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Abstract
Background Medication is the main approach for early treatment of herpes zoster (HZ), but it could be
ineffective in some patients. It is highly desired to predict the medication responses in order to control the
degree of pain for HZ patients. The present study is aimed to elucidate the relationship between
medication outcome and neural activity using electroencephalography (EEG) and to establish a machine
learning model for early prediction of the medication responses from EEG. Methods We acquired and
analyzed eye-closed resting-state EEG data 1-2 days after medication from 70 HZ patients with different
drug treatment outcomes (measured 5-6 days after medicaiton): 45 medication-sensitive pain (MSP)
patients and 25 medication-resistant pain (MRP) patients. EEG power spectral entropy (PSE) of each
frequency band was compared at each channel between MSP and MRP patients, and those features
showing sigi�cant difference between two groups were used to predict medication outcome with different
machine learning methods. Results MSP patients showed signi�cantly weaker beta-band PSE in the
central-parietal regions than MRP patients. Based on these EEG PSE features and a k-nearest neighbors
(k-NN) classi�er, we can predicate the medication outcome with 80% ± 11.7% accuracy, 82.5% ± 14.7%
sensitivity, 77.7% ± 27.3% speci�city and an AUC of 0.85. Conclusion EEG beta-band PSE in the central-
parietal region is predictive of the effectiveness of drug treatment on HZ patients, and it could potentially
be used for early pain management and therapeutic prognosis.

Background
Herpes zoster (HZ) is a rash that spreads in the skin with pain and blistering [1]. HZ is caused by the
activation of the varicella zoster virus (VZV), which persists in the ganglion after primary infection. As the
age increases and the immunosuppression decreases, VZV reactivates and travels along the sensory
nerves to the skin, causing distinctive prodromal pain followed by eruption of the rash [1,2]. HZ is the most
common neurological disorder in many countries, such as the USA, Canada and UK, and temporal
increases in the incidence of HZ have also been reported [3-8]. HZ is often accompanied with
psychological problems (such as anxiety and depression) and many serious complications, all of which
seriously affect the patients’ quality of the patients’ life [9,10].

Early intervention of HZ and HZ-related complications, such as postherpetic neuralgia (PHN), is of great
clinical importance, because the age is an important risk factor for developing HZ (i.e., the incidence of
HZ and HZ-related complications is increased with the age) [11]. To date, early intervention for HZ is
generally achieved by medication, including analgesics and antivirals [1]. Drug treatment can decrease the
duration and severity of the rash and can also relieve the pain associated with HZ. Evidence has shown
that antiviral therapy during the acute phase could effectively prevent PHN [12-14]. However, because of
remarkable individual difference among patients, drug treatment is not always effective for each patient.
In addition, the side-effects of some drugs may be serious when they are used in the long term. If the
effect of drug treatment can be accurately predicted in an early stage, patients can get optimal and
individualized drug treatment and non-responders can avoid staying on medications and the condition of
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pain for a prolonged period of time. Therefore, it is highly desired to precisely predict the outcome of drug
treatment in order to achieve effective and precise treatments to control the degree of pain for HZ
patients.

The effectiveness of medication on pain is generally evaluated as the degree of decrease in patients’
subjective pain ratings after treatment. Although self-report is still the golden-standard for pain
assessment in clinical practice, a variety of physiological correlates of pain have been found in past
decades [15-17]. Particularly, a huge body of studies based on electroencephalography (EEG) have shown
that pain perception is closely associated with certain types of brain rhythmical activities [18-20]. So, EEG
has been widely used to study neuropathic pain and chronic pain [21-23], with the aim to discover neural
signatures of pain diseases for objective assessment of pain level or early diagnosis of these pain
diseases. An early study showed that patients with severe forms of neurogenic pain exhibited higher EEG
spectral power over the frequency range of 2-25Hz [18]. Another study showed that the average peak EEG
alpha frequency of chronic pain patients was lowered than that of healthy controls [24]. By using
magnetoencephalography (MEG), which is the measurement of the brain's magnetic �eld and is similar to
EEG in terms of the signal characteristics and analysis methods, researchers found �bromyalgia (FM)
patients had power increases in theta, beta and gamma bands, along with a slowing of the dominant
alpha peak [25]. Recently, it has been reported that FM patients augmented theta activity in prefrontal and
anterior cingulate cortices relative to healthy controls [21].

