
anner. 

.7. Emotion classification modeling 

A cross-subject cross-episode Support Vector Machine (SVM) with a
inear kernel was trained to identify two distinct basic emotions (hap-
iness and sadness), as shown in Fig. 1 ( c ). In the previous literature
 Du et al., 2018 ), SVM is among the most commonly used classification
ethods for cognitive and emotional brain states and achieves a stable

nd reliable classification performance. Here, a total of 293 samples (the
etained data after fMRI preprocessing) were used for modeling based
n the given video-based emotional labels, where the number of samples
orresponding to happiness and sadness was 147 and 146, respectively.
n the present study, three types of episode-based emotion classifica-
ion models were built ( Fig. 1 ( d )). (1) Whole-brain-based emotion clas-
ification modeling. We converted the upper triangular data of the FC
atrix into a ( 𝑟 × ( 𝑟 − 1 ) )∕2 by 1 feature vector to perform modeling.

2) Network-based emotion classification modeling. We used the func-
ional connection values within a network (e.g., the connection strength
f ROIs within the VN) or between two networks (e.g., the connection
trength of ROIs between the VN and DMN) as features for modeling.
ince the connection matrices within networks were symmetric, only
pper triangular data of the connection matrix within a network was
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dopted. (3) Subnetwork-based emotion classification modeling. Similar
o network-based modeling, we used the functional connection values
ithin a subnetwork (e.g., the connection strength of ROIs in the VN-
) or between two subnetworks (e.g., the connection strength of ROIs
ithin the VN-a and VN-b) as features for modeling. To verify the model

ffectivity and stability on cross-subject cross-episode application, the
lassification performance was evaluated under a leave-one-subject-out
ross-validation method which helps to verify the model generalizability
n unknown subjects and episodes. 

On the other hand, to further investigate whether the distributed FC
atterns could reflect the accumulative (temporal) effect of sustained
motional experience, we separately estimated the classification per-
ormance of FC patterns at different stimulation stages. Here, we di-
ided each episode into three stimulation stages: early stimulation stage
1 ∼200 s), middle stimulation stage (201 ∼400 s), and late stimulation
tage (401 ∼600 s). Each stimulation stage was a 200 s duration. For each
tage, a separate linear SVM classifier with a linear kernel was trained
ased on the same leave-one-subject-out cross-validation protocol. 

Here, a strict leave-one-subject-out cross-validation was conducted
s below. For each validation round, one subject’s all episodes were used
s the test data, and the remaining subjects’ episodes were treated as
he training data. The training data was used to train the classification
odel, and the trained model will be then utilized on the unused test
ata to measure the model performance. We repeated the training vali-
ation process until each subject’s all episodes were used as the test data
or once. The final model performance was an average of the obtained
lassification results across all the validation rounds. 

.8. Model performance evaluation 

Five different evaluation metrics, classification accuracy 𝑃 𝑎𝑐𝑐 , preci-
ion 𝑃 𝑝𝑟𝑒 , sensitivity 𝑃 𝑠𝑒𝑛 , F1-Score 𝑃 𝑓 , and specificity 𝑃 𝑠𝑝𝑒 , were adopted
o evaluate the model performance. Suppose the correctly predicted pos-
tive and negative samples are 𝑛 𝑇𝑃 and 𝑛 𝑇𝑁 

and the incorrectly predicted
ositive and negative samples are 𝑛 𝐹𝑃 and 𝑛 𝐹𝑁 

. The classification ac-
uracy ( 𝑃 𝑎𝑐𝑐 ) measures an overall classification performance, given as 

 𝑎𝑐𝑐 = 

𝑛 𝑇𝑃 + 𝑛 𝑇𝑁 

𝑛 𝑇𝑃 + 𝑛 𝐹𝑃 + 𝑛 𝑇𝑁 

+ 𝑛 𝐹𝑁 

. (1)

The precision ( 𝑃 𝑝𝑟𝑒 ) and sensitivity ( 𝑃 𝑠𝑒𝑛 ) are the measurement of the
lassification performance on positive samples, given as 

 𝑝𝑟𝑒 = 

𝑛 𝑇𝑃 

𝑛 𝑇𝑃 + 𝑛 𝐹𝑃 

, (2)

 𝑠𝑒𝑛 = 

𝑛 𝑇𝑃 

𝑛 𝑇𝑃 + 𝑛 𝐹𝑁 

. (3)

To be less susceptible to biased classification problems, we also esti-
ated the corresponding F1-Score ( 𝑃 𝑓 ), which is defined as 

 𝑓 = 

2 × 𝑃 𝑝𝑟𝑒 × 𝑃 𝑠𝑒𝑛 

𝑃 𝑝𝑟𝑒 + 𝑃 𝑠𝑒𝑛 
. (2)

The specificity ( 𝑃 𝑠𝑝𝑒 ) is defined as 

 𝑠𝑝𝑒 = 

𝑛 𝑇𝑁 

𝑛 𝐹𝑃 + 𝑛 𝑇𝑁 

. (5)

