
  

Abstract— Pain is a subjective experience and clinicians need 

to treat patients with accurate pain levels. EEG has emerged as 

a useful tool for objective pain assessment, but due to the low 

signal-to-noise ratio of pain-related EEG signals, the prediction 

accuracy of EEG-based pain prediction models is still 

unsatisfactory. In this paper, we proposed an autoencoder model 

based on convolutional neural networks for feature extraction of 

pain-related EEG signals. More precisely, we used EEGNet to 

build an autoencoder model to extract a small set of features 

from high-density pain-evoked EEG potentials and then 

establish a machine learning models to predict pain levels (high 

pain vs. low pain) from extracted features. Experimental results 

show that the new autoencoder-based approach can effectively 

identify pain-related features and can achieve better 

classification results than conventional methods. 

 
Index Terms— EEG, pain, deep learning, autoencoder, laser-

evoked potentials 

 

I. INTRODUCTION 

Pain is a subjective feeling, and self-report is the gold 
standard to assess pain [1]. Clinically, patients often rely on a 
pain scale (for example, “0” means no pain and “10” means 
unbearable pain) to communicate their degree of pain with 
doctors. However, self-report is subjective and could lead to 
some serious clinical problems. For example, some patients 
(such as dementia patients, infants, and patients with severe 
coma) are not able to report their pain and some others may 
deliberately provide false pain scores [2]. So, it is necessary to 
develop new objective and reliable pain assessment tools for 
accurate prediction of pain. 

Various functional brain imaging techniques, such as 
electroencephalogram (EEG) and functional magnetic 
resonance imaging (fMRI), have been widely applied to study 
the neural mechanisms of pain and to develop objective pain 
assessment tools [3-5]. Given the high time resolution and low 
cost of EEG, it is more common to develop an EEG-based pain 
prediction model [6, 7]. Normally, such pain prediction 
models are based on EEG potentials evoked by pain 
stimulation. For example, in laser-evoked pain experiments, a 
set of pain-related features can be extracted from laser-evoked 
potentials (LEP), such as N2 (180 to 300 ms), P2 (250 to 500 

ms) and gamma-band event-related synchronization (180 to 
260 ms, 60 to 85 Hz) [8, 9]. Subsequently, pain prediction 
models can be established based on these pain-related EEG 
features [10-12].  

However, the signal-to-noise ratio (SNR) of pain-evoked 
potentials is very low, so it is difficult to accurately extract 
pain-related features of evoked EEG [13]. Also, conventional 
feature extraction methods are heavily dependent on prior 
knowledge of pain-related EEG markers. With the rapid 
development of deep learning techniques, data-driven and end-
to-end EEG feature extraction methods have gained increasing 
popularity. Previous researchers have proposed an EEGNet 
model based on artificial neural networks for the classification 
of EEG data of brain-computer interfaces [14]. It has been 
shown that the convolutional neural network (CNN) layers in 
the EEGNet model and others can effectively extract accurate 
features from EEG data [15]. However, these deep learning 
methods have not been used in the application of pain 
prediction. 

In the present study, we proposed to use a CNN-based 
autoencoder (AE) method to extract pain-related EEG features 
in a data-driven manner. The new AE method is based on the 
EEGNet, and it can explore the relationship between pain 
scores and EEG features in an unsupervised manner. By 
convolution and deconvolution to encode and decode EEG 
signals, the AE-based method is capable of reducing high-
dimensional EEG data to low-dimensional features. This 
method can extract EEG features in relation to pain and further 
improve the accuracy of machine learning prediction. 

II. MATERIALS AND METHODS  

A. EEG Data and Experimental Design 

Twenty-nine participants (9 females and 20 males) were 
enrolled in this experiment, aged from 17-25 years (22.2 ± 1.9 
years). All participants had no history of chronic pain. 
Meanwhile, all participants were informed with written 
agreement. The experiment program was approved by local 
ethics committee. The infrared neodymium yttrium aluminum 
perovskite (Nd:YAP) laser (Electronic Engineering, Italy) 
generated a radiant-heat stimuli of 1.34 μm that directly 
activates the nociceptive terminals in the most superficial skin 
layers on the back of the left hand. Each subject received laser 
stimulation with of 4 different energy levels (E1: 2.5 J; E2: 3 
J; E3: 3.5 J; E4: 4 J), each with ten trials. Stimulation sequence 
is a pseudo-random process. Participants reported their pain 
ratings (ranged from 0 to 10, “0” means no feeling and “10” 
means unbearable pain) after each stimulus. Laser beams were 
randomly moved about 1 cm, to avoid nociceptor fatigue or 
sensitization after each stimulus. 
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All participants were seated in a quiet room, and they were 
asked to focus on laser stimulation and relax their muscles. 
EEG data were recorded using a 64 AgCl-channel Brain 
Products system, using the nose as reference (Brain Products 
GmbH, Munich, Germany; bandpass filter, 0.01 to 100Hz; 
sampling rate, 1000Hz), all channel impedances were kept 
lower than 10 kΩ. In order to monitor ocular movements and 
eye blinks, electrooculographic signals were simultaneously 
recorded from 4 bipolar electrodes: one pair placed over the 
upper and lower eyelids, and another pair placed 1 cm lateral 
to the outer corner of the left and right orbits. 