However, most previous related studies used EEG to identify abnormal brain activity patterns of pain
patients, but there are few studies concerning the use of EEG as a possible neural signature of drug
treatment on pain. Actually, as revealed by many studies of other diseases, such as depression and
epilepticus, EEG plays an important role as a neural correlate of effectiveness of drug treatment [26-28]. For
example, a recent study explored EEG spectral power of patients with treatment-resistant depression, and
found certain EEG features are correlated with the e�cacy of ketamine treatment and could be used to
predict drug effects [29]. These studies inspired us to search for EEG-based predicators of medications for
HZ patients.

In the present study, we hypothesize that the medication effects on pain could be represented by EEG
rhythmic features and aim to explore the relationship between EEG and drug treatment effects on HZ. To
this end, we recorded EEG activities of HZ patients 1-2 days after they took medication. To avoid
uncomfortableness of patients and long operation time, we used a new dry-electrode EEG device instead
of the traditional EEG devices that need conductive gel. Then, we compared EEG spectral features
between responders and non-responders to identify treatment outcome-related EEG features. Further,
based on the identi�ed treatment outcome-related EEG features, we used various machine learning
models to predict the effectiveness of drug treatment.

Methods
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Participants

All patients were recruited from Department of Pain Medicine and Shenzhen Municipal Key Laboratory
for Pain Medicine, the A�liated Shenzhen Sixth Hospital of Guangdong Medical University, from January
2017 to July 2018. All patients have written informed consent and informed about experimental content.
All study procedures were approved by Human Research Ethics Committee of the A�liated Shenzhen
Sixth Hospital of Guangdong Medical University.

The inclusion criteria for HZ patients were: (1) age ranged from 31 to 90 years; (2) the duration of HZ was
less than 3 months. Exclusion criteria included: (1) had acute and chronic pain caused by other disease
such as migraine headache, �bromyalgia; (2) had epilepsy or Alzheimer’s disease that may affect the
nervous system. All the patients were administrated the standardized medication protocol by experienced
physicians for a week. These drugs included gabapentin, pregabalin, oxycodone/acetaminophen,
tramadol and amitriptyline, and the dosage ranged from 75mg to 450mg. The pain intensity was
evaluated by using Visual Analogue Scale (VAS). For each patient, we recorded his/her VAS scores for
three times: (1) VASADM was measured when the patient was admitted to the hospital (1-2 days before
medication), (2) VASEEG was measured right before EEG acquisition 3 days after admission (1-2 days
after medication), (3) VASDIS was measured when the patient was discriminated as a medication-
sensitive pain (MSP) patient (i.e., responder) or a medication-resistant pain (MRP) patient (non-
responder) one week after admission and 5-6 days after medication. A patient was de�ned as having
MSP, if his/her VASDIS was less than half of VASADM, VASDIS was less than 3. Otherwise, the patient was
de�ned as having MRP. In addition, if the doctor thought the medication failed to improve the patient’s
quality of life, the patient was also de�ned as having MRP regardless of the pain ratings.

EEG data acquisition

EEG acquisition was performed in a quiet and bright room. Patients were seated in a comfortable chair
and were asked to relax their muscles and close their eyes. We used a dry-electrode mobile wireless EEG
system, Brain Product LiveAmp (Brain Product GmbH, Munich, Germany), to acquire EEG signals. This
LiveAmp system was used because it can save operational time and reduce the uncomfortableness of
patients. Six-minute resting-state EEG data were recorded using 32 scalp electrodes placed according to
the International 10-20 system. The sampling rate was 500Hz and electrode impedances were kept below
20 kΩ.