The statistical significance of all the cross-validation results was fur-
her assessed using a permutation test ( Combrisson and Jerbi, 2015 ).
o obtain a zero distribution (with a chance level of 50%: 1 divided
y the number of emotion categories) for assessing classification per-
ormance, we repeated the following procedure 1000 times to simu-
ate the classification probability distribution as below: (1) randomly
huffled the video-based emotional labels of the samples; (2) conducted
eave-one-subject-out cross-validation and measured the corresponding
erformance by averaging the classification accuracies in all the cross-
alidation rounds; (3) compared the permutation results with the truly
btained results. The p-value was calculated as the ratio of the number
5 
f accuracies in permutation results greater than the true accuracy to
he total number of accuracies in permutation results. Further, to elimi-
ate the influence of type I errors in the emotion classification modeling,
ll the obtained p-values were corrected using the false discovery rate
FDR) ( Genovese et al., 2002 ) for multiple comparisons. 

. Results 

.1. Whole-brain-based emotion classification 

To estimate whether different sustained emotions would be repre-
ented in distinct FC patterns, we trained a cross-subject classifier using
 brain-wide FC matrix to identify the two distinct basic emotions of
appiness and sadness. The average FC matrices of happiness and sad-
ess across subjects and episodes are shown in Fig. 2 (a) and ( b ), and
he statistical difference between happiness and sadness in terms of the
C patterns is shown in Fig. 2 (c). The corresponding FC matrices of
ndividual movie clips are presented in Appendix II of Supplementary
aterials. The whole-brain-based emotion classification corresponded

o an accuracy of 80.55%. All the results were significantly higher than
he random accuracy level in the permutation test (chance level = 50%;
ermutation test p < 0.0001). The distribution of the obtained random
ccuracies in the permutation test (repeated 1000 times) is shown in
ig. 2 ( d ). The corresponding confusion matrix is shown in Fig. 2 ( e ),
here the average classification accuracy for happiness and sadness was
0.27% ( p < 0.0001) and 80.82% ( p < 0.0001), respectively. The results
evealed that a high cross-subject cross-trial emotion classification per-
ormance could be achieved using whole-brain FC patterns suggesting
hat it is feasible to differentiate happiness and sadness based on whole-
rain connectivity signatures. Next, based on the classification perfor-
ance, we determined whether different large-scale networks in terms

f 8 networks and 18 subnetworks show a specific contribution to emo-
ion classification. 

.2. Network-based emotion classification 

We next investigated which intra- and inter-brain functional net-
orks are most contributing to the classification of the two distinct
asic emotions (happiness and sadness). Based on the defined 8 net-
orks (7 cortical networks and 1 subcortical network), we extracted

he FC patterns within/between each network and built the emotion
lassification model separately. The average classification accuracy of
ach intra- and inter-network is reported in Fig. 3 (a). The classification
esults were assessed using the permutation test, and only the classifi-
ation results of both happiness and sadness were statistically greater
han the random results were considered as significant ( p < 0.0001, FDR
orrected). The obtained significance of the classification results rela-
ive to the random level is reported in Appendix III of Supplementary
aterials. The results showed that the FC profiles contributing the most

o the classification of happiness and sadness were mainly located in
ithin and between network connections involving the VN and DMN,
s shown in Fig. 3 ( b ). This may reflect the visual and naturalistic na-
ure of our paradigm, which will rely on the communication between
he visual system with other brain systems such as the DMN. The sta-
istical analysis allowed us to test the significant classification networks
ith detailed results (see Table 1 ). The best classification performance
as obtained when the FC between the VN and DMN was adopted.
he interactions between VN and DMN were in line with the economic
ccount of large-scale brain network organization ( Chen et al., 2013 ;
aichle, 2015 ; Vatansever et al., 2017 ; Vessel et al., 2019 ), which indi-
ates the information transmissions between lower-level sensory brain
reas and high-level functional brain areas. For all the reported results,
he permutation test verified that the probability of achieving such high
lassification performance by chance was less than 0.0001 ( p < 0.0001,
DR corrected). The results showed the functional network connections
ontributing to emotion classification predominated involved VN and
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Fig. 2. Whole-brain-based emotion classification results. The averaged FC matrices of (a) happiness and (b) sadness. The color indicates the obtained z values 
after Fisher’s z transformation. (c) The statistical difference between (a) and (b). All the presented results were FDR corrected, with p < 0.05. (d) The histogram 

distribution of the classification accuracies was obtained in the permutation test (repeated 1000 times). The red dot line indicates the obtained whole-brain-based 
emotion classification accuracy ( 𝑃 𝑎𝑐𝑐 = 80.55%), where the corresponding 𝑃 𝑓 , 𝑃 𝑝𝑟𝑒 , 𝑃 𝑠𝑒𝑛 , 𝑃 𝑠𝑝𝑒 are 80.55%, 80.82%, 80.27%, and 80.82%, respectively. (e) The obtained 
confusion matrix. 