B. Data preprocessing 

We use LETSWAVE toolbox to preprocess the data. Sixty-
two-channel continuous EEG data were band-pass filtered 
between 1 and 30Hz. EEG epochs of laser-evoked trials were 
extracted from 0.5 s before stimulus to 1.0 s after stimulus, and 
each epoch was baseline-corrected by subtracting the mean of 
pre-stimulus data. Then, independent component analysis 
(ICA) was applied to remove eye artifacts [16]. And EEG data 
is down-sampled from 1000Hz to 250Hz to reduce the feature 
amount of data. 

C. Feature extraction 

1)  Feature extraction based on Prior Knowledge 

We select the amplitude of the N2 wave of LEP as a feature 

for machine learning prediction, which is measured as the 

mean value of the post-stimulus period from 0.18s to 0.30s. N2 

amplitudes of all 62 channels were extracted. 

2) Feature extraction based on AE  

The proposed autoencoder (AE) model has two parts. (1) 

Encoding: The input is an i-dimensional signal x which is 

processed by the hidden layer of the neural network to obtain 

m-dimensional data after intermediate dimensionality 

reduction. (2) Decoding: The original i-dimensional signal can 

be reconstructed through the hidden layer. Next, we minimize 

the error between the reconstructed signal and the input signal 

until the model converges. Last, we can obtain the 

intermediate parameter h. 

The function of the encoder is defined as  

ℎ = 𝜎(𝑊𝑥 + 𝑏)                 (1) 

where x is input data, h is output of encoder, 𝑊  is the 

parameter of the hidden layer in the encoding process, and b 

is a bias vector. In this work, 𝜎(⋅)  is an elu non-linear 

activation function. 

The function of the decoder is defined as 

𝑦 = 𝜎(𝑊′ℎ + 𝑏′)                 (2) 

where y is the output of decoder, and 𝑊′  and 𝑏′  are the 

hidden layer parameters and bias vector during the decoding 

process, respectively. 

By continuously minimizing the error 𝐿 = |𝑥 − 𝑦| between 

the reconstructed signal and the original signal, the model is 

converged. We used the Adam algorithm to optimize the loss 

function L. 

As shown in Figure 1, the proposed AE model is based on 

EEGNet [14], which is used to reduce the high-dimensional 

full-channel EEG data to a low-dimensional space without 

well-known prior knowledge to facilitate the prediction of 

machine learning models. In our AE model, based on the 

EEGNet model, a CNN is used to extract time and spatial 

domain information during the encoding process, and the use 

of a deep separable convolution layer can greatly reduce the 

number of network parameters and speed up the training 

process. Pooling and fully connected layers reduce the data 

feature dimension to a preset dimension. Then, in the decoder 

process, the extracted features after encoder are used to 

reconstruct EEG signal by up-sampling and deconvolution. 

By calculating the gradient of the difference between the 

reconstructed signal and the input signal, the model 

parameters can be updated iteratively until convergence. At 

this time, we use the encoded data ℎ for machine learning 

model training and prediction. 

Table 1 shows the parameter settings for convolution and 

pooling of each layer in the AE model. In the model, we omit 

the activation function of each layer and the batchnorm layer 

in order to accelerate the model convergence. It should be 

noted that the Conv1 convolution layer relies on a convolution 

Fig. 1.  The proposed AE model based on EEGNet [14].  
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kernel on a time scale with padding operation to extract time 

information and the Conv2 convolution layer relies on a 

convolution kernel on a spatial scale, and there is no padding 

operation during the convolution process. In addition, the 

Conv3 layer is a deeply separable convolution layer. We used 

two ordinary convolution layers instead of this special layer, 

which can significantly reduce the number of model 

parameters. The decoding process uses up-sampling and 

deconvolution corresponding to the encoding process to 

reconstruct the signal, respectively. 
 

3) Feature extraction based on PCA and MDS 

To compare the results obtained by the proposed AE 

model, we use the principal component analysis (PCA) 

method [15] and multidimensional scaling (MDS) method 

[17] to reduce the dimensionality of multi-channel EEG data 

and then use the features obtained by PCA and MDS to 

predict pain levels. 