EEG data analysis

The EEG data were preprocessed using Letswave (https://github.com/NOCIONS/letswave7), a free EEG
signal-processing toolbox under the MATLAB (version R2017a, MathWorks) environment. First, apparent
contaminations were manually removed by visual inspection. Then, data at bad channels were
interpolated from data at adjacent channels. Next, EEG signals were re-referenced to a common reference,
which is the average of EEG signals at all electrodes [30]. Continuous EEG data were then bandpass



Page 5/15

�ltered between 0.1 and 30Hz. EEG data contaminated by eye-blinks and muscle artifacts were corrected
using independent component analysis [31-33]. Independent components corresponding to eye blinks and
muscle artifacts were rejected manually.

After preprocessing, clean EEG data were transformed into the frequency domain by the Welch’s method
(with 1024-point FFT, 50% overlapping, and Hamming windows). Then we computed the power spectral
entropy (PSE) [34], which is the information entropy of power spectrum, at four frequency bands: delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12.5-30 Hz). PSE is a commonly used EEG feature
and is calculated as , where n is the number of frequency points within a frequency band of interest and
 is the EEG power at the ith (i = 1, 2, …, n) frequency point. PSE quanti�es the amount of information in the
power spectrum of a given signal, and it can provide a more complete description about the signal’s
spectral properties than some other spectral features, such as absolute power, relative power, and peak
frequency.

Next, we compared PSE of four frequency bands (theta, delta, alpha and beta) at each channel between
MSP and MRP patients. PSE values that are signi�cantly different between MSP and MRP patients within
speci�c frequency bands and at speci�c channels were used as features to predict drug effects in a
machine learning model.

Results
Demographic and behavioral results

Eighty HZ patients were recruited in this study, and ten of them were discarded because their EEG signals
were heavily contaminated. Remaining 70 HZ patients were grouped according to drug treatments: 45
were MSP and 25 were MRP. The demographic and clinical characteristics of all 70 patients are presented
in Table 1, which listed the age, gender, education and clinical pro�les (disease duration, VAS scores, and
dosage of drugs). The two HZ groups did not differ signi�cantly in gender, age and education. MRP
patients showed signi�cantly higher illness duration than MSP patients, and thus duration was regressed
out in all group-level analyses. There was no signi�cant difference of VAS scores in different periods
between MSP and MRP patients.

Comparison of EEG between MSP and MRP

Controlling for age, gender and education, we compared PSE within different frequency bands at all
channels between MSP and MRP patients using two-sample rank sum test. As shown in Figure 1, we
found signi�cant group differences over electrodes of central-parietal regions (including CP1, CP2 and
Pz) in the beta band. No differences were observed in the PSE within other frequency bands between
MSP and MRP patients.

The mean and SD of PSE values at CP1, CP2 and Pz in the beta band were illustrated in Figure 2.
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Performances of Prediction Models

The classi�cation performances of four prediction models, LDA, k-NN and SVM, and RF, are summarized
in Table 2. The best performance was achieved by k-NN, which had 80% ± 11.7% accuracy, 82.5% ± 14.7%
sensitivity, 77.7% ± 27.3% speci�city and an AUC of 0.85. Figure 3 shows the Receiver Operating
Characteristic curve (ROC) of the predictor. Importantly, if we used VASEEG (i.e., the pain ratings measured
right before EEG acquisition) to predict the medication effects (with the criteria that, if a patient’s VASEEG

was less than half of VASADM or VASEEG was less than 3, the patient was de�ned as MSP), we got the
results: accuracy = 58.6%, sensitivity = 69.1%, and speci�city = 42.9%. By comparing the prediction
results using EEG PSE features and pain ratings, which were acquired at the same day, we can see that
PSE features can achieve much higher accuracy, sensitivity, and speci�city than pain ratings.

Discussion
In this study, we compared EEG power feature (PSE) in HZ patients with different effects of drug
treatment. We observed that the beta-band PSE at the central-parietal region was signi�cantly different
between MSP and MRP patients, implying that EEG beta rhythm could be a possible neural correlate of
effective drug treatment. More importantly, our study used machine learning models to classify MSP and
MRP patients with 80% ± 11.7% accuracy, 82.5% ± 14.7% sensitivity, 77.7% ± 27.3% speci�city and 0.85
AUC, suggesting EEG has the potential to predict the drug treatment effect on HZ patients in an early
stage.