Fig. 3. The network-based emotion classification performance. (a) The classification accuracy when each network was separately used for modeling. Here, ∗ ∗ ∗ indi- 
cates the networks with statistically significant classification ability ( p < 0.0001, FDR corrected). (b) The VN and DMN related network-based functional connections 
with a statistically significant classification ability ( p < 0.0001, FDR corrected). Thicker and redder connection lines indicate higher classification accuracy and vice 
versa. 
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Table 1 

The network-based emotion classification performance with detailed results. All the reported results were statistically 
significant ( p < 0.0001, FDR corrected). 

Networks 
Overall Performance Happiness Sadness 

Accuracy F1-score Precision Sensitivity Specificity Accuracy Accuracy 

VN 72.01% 72.11% 72.11% 72.11% 71.92% 72.11% 71.92% 

VN-DMN 77.82% 77.03% 80.15% 74.15% 81.51% 74.15% 81.51% 

VN-VAN 75.77% 76.09% 75.33% 76.87% 74.66% 76.87% 74.66% 

VN-DAN 75.09% 74.74% 76.06% 73.47% 76.71% 73.47% 76.71% 

VN-SMN 72.01% 72.11% 72.11% 72.11% 71.92% 72.11% 71.92% 

VN-LN 69.28% 68.53% 70.50% 66.67% 71.92% 66.67% 71.92% 

VN-SN 69.62% 69.42% 70.14% 68.71% 70.55% 68.71% 70.55% 

DMN-VAN 70.31% 70.51% 70.27% 70.75% 69.86% 70.75% 69.86% 

DMN-FPN 74.40% 75.08% 73.38% 76.87% 71.92% 76.87% 71.92% 

DMN-SMN 68.60% 69.74% 67.52% 72.11% 65.07% 72.11% 65.07% 

DMN-LN 70.65% 71.14% 70.20% 72.11% 69.18% 72.11% 69.18% 
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MN. Those network systems could be considered to involve the most
nformative features for emotion classification, where a high classifica-
ion ability could be more prevalently observed. 

.3. Subnetwork-based emotion classification 

The above network-based classification results suggested that the dif-
erences between happiness and sadness were primarily located in the
unctional connections within and between the VN and DMN. Next, we
urther investigated the details in the corresponding networks and ana-
yzed the classification performance of the involved subnetworks. Exam-
nation of functional networks in terms of subnetworks was expected to
ffer a deeper understanding of the classification ability in the distinc-

ion of the two distinct basic emotions. Based on the subnetwork connec- 

ig. 4. The subnetwork-based emotion classification performance. (a) The VN and DM
ubnetwork-based functional connections with a statistically significant classification 
igher classification accuracy and vice versa. 

7 
ions of the defined 18 large-scale subnetworks (17 cortical subnetworks
nd 1 subcortical network), we estimated the corresponding classifica-
ion performance on the distinction of emotions ( Fig. 4 (a)). After the
ermutation test, the functional connections with significant classifica-
ion accuracies ( p < 0.0001, FDR corrected) were mainly located within
MN, between DMN and other subnetworks, and between VN-a and
ther subnetworks, as shown in Fig. 4 ( b ). All the obtained significance
f the classification results relative to the random level is reported in
ppendix IV of Supplementary Materials. After the statistical analysis,

he performance of the subnetworks contributing to the classification is
eported in Table 2 . The best classification performance was achieved
hen the FC between DMN-a and FPN-c was utilized. It was found that

he classification performance using the functional connections related
o the VN-a was better than that using the functional connections related
N related subnetwork-based classification results. (b) The VN and DMN related 
ability ( p < 0.0001, FDR corrected). Thicker and redder connection lines indicate 
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Table 2 

The subnetwork-based emotion classification performance with detailed results. All the reported classification results were 
statistically significant ( p < 0.0001, FDR corrected). 