D. Classification  

For our 29 participants, we used the leave-one-subject-

out cross-validation to make predictions, and calculated the 

accuracy (Acc) of each participant's prediction as an 

evaluation index. To examine the robustness of the proposed 

AE method, we used different machine learning models, 

including k-Nearest Neighbour (k-NN), Support Vector 

Machine (SVM), Linear Discriminant Analysis (LDA) and 

Logistic Regression (LR), to train and predict the different 

types of features obtained. 

All machine learning methods were trained based on the 

scikit-learn of python. The AE model proposed were realized 

based on the Pytorch deep learning framework, and were run 

on a GeForce GTX 1080Ti GPU. 

E. Statistical analysis  

We used paired t-test to test whether the performances of 
four classifiers based on features extracted by the proposed AE 
model or based on N2 is significant or not. Next, we compared 
the significance of the difference between the prediction 
results obtained by AE and the prediction results obtained by 
the PCA and MDS. 

III. RESULTS 

Table 2 shows that, when the AE model encoded the signal 
to a 64-dimensional feature vector, the best prediction 
performance can be achieved. As seen in Figure 2, the 
classification accuracies of AE-64 (64-dimensional features 
encoded by the AE model) in SVM, LDA and LR were all 
significantly higher than the conventional features N2 of all 
channels. 

 

  

Fig. 2.  Comparisons of classification accuracies between AE-64 and N2 for 
4 different classifiers. “AE-64” represents 64-dimensional features encoded 

using the AE model, and “N2” represents N2 amplitude features of all 62 

channels. Four classifiers, k-NN (k = 3), SVM (linear kernel), LDA, LR 

TABLE 2 
PREDICTION ACCURACY OF DIFFERENT FEATURES 

AE 

(dimension of 

features) 

k-NN SVM LDA LR 

2 63.5±11.7 71.8±20.2 71.9±20.3 72.0±20.3 

4 66.7±12.7 71.8±20.2 69.7±15.7 69.6±15.7 

8 67.0±11.5 71.8±20.2 70.3±14.5 70.7±14.4 

16 67.0±12.5 70.3±19.6 68.2±16.5 69.5±14.9 

32 65.9±11.0 68.5±16.0 71.5±12.5 72.1±12.4 

64 68.4±10.3 73.4±11.3 73.9±10.4 74.6±11.2 

128 68.1±10.7 71.6±13.0 72.0±11.9 71.8±13.2 

256 67.9±9. 9 71.9±12.0 72.4±11.6 73.4±11.5 

N2 69.1±14.5 69.0±14.0 68.0±16.0 69.1±16.7 

 

TABLE 1 
AE MODEL PARAMETERS 

    Layer Details of processing and parameters 

Conv1 

 

Convolutional kernel size: (1,125) 

Conv2 

 

Convolutional kernel size: (62,1) 

Pooling: (1,5) 

 

Conv3 

 

Convolutional kernel size: ((1,15), (16,1)) 

Pooling: (1,15) 

 

Fc1 

 

Reshape 

Fully connected layer 

 

Fc2 

 

Fully connected layer 

Reshape 

 

Deconv1 

 

Unpooling: (1,15) 

Deconvolutional kernel size: ((16,1), (1,15)) 

 

Deconv2 

 

Unpooling: (1,5) 

Deconvolutional kernel size: (62, 1) 

 

Deconv3 

 

Deconvolutional kernel size: (1,125) 
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(logistic regression) were used to predict pain in EEG features. In the figure, 
ns represents no significant difference, and * represents a significant 

difference of paired t-test results between two groups of data. 

 

 

Fig. 3.  Comparison of classification accuracies between the AE model, PCA 
and MDS, all of which encode or reduce the original EEG data to 64 

dimensions. The logistic regression classifier was used to make predictions. 

* means a significant difference between the two groups of data. 

 

Further, we used MDS and PCA to reduce the 

dimensionality of multi-channel EEG data for pain prediction. 

The results are shown in Table 3 and Figure 3. As shown in 

Figure 3, when the dimensionality of features was 64, the 

proposed AE method had significantly higher performance 

than PCA and MDS. 

 

IV. CONCLUSION 

Due to the very low SNR as well as the remarkable inter-

individual difference of pain-related EEG features, traditional 

pain prediction methods that mainly rely on well-known 

features from prior knowledge cannot achieve satisfactory 

results. In this study, we proposed a new data-driven EEGNet-

based AE method to extract features from EEG data. As 

compared with traditional feature extraction and 

dimensionality reduction methods such as PCA, the proposed 

AE method can achieve significantly higher accuracy when 

classifying high-pain and low-pain EEG epochs. This study 

shows that the proposed AE model and other deep learning 

methods can be potentially used for EEG-based pain 

prediction.  
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