EEG as a Signature of Pain Treatment

EEG has been widely used in clinical pain research to �nd out EEG activity pattern of subjective pain
experience. For example, some studies have shown that pain patients displayed enhanced power spectra
at frontal and parieto-occipital regions [22,24,36]. According to these results, EEG spectral power could be
used for diagnosis of pain disease and for monitoring the postoperative development of patients. The
present study is different from previous EEG-based clinical pain studies in two aspects. First, this study is
aimed to reveal EEG features that are related to different medication effects on HZ-associated pain, not to
identify EEG patterns that are different between pain patients and healthy people, patients of different
pain diseases, or patients at different stage of a pain disease. Second, we proposed to used PSE, instead
of the conventional power spectrum, as EEG features [37]. Literature has shown that the entropy-type
parameters have a better ability to identify the complexity of EEG than spectral power [34,38]. For example,
some studies reported that PSE was a sensitive parameter for EEG of imaginary hand movements, and
was an effective index of focal ischemic cerebral injure [34,39]. We actually also compared EEG power and
other spectral features between two MSP and MRP patients but did not �nd any difference.

Despite the fact that medication is the most common intervention for many pain-related diseases,
including HZ, our knowledge of medication effects on pain and on brain activity remains limited. Many
EEG studies were aimed to identify the relationship between EEG and clinical outcomes [41,42], and they
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indicated that the pre- or post-treatment EEG changes could be used to evaluate drug treatment
outcomes. For example, some studies have demonstrated that drugs, such as pregabalin, in�uenced EEG
characteristics [43,44], suggesting that the changes of EEG activity are predictive of the drug effectiveness.
A study explored the in�uence of gabapentin on healthy people’s EEG activity showed that the peak
frequency of alpha rhythm in the posterior region signi�cantly decreases between healthy volunteer [45].
More recently, a paper reviewed EEG �ndings in analgesics and found that opioids could in�uence delta-
band activity [46]. These studies suggested that EEG could re�ect the overall altered neural activity
including depression of behavior and mood in patients, which may predict the clinical outcome of drug
treatment.

Our study found that, MSP patients showed signi�cantly lower PSE in the beta band than MRP patients,
which implies that if medication is effctive, the information (or the disorder/randomness) of the brain
activity in the beta-band is suppressed. In another word, medication can restrain the beta-band EEG
activity, if it is effective. This result is partly consistent with several similar studies which observed high
frequency beta-band oscillations associated with pain processing [18,20,23,25]. An experimental pain study
also showed that beta-band EEG activity in frontal/parietal regions is related to conscious somatic
perception [40]. The results of our study implied that beta oscillatory activity in central-parietal regions
may have an important role in the perception and processing of pain.

Using EEG to Predict Drug Effectiveness

Early prediction of drug treatment would aid in reducing the risk of side effects from ine�cient treatment
for patients. However, there is no study concerning the use of EEG as a predictor to drug treatment on
pain diseases. According to our results, EEG features recorded several days before discrimination showed
different patterns between MSP and MRP patients. So, the signi�cant different features between MSP
and MRP patients can be treated as characteristic inputs to build a classi�cation (prediction) model to
distinguish the effects of drug treatment. Our study provided a classi�cation model with 80% ± 11.7%
accuracy, 82.5% ± 14.7% sensitivity, 77.7% ± 27.3% speci�city and 0.85 AUC. This EEG prediction model
may help doctors decide whether drug treatment is useful or not for HZ patients in an earlier stage.

It is important to mention that, EEG data we used in the study were recorded 1-2 days after drug treatment
and 5-6 days before discrimination into MSP and MRP patients. By using pain ratings measured right
before EEG acquisition, it was also possible to predict the medication responses. But our results in Table
2 showed that, using pain ratings VASEEG (which was measured 1-2 days after medication and 5-6 days
before discrimination) to predict medication response, the accuracy, sensitivity, and speci�city were all
lower than the prediction results from EEG features. The possible reason is that, pain ratings were
subjective and could be biased by placebo effects in medication. Hence, the EEG PSE feature we found in
the study may be more objective, making it suitable for building a prediction model.