Networks 
Overall Performance Happiness Sadness 

Accuracy F1-score Precision Sensitivity Specificity Accuracy Accuracy 

VN-a - VN-b 73.72% 73.36% 74.65% 72.11% 75.34% 72.11% 75.34% 

VN-a - DMN-a 73.38% 72.54% 75.18% 70.07% 76.71% 70.07% 76.71% 

VN-a - DMN-c 73.38% 72.14% 75.94% 68.71% 78.08% 68.71% 78.08% 

VN-a - VAN-b 72.35% 72.16% 72.92% 71.43% 73.29% 71.43% 73.29% 

VN-a - DAN-a 71.33% 70.63% 72.66% 68.71% 73.97% 68.71% 73.97% 

VN-a - DAN-b 73.38% 72.34% 75.56% 69.39% 77.40% 69.39% 77.40% 

VN-a - FPN-a 68.94% 69.36% 68.67% 70.07% 67.81% 70.07% 67.81% 

VN-a - LN-a 70.99% 70.79% 71.53% 70.07% 71.92% 70.07% 71.92% 

VN-b - FPN-a 68.60% 68.71% 68.71% 68.71% 68.49% 68.71% 68.49% 

DMN-a - DMN-c 69.97% 69.44% 70.92% 68.03% 71.92% 68.03% 71.92% 

DMN-a - VAN-a 67.92% 68.67% 67.32% 70.07% 65.75% 70.07% 65.75% 

DMN-a - FPN-c 74.40% 75.08% 73.38% 76.87% 71.92% 76.87% 71.92% 

DMN-b - DMN-c 69.97% 71.05% 68.79% 73.47% 66.44% 73.47% 66.44% 

DMN-b - DAN-a 70.65% 70.55% 71.03% 70.07% 71.23% 70.07% 71.23% 

Table 3 

The stimulation-stage-based emotion classification performance using all the VN and DMN related FCs. All the results 
were statistically significant with p < 0.0001 (FDR corrected). 

Stimulation 
Overall Performance Happiness Sadness 

Accuracy F1-score Precision Sensitivity Specificity Accuracy Accuracy 

Entire 80.55% 80.55% 80.82% 80.27% 80.82% 80.27% 80.82% 

Early 78.50% 77.89% 80.43% 75.51% 81.51% 75.51% 81.51% 

Middle 81.23% 81.36% 81.08% 81.63% 80.82% 81.63% 80.82% 

Late 85.32% 85.62% 84.21% 87.07% 83.56% 87.07% 83.56% 
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o the VN-b. This indicated that the FC patterns in the VN contributing to
lassification mainly existed in the central visual area, instead of the sur-
ounding visual area. For the functional connection between DMN and
PN, the FC patterns contributing the most to the classification were
ainly distributed between DMN-a and FPN-c. 

.4. Stimulation-stage-based emotion classification 

We further examined whether the FC profiles change over the pe-
iod of sustained emotional experiences. To this end, we divided each
pisode into three stages: early stimulation (1 ∼200 s), middle stimu-
ation (201 ∼400 s), and late stimulation (401 ∼600 s), and performed
he calculation of FC matrices at each stage separately. For each stim-
lation stage, the emotion classification models were separately built
ased on the FC of VN and DMN, and the efficient emotion-evoking
tage(s) were investigated in terms of emotion classification ability. As
hown in Table 3 , the average classification accuracies based on the
ntire stimulation period, early stimulation stage, middle stimulation
tage, and late stimulation stage were 80.55%, 78.50%, 81.23%, and
5.32%, respectively. The classification results between entire and late
ig. 5. The obtained confusion matrices using all the VN and DMN related FCs at (a
timulation stage, and (d) the late stimulation stage. 

8 
nd between early and late were statistically different ( p < 0.05, FDR cor-
ected). The corresponding confusion matrices are shown in Fig. 5 . The
esults revealed that the classification performance of the entire stim-
lation period could be considered as an average performance of the
arly, middle, and late stimulation stages. Among the three stimulation
tages, it was found that the classification performance based on the late
timulation period was superior to the other stimulation periods, which
ay additionally reflect that emotions evolve cumulatively over sus-

ained exposure and long-term emotion stimulation could be beneficial
o intense emotion elicitation. 

Further, we estimated the subnetwork-based classification abilities
t each stimulation stage and examined whether there exists an FC pat-
ern shifting of emotion-related contributions of the brain areas dur-
ng the long-term emotional processing. All the obtained significance of
he classification results relative to the random level is reported in Ap-
endix V of Supplementary Materials. As shown in Fig. 6 , it was found
he predominantly distributed emotion-related FC patterns were slightly
ifferent at different stimulation stages. A brain visualization of the re-
ults was presented in Fig. 1 ( e ). On the other hand, all the classifica-
ion results using one subnetwork or different subnetwork pairs were
) the whole stimulation period, (b) the early stimulation stage, (c) the middle 
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Fig. 6. The classification results of FC patterns at different stimulation stages: (a) early, (b) middle, and (c) late. The corresponding subnetwork-based functional 
connections with statistically significant classification ability ( p < 0.0001, FDR corrected) are shown in (d), (e), and (f). Thicker and redder connection lines indicate 
higher classification accuracy and vice versa. 

9 
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uch lower than those using FC related to all subnetworks of the VN
nd DMN. The results demonstrated that emotion-related brain func-
ions are dominated by distributed network systems, instead of a single
etwork/area. 

