
  

  

Abstract—In this paper, the problem of electrodes shift is 
studied in low-density surface electromyographic (sEMG) based 
prosthetic control with the proposed Sliding Window 
Nonnegative Matrix Factorization (SW-NMF) algorithm. By 
artificially switching the electrode positions clockwise for 𝝅/𝟖, 
the 8 channel sEMG signals of 10 gestures were recorded before 
and after the electrodes shift. It is found that electrodes shift 
makes the feature space of the sEMG signal non-stationary, 
which has a great influence on the classify accuracy. Besides, all 
kinds of existing algorithms for electrodes shift in the high-
density electrode environment have limited effect in the low-
density electrode environment. In the proposed SW-NMF 
method, we firstly place the sum constrain on the coefficient 
matrix 𝑯  to reduce change of the sample distribution in the 
feature space. Secondly, a sliding widow strategy is applied 
accompany with the sum constrain on 𝑯 to make the algorithm 
can be run online. Finally, a self-enhanced version of Linear 
Discriminant Analysis (LDA) is included in the SW-NMF 
algorithm to make the classifier be able to follow the change of 
sample distribution in the feature space for further improve the 
decoding accuracy. Compared with the traditional TD+LDA, 
and the other type of NMF based methods, the result of the 
proposed SW-NMF shows a high robustness for electrodes shift.  
 

I. INTRODUCTION 

Electromyographic (EMG) signal, the electrical activity by 
muscle contraction, can be collected by electrodes on the skin 
for prosthetic hand control [1]. In the recent decades, with the 
use of advantage pattern recognition methods, such as 
Bayesian statistics, artificial neural network and support 
vector machine, the result of pattern recognition has been 
greatly improved. However, the relatively ideal recognition 
rate in laboratory environment is in sharp contrast to the high 
rejection rate for the use of intelligent prosthetics in practice. 
In addition to the problems of weight, battery life, power [2] 
etc., the low robustness of existing pattern recognition 
algorithms is also an important reason. The electrodes shift, 
change of arm position direction, muscle contraction force, 
and poor electrode contact in the daily use will all make the 
recognition result deteriorate seriously [3].  

Without these interference factors, a high recognition rate 
can be achieved in laboratory environment, because all the 
analysis is performed in a stationary feature space. However, 
take the electrodes shift for example, the feature space for the 
sEMG signal would be changed in the daily use. To solve this 
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problem, several methods have been proposed. Variogram 
(Variog), a statistical measure of the spatial correlation, is a 
robust feature in the high-density sEMG signals for electrodes 
shift [4]. Gray-Level Co-occurrence Matrix (GLCM), which 
provides a well description of spatial distribution of pixels in 
image processing, can discard information sensitivity to shift 
and keep as much as useful information in electrodes shift [5]. 
Common Spatial Pattern (CSP) algorithm, based on the 
multiple channels signal analysis, can maximize the 
difference between the variance of two classes [6]. All these 
methods show robustness to electrode shift for the prosthetic 
control with high-density sEMG. High-density electrode can 
improve both the recognition rate and the quality of control. 
However, with the increasing number of the electrodes (>100 
electrodes), the system will take more time to be worn, 
increase the risk for a single electrode broken. Furthermore, it 
will make higher requirement for the performance of the 
signal acquisition, amplification, transmission and calculation, 
hence the system will become more expensive. For these 
reasons, currently high-density electrode EMG system is 
widely used in laboratory environment but seldom used in the 
daily use. Instead, the commercial EMG device with low-
density electrode, like Myo armband with commonly 8 
electrodes, is more preferred in daily use for its lower price, 
easy to ware and also the good performance. Unfortunately, 
the algorithm developed based on high-density electrodes, 
like Variog, GLCM and CSP, do not have a good performance 
for electrodes shift. The lack of methods to cope with the 
problem of electrodes shift in the low-density electrodes 
system limits its repeated use in daily use. 

In this paper, Sliding Window Nonnegative Matrix 
Factorization (SW-NMF) algorithm is proposed to improve 
the robustness for the problem of electrodes shift in low-
density sEMG pattern recognition application. With the sum 
constrain on the coefficient matrix 𝑯, the sliding window 
strategy in Nonnegative Matrix Factorization (NMF), and the 
self-enhanced version of Linear Discriminant Analysis (LDA) 
in SW-NMF, we can reduce and also follow the change of 
sample distribution in the feature space to improve the 
decoding accuracy. The experiment design and the algorithm 
of SW-NMF is introduced in Session II. The result of SW-
NMF, compared with the other existing methods is arranged 
in Session III. Finally, the conclusion is given in Session IV.  
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II. Method 

A. Experiment Design 
Twenty-five subjects participated in this experiment (18 

males and 7 females, age ranging from 20 to 25 years). All 
subjects were informed of the experimental process and signed 
informed consent before the experiment. Eight-channel sEMG 
signals are collected from subjects' right-hand forearms by 
DataLINK (Biometrics Ltd., Newport, UK) with a sampling 
rate of 1kHz. 