Wireless Dry-electrode EEG
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In clinical practice, the acquisition of EEG is normally not convenient because it needs a long preparation
time (for example, to inject conductive gel into electrodes) and the whole system (including the ampli�er,
cables, and computers) is cumbersome. Therefore, in this study we used a new wireless and dry-electrode
EEG system, LiveAmp 32-channel (Brain Product GmbH, Munich, Germany) to acquire patients’ EEG data.
The wireless and portable EEG device with dry-contact sensors could signi�cantly reduce the time of
preparatory work. We compared the preparation time of the wireless dry-electrode system and a
conventional wet-electrode EEG system, BrainAmp 32-channel (Brain Product GmbH, Munich, Germany),
on 3 normal subjects and found the preparation time of LiveAmp is around 15-20 minutes while the
average preparation time of BrainAmp is around 30-50 minutes. Importantly, patients did not report any
feeling of uncomfortableness when wearing the wireless dry-electrode cap. Recently, a study
systematically compared the wet-electrode wired EEG device and dry-electrode wireless EEG device in
many aspects, and the results indicated that dry-electrode EEG device can effectively record EEG for
research and clinical purposes [47]. So, dry-electrode wireless EEG devices are a promising tool for the EEG
experiment on HZ patients.

Limitations and Future Work

The present study still has some limitations. First, the HZ patients took different medications during
hospitalization. Different medications interaction or the use of a single medication may affect the EEG
changes, which is a confounding factor of our study. Second, the repeatability and reliability of the
identi�ed EEG correlates of drug effectiveness should be validated using repeatedly measured data from
the same cohort and multi-center data from different cohorts. Third, the neural mechanism underlying our
�nding remains unclear. It may be necessary to record multimodality data (such as MRI, fMRI,
biochemical and genomic data) on a large sample to do a more comprehensive investigation of the
neural mechanism of drug effectiveness on HZ patients. Finally, the sensitivity and speci�city of this
predict model are still not su�cient for clinical diagnosis, and we need to further improve the technique
and to validate the results in a rigorous way.

Conclusions
In conclusion, the present study found that beta-band EEG power entropy at central-parietal region is
correlated with the effectiveness of drug treatment on HZ patients and this EEG feature could potentially
be used for early prediction of the drug effectiveness on HZ patients.

Declarations
Ethics approval and consent to participate

All patients have written informed consent and informed about experimental content. All study
procedures were approved by Human Research Ethics Committee of the A�liated Shenzhen Sixth
Hospital of Guangdong Medical University.



Page 9/15

Consent for publication

Not applicable.

Availability of data and material

The data that support the �ndings of this study are available from the corresponding author upon
reasonable request.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

YL, JH and LL designed the study and wrote the protocol. JL and MW performed data collection and
management. MW performed the data analysis. MW wrote the �rst draft of the manuscript and critical
revisions were contributed by ZZ and LX. All authors contributed to and have approved the �nal
manuscript.

Abbreviations

EEG, electroencephalography; HZ, herpes zoster; VZV, varicella zoster virus; PHN, postherpetic neuralgia;
MEG, magnetoencephalography; FM, �bromyalgia; VAS, visual analogue scale; MSP, medication-sensitive
pain; MRP, medication-resistant pain; PSE, power spectral entropy; LDA, linear discriminant analysis; SVM,
support vector machine; RF, random forest; k-NN, k-nearest neighbors; ROC, receive operating
characteristic curve; AUC, the area under the receive operating characteristic curve; FDR, false discovery
rate.

Acknowledgments

This study was funded by National Natural Science Foundation of China (Grant No. 81871443) and the
Science, Technology and Innovation Commission of Shenzhen Municipality Technology Fund (Grant No.
JCYJ20170818093322718). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

References
1. Sampathkumar P, Drage LA, Martin DP. Herpes zoster (shingles) and postherpetic neuralgia. Mayo

Clin Proc. 2009;84(3):274-280.