. Discussion 

The present study capitalized on sustained and ecologically valid
nduction of happiness and sadness via long movie clips and applied
lassification modeling to determine whether these emotions are rep-
esented in distinct whole-brain network level signatures. We there-
ore explored high-resolution network level profiles and developed
euroimaging-based cross-subject cross-episode emotion classification
ignatures via functional networks. The main objectives of the present
tudy include: (1) applying the machine learning method to analyze
MRI FC information and providing a proof-of-concept emotion classi-
cation model under a naturalistic experimental design employing sus-
ained emotional induction, and (2) exploring distinct network patterns
ssociated with two distinct basic emotions through a more natural ex-
erimental paradigm. According to the results, we observed a signif-
cant difference in the whole-brain FC patterns when different emo-
ions were evoked, where the results were fully evidenced by better
motion classification performance statistically significant than the ran-
om level ( p < 0.0001, FDR corrected). The results suggested that distinct
asic emotions, happiness and sadness, have distinguishable and dis-
ributed neural representations on the whole-brain connectivity level,
ith the VN and DMN associated networks (intra- and inter-FC pat-

erns of VN and DMN) making the major contribution to the identifi-
ation of the specific emotional states. Our key findings can be summa-
ized as follows: (1) Happiness and sadness elicited by long-term movie
lips have discrete neural representations, reflected in FC profiles. (2)
he distinctive FC patterns for happiness and sadness are mainly rep-
esented in VN and DMN associated networks. (3) Examining changes
ver the stimulation period (early, middle, and late presentation peri-
ds of the movie) revealed that naturalistic emotional experience is an
ccumulative process such that the emotion-specific signatures became
ore distinct over the course of the sustained stimulation. (4) The esti-
ated distinguishable ability of FC profiles on sustained happiness and

adness are consistent across subjects, movie clips, and parcellations.
ogether, these results underscore that interactions between brain re-
ions contribute to emotional experiences under naturalistic conditions
nd that different emotions are represented in distinct network level
rofiles. 

.1. Functional connectivity profiles associated with emotions 

The present study showed that different patterns of whole-brain
C characterize specific emotional experiences. The emotion classifi-
ation results suggested that the whole-brain FC patterns can accu-
ately distinguish happy and sad emotional processing and that the
orresponding emotion-specific changes are not restricted to a single
egion/network, but distributed across multiple networks that primar-
ly involve the VN and DMN. The VN and DMN may thus represent
ey network systems that encode specific emotional experiences and
ary their interaction with other systems according to the external en-
ironment and the subjective emotional state. These findings converge
ith previous neuroimaging emotion studies which demonstrate the im-
ortant roles of the VN and DMN networks during processes involving
motional experiences and emotion regulation ( Jaworska et al., 2015 ;
guyen et al., 2019 ; Phan et al., 2002 ; Satpute and Lindquist, 2019 ;
ytal and Hamann, 2010 ). 

A previous fMRI study of emotion-related processing with visual
timuli revealed that the modulated brain regions in emotional process-
ng critically relied on the stimulus type ( Keightley et al., 2003 ). The
uperior classification performance between the VN and other networks
10 
n the present study further supports the idea and suggests an impor-
ant role in visual processing regions as early processing nodes for emo-
ional information. Recent visual-related fMRI studies suggest that the
ole of visual processing areas extends beyond the simple perception
f visual information ( Cai et al., 2017 ; Guo et al., 2012 ; Katzner and
eigelt, 2013 ). A number of studies have shown that emotional con-

ent is also encoded and recovered in brain areas of VN (ventral visual
tream). For example, Mickley and Kensinger (2008) found that, in the
motion encoding process, the involvement of visual areas made it pos-
ible for negatively related emotional memories to be recalled vividly.
 previous study reported that visual processing regions were closely
elated to the evoked complex emotions and that distributed represen-
ations in the human visual system reliably classify distinct emotions
 Kragel et al., 2019 ). In addition, it has been found that different vi-
ual cortical areas are modulated by different categories of emotions
 Thakral et al., 2022 ). Mourao-Miranda et al. (2003) found that the pic-
ures with negative emotions produced stronger activity in V1, com-
ared to the pictures with positive emotions. In our subnetwork-based
motion classification results, we observed that the emotion-related FC
atterns in the visual areas are predominantly distributed in the cen-
ral visual area (VN-a), instead of the peripheral visual area (VN-b). The
entral visual area includes the striate cortex (V1) and extrastriate cor-
ex, while the peripheral visual area covers the extrastriate superior and
nferior. One possible reason for the predominant distribution of the
N-a might be that emotions such as sadness involve stronger responses

n sensory processing in the V1 cortex. One study has elucidated this
henomenon by suggesting that negative information elicits selective
ttentional priorities and attentional resources relative to positive in-
ormation ( Yiend, 2010 ). 