In the experiment preparation, the circumference of the 
arm was measured for each subject. From the back side of 
middle finger as the origin, the upper arm circumference was 
divided into 16 equal parts and marked the endpoints 
clockwisely as 1, 2, 3, …, 15, 16 (Fig. 1). The experiment was 
divided into two parts, in which the subjects were asked to 
perform exactly the same task but with the different electrode 
montage for EMG recording. In the first part of the experiment, 
eight electrodes were placed at the position of 1, 3, 5, …, 15. 
For the second part of the experiment, we rotated the electrode 
positions clockwise for 𝜋/8 to artificially produce the lateral 
electrodes shift. Hence as illustrated in Fig. 1a, the electrodes 
in the second part of the experiment were placed at the position 
of 2, 4, 6, …, 16. 

During the experiment, the subjects sat in a comfortable 
chair and kept their arms straight down. Each part of the 
experiment is consisted of 10 sessions. For each session, the 
subjects were asked to complete 10 motions continuously with 
80% mean cumulative voltage for 10 seconds. For each time, 
the 10 motions, which are hand close (HC), hand open (HO), 
wrist flexion (WF), wrist extension (WE), radial flexion (RF), 
ulnar flexion (UF), wrist pronation (WP), wrist supination 
(WS), fine pinch (FP) and rest, were arranged in a random 
order and prompted to the subjects by MATLAB program (Fig. 
1b). The subjects would have an adequate rest as he/she want 
between the two sessions in the experiment. After the 
completion of the first part of the experiment, the position of 
the electrode was adjusted for the EMG recording in the 
second part of the experiment (Fig. 1c).  

B. Feature Extraction 
For signal preprocessing and feature extraction, the 

recorded sEMG signals were firstly filtered by 20-450Hz 
band-pass filter. In order to avoid the impact of transient data, 
we only analysis the data of the intermediated 8 seconds (from 
1 second to 9 second). Using a sliding window with 100ms 
window length and 100ms sliding step, we segmented the 
sEMG signals into 8000 ( (8000/100)windows ×
10	motions × 10	sessions ) epochs in each part of the 
experiment. For each epoch, the TD features [2], which are 
mean absolute value, waveform length, zero crossings and 
slope sign changes, were extracted from the 8 channels of the 
sEMG signals. Hence, in each part of the experiment, we have 
8000 samples with the feature dimension 32 (4	features ×
8	channels). In the following, we denote 8000 samples from 
the first part of the experiment (before electrodes shift) as 
Dataset 1, and 8000 samples from the second part of the 
experiment (after electrodes shift) as Dataset 2. 

C. NMF and LDA 

 
Fig 1.  Flowchart of pattern recognition based on NMF and LDA. 

 
The Flowchart of NMF and LDA used in sEMG pattern 

recognition is shown in Fig. 2. With the TD features in the 
training data, NMF algorithm is performed to get the basis 
matrix 𝑊 and the coefficient matrix 𝐻. Fixing the basis matrix 
𝑊, we can also obtain the coefficient matrix 𝐻’ based on the 
testing data. Then LDA classifier is used for patter recognition. 
In the following, a brief introduction of NMF and LDA is 
given.  

Non-negative Matrix Factorizations is an algorithm use to 
reduce the dimensionality by matrix factorization [7], which is 

Fig 1.  Acquisition schematic of EMG with 8-channel bipolar differential EMG sensor electrodes. 
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applied to extract the cooperative information for Muscle 
Synergy-based Discrimination for Simultaneous Control 
(MSDSC) of dexterous figure movements with high-density 
sEMG [8].  

Training: 
(1) Initialize the matrices 𝑾 and 𝑯 as random nonnegative matrices; 
(2) for 𝒊𝒕𝒆𝒓	 = 	𝟏, 𝟐, … , 𝒍  

   𝑾𝒎𝒌 ← 𝑾𝒎𝒌 O∑
𝑿𝒎𝒊

(𝑾𝑯)𝒎𝒊
𝑯𝒌𝒊

𝑴
𝒊S𝟏 T	 

                 𝑾𝒎𝒌 ←
𝑾𝒎𝒌

𝚺𝒊𝑾𝒊𝒌
	  

                 𝑯𝒌𝒏 ← 𝑯𝒌𝒏 O∑ 𝑾𝒊𝒌
𝑿𝒊𝒏

(𝑾𝑯)𝒊𝒏
𝑵
𝒊S𝟏 T		 

           end 
 
     Testing: 

(1) Fix the basis matrix 𝑾 obtained from training and initialize the 
      matrices 𝑯’ as random nonnegative matrices; 
(2) for 𝒊𝒕𝒆𝒓	 = 	𝟏, 𝟐, … , 𝒍     

                 𝑯𝒌𝒏
′ ← 𝑯𝒌𝒏

′ X∑ 𝑾𝒊𝒌
𝑿𝒊𝒏

O𝑾𝑯′T
𝒊𝒏

𝑵
𝒊S𝟏 Y		 

           end 
Algorithm 1: the original NMF algorithm with the sum constrain on 𝑊.  