2. Cohen JI. Clinical practice: Herpes zoster. N Engl J Med. 2013;369(3):255-63.

3. Donahue JG, Choo PW, Manson JE, Platt R. The incidence of herpes zoster. Arch Intern Med.
1995;155(15):1605-1609.



Page 10/15

4. Galil K, Choo PW, Donahue JG, Platt R. The sequelae of herpes zoster. Arch Intern Med.
1997;157(11):1209-1213.

5. Leung J, Harpaz R, Molinari NA, Jumaan A, Zhou F. Herpes zoster incidence among insured persons
in the United States, 1993-2006: evaluation of impact of varicella vaccination. Clin Infect Dis.
2011;52(3):332-340.

�. Hales CM, Harpaz R, Joesoef MR, Bialek SR. Examination of links between herpes zoster incidence
and childhood varicella vaccination. Ann Intern Med. 2013;159(11):739-745.

7. Wu PY, Wu HD, Chou TC, Sung FC. Varicella vaccination alters the chronological trends of herpes
zoster and varicella. PLoS One. 2013;8(10): e77709.

�. Kawai K, Gebremeskel BG, Acosta CJ. Systematic review of incidence and complications of herpes
zoster: towards a global perspective. BMJ Open. 2014;4(6): e004833.

9. Breuer J, Pacou M, Gautier A, Brown MM. Herpes zoster as a risk factor for stroke and TIA: a
retrospective cohort study in the UK. Neurology. 2018;83(2): e27-33.

10. Lukas K, Edte A, Bertrand I. The impact of herpes zoster and post-herpetic neuralgia on quality of life:
patient-reported outcomes in six European countries. Z Gesundh Wiss. 2012;20(4) :441-451.

11. Reynolds MA, Chaves SS, Harpaz R, Lopez AS, Seward JF. The impact of the varicella vaccination
program on herpes zoster epidemiology in the United States: a review. J Infect Dis. 2008;197 Suppl 2:
S224-227.

12. Gan EY, Tian EA, Tey HL. Management of herpes zoster and post-herpetic neuralgia. Am J Clin
Dermatol. 2013;14(2): 77–85.

13. Chen N, Li Q, Yang J, Zhou M, Zhou D, He L. Antiviral treatment for preventing postherpetic neuralgia.
Cochrane Database Syst Rev. 2014(2): CD006866.

14. Crosbie, B, Lucey, S, Tilson, L, Domegan L, Kieran J. Acute herpes zoster and post herpetic neuralgia
in primary care: a study of diagnosis, treatment and cost. Eur J Clin Microbiol Infect Dis.
2018(37):627.

15. Chu Y, Zhao X, Han J, Su Y. Physiological Signal-Based Method for Measurement of Pain Intensity.
Front Neurosci. 2017(11):279.

1�. Jiang M, Mieronkoski R, Syrjälä E, et al. Acute pain intensity monitoring with the classi�cation of
multiple physiological parameters. J Clin Monit Comput. 2018 Jun 26.

17. Vuckovic A, Gallardo VJF, Jarjees M, Fraser M, Purcell M. Prediction of central neuropathic pain in
spinal cord injury based on EEG classi�er. Clin Neurophysiol. 2018;129(8):1605-1617.

1�. Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D. Increased EEG power and slowed
dominant frequency in patients with neurogenic pain. Brain. 2006;129(Pt 1):55–64.

19. Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: A
neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl
Acad Sci USA. 1999;96(26):15222–15227.



Page 11/15

20. Olesen SS, Hansen TM, Graversen C, Steimle K, Wilder-Smith OH, Drewes AM. Slowed EEG
rhythmicity in patients with chronic pancreatitis: evidence of abnormal cerebral pain processing? Eur
J of Gastroenterol Hepatol. 2011;23(5):418–424.

21. Fallon N, Chiu Y, Nurmikko T, Stancak A. Altered theta oscillations in resting EEG of �bromyalgia
syndrome patients. Eur J Pain. 2018;22(1):49-57.