The strong classification ability of DMN in the distinction of emo-
ions aligns with previous studies. The DMN, including the posterior
ingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC),
nferior parietal lobule (IPL), and bilateral temporal cortex regions,
ncompasses important and unique mental capacities ( Raichle, 2015 ;
aichle et al., 2001 ; Satpute and Lindquist, 2019 ). DMN has been widely

ound to be involved in internal attention, such as autobiographical
emory ( Buckner et al., 2008 ; Schacter and Addis, 2007 ), rumina-

ion ( Hamilton et al., 2015 ; Whitfield-Gabrieli and Ford, 2012 ), social
ognition ( Spreng et al., 2009 ; Van Overwalle, 2009 ), social evalua-
ion ( Gusnard et al., 2001 ; Hamilton et al., 2015 ), and internal men-
ation ( Andrews-Hanna et al., 2014 ). The neural substrates related to
nternal attention processing also contribute to emotional processing
 Craig, 2009 ; Critchley et al., 2005 ; Pollatos et al., 2007 ). Previous
tudies also reported that the DMN plays a crucial role in the repre-
entation of individual emotions ( Satpute and Lindquist, 2019 ), espe-
ially the ventral and anterior medial prefrontal cortices (vmPFC and
mPFC). As the central areas in DMN, vmPFC, and amPFC are associ-
ted with emotion generation, integration, processing, and regulation
 Gusnard et al., 2001 ; Raichle et al., 2001 ; Veer et al., 2011 ). Satpute
nd Lindquist also suggested that DMN may participate in emotion by
upporting conceptual progress, which facilitates the ability to experi-
nce specific physiological sensations and contribute to the composition
f emotion categories ( Satpute and Lindquist, 2019 ). The present study
onfirms that DMN supports the integration of both visual and semantic
nformation ( Lim et al., 2013 ) and the involvement in emotion regula-
ion and emotion-related decision-making ( Rolls et al., 2022 ). 

.2. Emotion-related coordinated function of distributed network systems 

Using the whole-brain FC profiles for emotion classification achieved
 significantly better performance than using single network informa-
ion. This suggests that emotion-specific FC patterns are not present in a
ingle network or region, but require a distributed representation within
nd between multiple networks. In the investigation of the emotion-
ssociated brain circuits, it was observed that emotion relies on large-
cale functional network interaction ( Pessoa, 2017 ). Studying the whole-
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rain FC using multivariate and machine learning analysis benefits dis-
inguishing emotions ( Pessoa, 2018 ). The powerful classification ability
f VN and DMN associated network systems supports that the neural
epresentation of different emotional experiences is a widely distributed
epresentation with VN and DMN as the core and multiple networks
perating in concert. The involvement of large-scale brain interaction
rovides evidence that the connections between brain regions play a
ignificant role in emotion. 

These observations align with previous fMRI studies of emotions,
eporting that a number of fundamental emotional states depend on
arge-scale cortical and subcortical interactions, rather than engaging
solated networks/regions ( Damasio and Carvalho, 2013 ; Kober et al.,
008 ; Lindquist et al., 2012 ; Nummenmaa et al., 2014 ; Saarimäki et al.,
016 ; Vytal and Hamann, 2010 ). Together with the present findings,
his reflects that emotions are represented in distributed networks span-
ing multiple brain systems ( Kragel and LaBar, 2015 ; Wager et al., 2015 ;
hou et al., 2021 ). It was found that the specific brain regions contribut-
ng to emotion decoding showed a similar tendency to distribute across
he canonical networks while the VN and DMN networks accounted for
bout half of the total and the remaining DAN, VAN, LN, FPN, and SMN
etworks accounted for about the other half. Wager et al. (2015) used
 hierarchical Bayesian model to analyze the patterns of human brain
ctivity under five emotion categories (fear, anger, disgust, sadness, and
appiness), showing that emotion categories were not contained in any
ne region or system but were represented as synergistic across multi-
le brain networks cooperation. Saarimäki et al. (2016) work also veri-
ed the neural representations of discrete emotional experiences are dis-
ributed across multiple brain regions ( Gao et al., 2020 ; Horikawa et al.,
020 ; Saarimäki et al., 2018 ). Different emotions are associated with ac-
ivation changes across multiple functional systems, and the underlying
patial distribution configuration ultimately defines specific emotions
t the psychological and behavioral levels ( Saarimäki et al., 2018 ). Fur-
hermore, the theory of constructed emotion suggests that all emotions
onsist of a shared set of basic functional systems that are not specific to
motion processing per se ( Kober et al., 2008 ; Lindquist et al., 2012 ). We
onsider that the shared basic emotional systems consisting of discrete
motional experiences induced by the long-term naturalistic continuous
motion-evoking paradigm exhibit a similar engagement of networks at
he whole-brain level, yet that the VN and DMN may play an integrative
ole within these networks. 