Consider the matrix 𝑋 ∈ 𝑅]×^  with all element 
nonnegative, in which 𝑀  is the feature dimension and 𝑁 
denotes the sample size used in NMF. The NMF can linearly 
factorized the matrix 𝑋 into the basis matrix 𝑊 ∈𝑊]×a and 
the coefficient matrix 𝐻 ∈ 𝑅a×^,  

𝑋bc ≈ (𝑊 ∙ 𝐻)bc =f𝑊bg𝐻gc	
a

gSh

 

in which 𝐾 is the intermediate dimension of factorization with 
(N +M) × 𝐾 < 𝑁 ×𝑀 . The original NMF algorithm for 
training and testing can be performed as the following iteration:  

Since the feature dimension 𝑀 = 32 << 𝑁, we set 𝐾 =
31 < ^]

(pqr)
< 𝑀 in our application. The iteration number 𝑙 is 

set to be 400 since we find 𝑙 = 400 can already guarantee the 
converge of the result in practice.  

LDA classifier aims to project the samples in a higher-
dimensional feature space into a lower-dimensional space for 
a good class-separability. For the two-class classifier problem, 
suppose that we have a set of 𝑁  samples with feature 
dimension 𝑀, 𝑁h in the subset 𝐷h with label 𝜔h, and 𝑁v in the 
subset 𝐷v  with label 𝜔v . We have the within-class scatter 
matrix 𝑆x by  

𝑆x =f𝑆y		and		𝑆y = f(𝑥 − 𝜇y)(𝑥 − 𝜇y)},
~∈��

v

ySh

	 

in which 𝜇y =	
h
^�
∑ 𝑥~∈�� , for 𝑖 = 1, 2 . If the prior 

probabilities 𝑃(𝜔y)  are the same for 𝜔h  and 𝜔v , the linear 
discrimination function would be  

𝑔(𝑥) = 𝜔}𝑥 + 𝜔�  
where  

𝜔 = 𝑆x�h(𝜇h − 𝜇v) 

𝜔� = −
1
2
(𝜇h + 𝜇v)}𝑆x�h(𝜇h − 𝜇v). 

If 𝑔(𝑥) > 0 , 𝑥 ∈ 𝜔h , else 𝑥 ∈ 𝜔v . For the multiple 
classification problem, One-versus-One strategy is applied to 

divide the 𝑐-class problem in 𝑐 × (𝑐 − 1)/2 binary problems. 
The classification results come from the majority voting rule.  

D.  SW-NMF method  
Due to electrodes shift, the sample distribution in the 

feature space would be changed. In the SW-NMF algorithm, 
there are mainly three improvement from the original 
NMF+LDA method to handle the change in feature space. 

Training: 
(1) Initialize the matrices 𝑾 and 𝑯 as random nonnegative matrices; 
(2) for 𝒊𝒕𝒆𝒓	 = 	𝟏, 𝟐, … , 𝒍  

   𝑾𝒎𝒌 ← 𝑾𝒎𝒌 O∑
𝑿𝒎𝒊

(𝑾𝑯)𝒎𝒊
𝑯𝒌𝒊

𝑴
𝒊S𝟏 T	 

                 𝑯𝒌𝒏 ← 𝑯𝒌𝒏 O∑ 𝑾𝒊𝒌
𝑿𝒊𝒏

(𝑾𝑯)𝒊𝒏
𝑵
𝒊S𝟏 T	 

                 𝑯𝒌𝒏 ←
𝑯𝒌𝒏

∑ 𝑯𝒌𝒊𝒏
𝒊�𝟏

	 

           end 
 
     Testing: 

(1) Fix the basis matrix 𝑾 obtained from training and initialize the 
      matrices 𝑯’ as random nonnegative matrices; 
(2) for 𝒊𝒕𝒆𝒓	 = 	𝟏, 𝟐, … , 𝒍     

                 𝑯𝒌𝒏
′ ← 𝑯𝒌𝒏

′ X∑ 𝑾𝒊𝒌
𝑿𝒊𝒏

O𝑾𝑯′T
𝒊𝒏

𝑵
𝒊S𝟏 Y	 

                 𝑯𝒌𝒏
� ← 𝑯𝒌𝒏

�

∑ 𝑯𝒌𝒊
�𝒏

𝒊�𝟏
	 

           end 
Algorithm 2: the NMF algorithm in SW-NMF with the sum constrain on 𝐻. 