22. Jensen MP, Sherlin LH, Gertz KJ, Braden AL, Kupper A, Gianas A, Howe JD, Hakimian S. Brain EEG
activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal
Cord. 2013;51(1):55-58.

23. Boord P, Siddall PJ, Tran Y, Herbert D, Middleton J, Craig A. Electroencephalographic slowing and
reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord. 2008;46(2):118-123.

24. de Vries M, Wilder-Smith OH, Jongsma ML, et al.  Altered resting state EEG in chronic pancreatitis
patients: toward a marker for chronic pain. J Pain Res. 2016(6):815-824.

25. Lim M, Kim JS, Kim DJ, Chung CK. Increased low- and high-frequency oscillatory activity in the
prefrontal cortex of �bromyalgia patients. Font Hum Neurosci. 2016(10):111.

2�. Basha MM, Alqallaf A, Shah AK. Drug-induced EEG pattern predicts effectiveness of ketamine in
treating refractory status epilepticus. Epilepsia. 2015;56(4): e44-48.

27. Tian Y, Yang L, Xu, W, e al. Predictors for drug effects with brain disease: Shed new light from EEG
parameters to brain connectomics. Eur J Pharm Sci. 2017(110):26-36.

2�. Colic S, Wither RG, Lang M, Zhang L, Eubanks JH, Bardakjian BL. Prediction of antiepileptic drug
treatment outcomes using machine learning. J Neural Eng. 2017;14(1): 016002.

29. Cao Z, Lin C, Ding W, Chen M, Li C, Su T. Identifying Ketamine Responses in Treatment-Resistant
Depression Using a Wearable Forehead EEG. IEEE Trans Biomed Eng, 2018; doi:
10.1109/TBME.2018.2877651.

30. Dien J. Issues in the application of the average reference: review, critiques, and recommendations.
Behav Res Methods Instrum Comput. 1998;30(1):34-43.

31. Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related
brain responses into independent components. Proc Natl Acad Sci USA. 1997;94(20):10979-10984.

32. Jung TP, Makeig S, Wester�eld M, Townsend J, Courchesne E, Sejnowski TJ. Analysis and
visualization of single-trial event-related potentials. Hum Brain Mapp. 2001(14):166–185.

33. Olbrich S, Jödicke J, Sander C, Himmerich H, Hegerl U. ICA-based muscle artefact correction of EEG
data: what is muscle and what is brain? Comment on McMenamin et al. Neuroimage. 2011;54(1):1-
3.

34. Zhang AH, Yang B, Huang L. Feature extraction of EEG signals using power spectral entropy.
International Conference on Bio-Medical Engineering and Informatics; Sanya, 2008: pp.435-439.

35. Kim KI, van de Wiel MA. Effects of dependence in high-dimensional multiple testing problems. BMC
Bioinformatics. 2008(9):114.



Page 12/15

3�. Sarnthein J, Jeanmonod D. High thalamocortical theta coherence in patients with neurogenic pain.
Neuroimage. 2008;39(4):1910-1917.

37. Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J
Physiol. 1994;266(4 Pt 2): H1643-1656.

3�. Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW. Application of entropies for automated
diagnosis of epilepsy using EEG signals: A review. Knowl-Based Syst. 2015(88): pp85-96.

39. Wu H, Zhang H, Zheng C, Kong J. Application of power spectral entropy to the noninvasive detection
of focal ischemic cerebral injury. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003;20(2):229-232.

40. Desmedt JE, Tomberg C. Transient phase-locking of 40 Hz electrical oscillations in prefrontal and
parietal human brain re�ects the process of conscious somatic perception. Nurosci Lett. 1994;168(1-
2):126-129.

41. Iosifescu DV, Lapidus K. The role of neuroimaging and electrophysiology (EEG) as predictors of
treatment response in major depressive disorder. Clin Neuropsychiatry. 2011(8):47–60.

42. Hunter AM, Cook IA, Leuchter AF. The promise of the quantitative electroencephalogram as a
predictor of antidepressant treatment outcomes in major depressive disorder. Psychiatr Clin North
Am. 2007;30(1):105-124.