.3. Engagement of brain networks during sustained naturalistic emotional 

xperience 

Naturalistic stimulation, such as audio narratives or short movies,
as been increasingly demonstrated to allow a more ecologically valid
nd comprehensive experimental assessment of brain processes than
parse experimental stimuli (e.g. emotional words) with high repro-
ucibility ( Matusz et al., 2019 ; Zhang et al., 2021 ). Compared with the
raditional experimental paradigms of blocked design or event-related
esign, naturalistic stimulation shows some compelling advantages
 Bottenhorn et al., 2018 ; Meer et al., 2020 ; Simony and Chang, 2020 )
ncluding the engagement of complex and interacting brain states
hile closely simulating brain processes in real-life ( DuPre et al.,
020 ; Jääskeläinen et al., 2021 ). Emerging evidence and conceptual
ork suggest that ecologically valid scenarios offer some benefits over

raditional parametric task designs, including a test of experimental
rain models under ecologically valid conditions ( Puckett et al., 2020 ;
onkusare et al., 2019 ; Vanderwal et al., 2022 ). With respect to emotion-
elated studies, the naturalistic paradigms enable a more ecologically
alid approach to the dynamic neurophysiological processes that un-
erly the different emotional states in everyday life ( Lettieri et al.,
019 ). 

However, most of the previous emotion-related studies were con-
ucted using naturalistic stimuli with a short duration, such as pictures
 Bush et al., 2018 ), music ( Putkinen et al., 2021 ), short movie clips
11 
 Wang et al., 2017a ), and movie trailers ( Chan et al., 2020 ), to elicit
ubjects’ specific emotional experience in a highly controlled laboratory
nvironment. In real life, several emotional states evolve over longer
ime periods and emotions such as vivid sadness may require a high
evel of contextualization to fully evolve. The emotion elicitation with
hort stimuli may fail to effectively evoke the specific emotional experi-
nce, which would further affect the following brain analysis and lead to
oor emotion estimation results. For example, in Saarimäki et al.’s work
 Saarimäki et al., 2022 ), the mean classification accuracy on sadness
as the lowest (18%), which was close to the chance level (16.67%).
 similar situation occurred in another fMRI-based emotion recogni-

ion work ( Saarimäki et al., 2016 ), where the emotion classification
esult on sadness was still the lowest. One possible reason for leading
he classification performance of sadness being much worse than the
ther emotions could be that the stimulus (( Saarimäki et al., 2022 ): 1-
inute narrative; ( Saarimäki et al., 2016 ): 10-second movie clips) is

oo short to elicit a strong and deep sad emotion and further fail to
ring a significant change in the brain activities. On the other hand,
t was found that prolonged and complex movie clips are more suit-
ble to induce dynamic changes of sustained emotional experience of
ome emotions, i.e. sadness ( Raz et al., 2012 ). The initial results suggest
hat an efficient induction of sadness may require longer periods of im-
ersive emotional engagement. The present study extended the initial
ndings from Raz et al. (2012) , with respect to employing a whole-
rain connectivity approach to a broader emotional spectrum includ-
ng both happiness and sadness, while capitalizing on a larger sample
52 individuals) and more movie clips (12 different 10-minute movie
lips), thus providing a more holistic and comprehensive perspective
n the dynamic interactions within and between functional networks
uring the prolonged experience of emotional states in naturalistic en-
ironments. Besides, Betzel et al. (2020) found the temporal fluctuation
n network integration and segregation during movie-watching, shar-
ng consistent patterns across individuals. In the present study, we di-
ided the whole stimulation period into early, middle, and late stages
o explore whether the network level representations change over time
uring sustained naturalistic emotion processing. We found that the
orresponding classification performance at the late stimulation stage
85.32%) was considerably better as compared to the early (78.50%)
nd middle (81.23%) stimulation stages, while the decoding perfor-
ance for both, happy and sad emotional experiences was generally
igh. As evidenced by the stimulation-stage-based emotion classification
esults, the emotional experience is sustainable accumulation, reflected
n the corresponding brain activities with evidence of the growth clas-
ification ability. This resonates with previous findings suggesting that
he time of emotional exposure may affect emotional experiences and
eural expressions ( Résibois et al., 2017 ; Waugh and Kuppens, 2021 ;
augh et al., 2012 ). For instance, emotional stimuli tend to be bet-

er remembered in long-lasting contextual memory and those long-term
motional stimuli can enhance the effectiveness of emotional elicitation
y enhancing contextual memory ( Dolcos et al., 2013 ). 

.4. Classification ability is consistent across subjects, movie clips, and 

rain parcellations 

A comprehensive network level description of whole-brain FC pat-
erns may allow a powerful classification determination of specific emo-
ional states such as happiness and sadness. Further, we examined the
onsistency of the classification ability on different subjects, movie clips,
nd brain parcellations, respectively. 