Firstly, instead of 𝑊, we place the sum constraint on the 
coefficient matrix 𝐻. As comment by Daniel et. al., the sum 
constraint is a convenient way of eliminating the degeneracy 
associated with the invariance of WH in the iteration. But the 
sum constraint on the coefficient matrix 𝐻 can be treated as a 
normalization among the samples, which is better for 
decreasing the change in feature space caused by electrodes 
shift. Hence the NMF algorithm in the SW-NMF method is as 
follows, 

 
Fig 2.  Illustration of the sliding window strategy in SW-NMF. 

Secondly, a sliding window strategy is applied in the SW-
NMF. With the sum constrain on basis matrix, the coefficient 
for each sample in testing only depends on the testing sample 
itself. However, with the sum constrain on coefficient matrix, 
the coefficient for each testing sample in 𝐻’ also depends on 
the other samples in the testing. For online sEMG patterns 
recognition, the sliding window is used in SW-NMF methods, 
in which the coefficient for the testing sample in 𝐻’ is obtained 
with a certain number of previous samples together (Fig. 3), 
and the window length is set to be 800 in practice for a tradeoff 
between the performance and the computational complexity. 
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At last, Self-Enhanced LDA (SE-LDA), the LDA 
algorithm with self-enhanced strategy that can compensate the 
slow changes in the features space of myoelectric signals in 
the day [9], is applied in the LDA classifier updating to track 
the feature space changing by electrodes shift. Once a testing 
sample 𝑥� is predicted as class 𝑖, the mean vector  𝜇y and the 
scatter matrix 𝑆y of the class 𝑖 is updated as follows,   

𝜇y� =
𝑛y𝜇y
𝑛y + 1

+
𝑥�

𝑛y + 1
 

S�� = 𝑆� +
𝑛y

𝑛y + 1
(𝑥� − 𝜇y)(𝑥� − 𝜇y)}  

in which 𝑛y is the number of samples in class 𝑖. 

II. RESULTS 

A. The Influence of Electrodes Shift 
 As is shown in Fig.4, without electrodes shift, the average 
accuracy based on TD feature is 98.74±1.18% for 10 motions, 
but it decreases to 55.04±11.85% when the electrode shift 
occurs. The existing methods, which are robust to the 
electrodes shift with the high density sEMG, do not work well 
in the low-density environment, as GLCM 25.63±6.99%, 
Variog 28.04±9.54%, CSP 43.61±10.28%.  
 

 
Fig 3.  The comparison of the classification accuracy with different methods 
for electrodes shift. 

B. The Result for SW-NMF 
Based on the original NMF algorithm (Algorithm 1) with 

the sum constrain on the basis matrix 𝑊, the classification 
accuracy is 43.44+9.93% (not shown in Fig. 4), which is even 
lower than the classical TD methods with 55.04±11.85%.  In 
the SW-NMF algorithm, we placed the sum constrain on the 
coefficient matrix 𝐻  accompany with the sliding window 
strategy, the classification accuracy is improved to 
73.51+10.79% (SW-NMF without SE-LDA in Fig.4), which 
is significantly better than TD method (𝑝 = 6.96 × 10�h�).  
Furthermore, with use of SE-LDA in SW-NMF, the 
classification accuracy can be further improved to 
79.29± 14.49% (𝑝 = 1.18 × 10�� as compared with SW-
NMF without SE-LDA), which is also significantly better than 
the other NMF based method MSDSC 66.46±12.71% with 
𝑝 = 5.54 × 10��. 

Fig. 5 illustrates the change of the classification accuracy 
with the increasing number of testing samples. It is shown that 
the accuracy keeps unchanged for the TD and MSDSC 
algorithms. But with the sliding window strategy, the accuracy 

increased in the first 800 samples for SW-NMF algorithm, in 
which 800 is the window length.  

 
Fig 4. The change of the classification accuracy with the increasing number 
of testing samples.	The results are averaged from 25 subjects and smoothed 
for every 101 samples. 

III. CONCLUSION 

Low-density sEMG, for its low price and easy to wear, is 
more practical than high-density sEMG for prosthetic control 
in daily use. However, the problem of electrodes shift 
influences classify accuracy greatly, and the existing robust 
algorithms for electrodes shift in the high-density electrode 
environment have limited effect in the low-density electrode 
environment. Hence the SW-NMF algorithm is proposed for 
the robustness low-density sEMG signals decoding  
against electrodes shift. As a result, the classification accuracy 
with SW-NMF algorithm is effectively improved as compared 
with the existing methods. 
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