43. Graversen C, Olesen SS, Olesen AE, et al. The analgesic effect of pregabalin in patients with chronic
pain is re�ected by changes in pharmaco-EEG spectral indices. Br J Clin Pharmacol.2012;73(3):363-
372.

44. Saletu B, Grunberger J, Anderer P, Linzmayer L, Konig P. On the cerebro-protective effects of
caroverine, a calcium-channel blocker and antiglutamatergic drug: double-blind, placebo-controlled,
EEG mapping and psychometric studies under hypoxia. Br J Clin Pharmacol. 1996;41(2):89-99.

45. Salinsky MC, Binder LM, Oken BS, Storzbach D, Aron CR, Dodrill CB. Effects of gabapentin and
carbamazepine on the EEG and cognition in healthy volunteers. Epilepsia. 2002;43(5):482-490.

4�. Malver LP, Brokjaer A, Staahl C, Graversen C, Andresen T, Drewes AM. Electroencephalography and
analgesics. Br J Clin Pharmacol. 2014;77(1):72-95.

47. Kam JWY, Gri�n S, Shen A, et al. Systematic comparison between a wireless EEG system with dry
electrodes and a wired EEG system with wet electrodes. Neuroimage. 2018(184):119-129.

Tables
Table 1 Demographic characteristics of the herpes zoster (HZ) patients in this study.
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  All MSP MRP p-value

No. of subjects (male/female) 80 (41/39) 45 (25/20) 25 (11/14) 0.354 a

Age, years, mean (SD) 61.6 (12.9) 61.0 (11.8) 65.5 (8.7) 0.097 b

Education, years, mean (SD) 8.8 (3.9) 8.9 (4.2) 8.5 (3.5) 0.956 c

Duration of illness, days, mean (SD)  19.8 (19.2) 14.6 (18.4) 29.2 (19.0) <0.001*c

VASADM, mean (SD)  7.2 (1.5) 7.1 (1.6) 7.6 (1.3) 0.149 c

VASEEG, mean (SD) 3.6 (1.7) 3.3 (1.5) 4.2 (1.8) 0.062 c

VASDIS, mean (SD) 4.1 (2.3) 2.7 (1.4) 6.6 (1.4) <0.001*c

Notes: a: Indicates P-values for Pearson Chi-square test

b: Indicates P values for independent two-sample t-test

c: Indicates P-values for independent two-sample Mann-Whitney U test

 

Table 2 Performances of machine learning models using EEG PSE features to discriminate MSP and MRP patients.

Predictor Performance, mean ± SD (%) AUC

Accuracy Sensitivity Speci�city

LDA 71.4% ± 7.1% 88.2% ± 12.3% 34.0% ± 25.9% 0.67

k-NN 80.0% ± 11.7% 82.5% ± 14.7% 77.7% ± 27.3% 0.85

SVM 77.1% ± 6.0% 88.2% ± 12.1% 55.6% ± 13.0% 0.76

RF 67.1% ± 6.4% 81.6% ± 11.2% 42.7% ± 23.0% 0.59

VASEEG* 58.6% 69.1% 42.9% N/A

 Notes: * For comparison, we also used VASEEG (i.e., the pain ratings measured right before EEG acquisition) to predict the

medication effects, and the criteria was, if a patient’s VASEEG was less than half of VASADM or VASEEG was less than 3, the patient

was de�ned as MSP.

Abbreviations: LDA: Linear Discriminant Analysis; k-NN: k-nearest neighbors with k=5; SVM: Support Vector Machine; RF: Random

Forest; AUC: Area Under ROC Curve.

Figures
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Figure 1

Comparison of PSE between MSP and MRP patients. Channels with signi�cant PSE differences (CP1,
CP2, Pz) are indicated by white circles (p<0.05, FDR-corrected). The topographical distribution of z-value
(two-sample rank sum test) in the beta band is shown in the right.

Figure 2

Comparison of PSE at CP1, CP2 and Pz in beta band between MSP and MRP patients.
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Figure 3

Receiver Operating Characteristic (ROC) curves of four classi�ers.