To further explore the individual differences in classification perfor-
ance, we separately examined each subject’s decoding performance

o clarify whether the brain networks exhibit a consistent contribution
o classification. The corresponding results are presented in Appendix
I of the Supplementary Materials. A high classification accuracy of

he VN and DMN associated networks was consistently observed across
ubjects, with an average performance enhancement of 5.87%, suggest-
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ng a consistent contribution of these networks to emotion classification
n the individual level. On the other hand, variance in the classifica-
ion performance among different individuals was observed, possibly
eflecting individual differences in the emotional experience and emo-
ional perception, or the corresponding neurofunctional representation
cross subjects. For instance, the emotion classification on subject 32
chieved good performance, with an average classification performance
sing all networks and VN and DMN associated networks were 80.56%
nd 85.33%, respectively. In contrast, both classification performance
ased on all networks and VN and DMN associated networks were close
o the chance level in subject 24. These observations underscore individ-
al differences and may reflect different levels of emotional engagement
etween the subjects or individual variations in the “typical ” context-
pecific functional brain organization. The difference in emotion percep-
ion may also be related to individual differences in emotional traits or
ast experiences ( Kragel et al., 2016 ; Li et al., 2019 ; Maier et al., 2020 )
r by the nature of cognitive processes engaged in the interpretation
f the movie or the interoceptive emotional experiences ( Dolcos et al.,
013 ; Petro et al., 2018 ), rather than the properties of the stimuli them-
elves. 

In addition, to verify the emotion stimulation effect of the selected
ovie clips, we also investigated the cross-subject classification perfor-
ance of each movie clip separately based on different intra- and inter-
etworks. The corresponding results are presented in Appendix VII of
he Supplementary Materials. Comparing the classification performance
sing all networks and VN and DMN associated networks, a consistently
etter classification performance across all movie clips with an average
nhancement of 5.01%, for the VN and DMN associated networks was
bserved. These results reflect that the classification contribution of the
N and DMN is highly consistent across different movie clips. 

Moreover, we evaluated the consistency of the classification abil-
ty at different levels of granularity, i.e. different brain parcellations. In
he main analysis, we adopted a higher spatial resolution parcellation
Schaefer 400) for the whole-brain network analysis of the sustained
motional experience. To explore whether the level of parcellation in-
uences the results, we repeated the data analysis based on different
arcellations ( Schaefer et al., 2018 ): Schaefer 200, Schaefer 300, and
chaefer 400 each including the identical subcortical network parcella-
ion ( Tian et al., 2020 ). To this end, we conducted the emotion classi-
cation and comparison of the performance using all networks and VN
nd DMN associated networks. The corresponding results are reported
n Appendix VII of the Supplementary Materials, and show that con-
istently better classification results could be obtained at different par-
ellations with an average enhancement of 4.09%, when VN and DMN
ssociated networks were utilized. These results confirm that the classi-
cation ability of VN and DMN associated networks is highly consistent
cross different parcellations. 

.5. Limitations and future work 

One limitation of the present study is that the movie clips were
resented without sound. Although this approach is in line with pre-
ious studies and across these studies the emotion-related neural rep-
esentation could be successfully established ( Horikawa et al., 2020 ;
andelkow et al., 2016 ; Saarimäki et al., 2016 ), future studies should

onsider to incorporate audiovisua presentations to further increase sim-
larity to sustained emotional experiences in naturalistic environments.
nother limitation of the present study refers to the emotional labels

hat were used for modeling. The evaluation of one movie clip was based
n a summary emotional ratings across the entire movie. While our de-
oding model was capable of establishing the difference in FC profiles
etween two distinct basic emotions, the adopted emotional labels can-
ot reflect the emotional changes through a long-term movie clip with
 duration of 10 min. Hence, to the extent that the emotion changes
ver time and the climax in emotion intensity across different movie
lips could be different, future studies might annotate dynamic emo-
12 
ional labels for each movie clip and further study the dynamic rela-
ionship among neural representations, dynamic emotional labels, and
ideo content. Finally, the temporal accumulative effect on different
enres of movie clips (e.g. a stereotypical narrative in the movie clip
ith an intended climax in emotion intensity) was not explored in the
resent work. In a previous study from Kragel et al. (2019) , it was re-
orted that emotion classification during watching romantic comedies
as more accurate than that during watching a horror or action movie.
uture experiments are needed to examine the temporal accumulative
ffect of sustained emotional experience evoked by different genres of
ong movie clips at a more precise level. 

. Conclusion 

The present study investigated the classification ability of whole-
rain FC patterns to determine distinct neurofunctional representations
f two distinct basic emotions during naturalistic movie watching. This
pproach allowed us to explore a higher-order neural process under
cologically valid experimental conditions of sustained emotional ex-
eriences. Our work provided preliminary evidence that the VN and
MN associated networks exhibit a strong contribution to the classifi-
ation and thus may represent integrative networks that orchestrate the
hole-brain network level expressions of specific emotional states. The

esults further emphasized the role of network level changes as the ba-
is of different sustained emotional experiences under ecologically valid
onditions and revealed the temporal accumulative effect in emotions
ould be reflected by neural representations. Our findings suggested that
he naturalistic long-term movie-watching paradigm evoked emotions
anifest as distributed representations of multiple networks operating

n concert with the VN and DMN as the core. This paper provides com-
elling evidence and unique insights into the emotion-related FC pat-
erns that support emotion perceiving and processing and reveal the
mportance of the VN and DMN coordination to emotions. 
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