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a b s t r a c t 

Dimension reduction is essential in fMRI decoding, but the complex relationship between fMRI data and 

class labels is often unknown or not well modeled so that the most effective dimension reduction (e.d.r.) 

directions can hardly be identified. In the present study, we introduce a novel fMRI decoding approach 

based on an effective and general dimension reduction method, namely sliced inverse regression (SIR), 

which can exploit class information for estimating e.d.r. directions even when the relationship between 

fMRI data and class labels is not explicitly known. We incorporate singular value decomposition (SVD) 

into SIR to overcome SIR’s limitation in dealing with ultra-high-dimensional data, and integrate SVD-SIR 

into a pattern classifier to enable quantification of the contributions of fMRI voxels to class labels. The 

resultant new SIR decoding analysis (SIR-DA) approach is capable of decoding behavioral responses and 

identifying predictive fMRI patterns. Simulation results showed that SIR-DA can more accurately detect 

e.d.r. directions and achieve higher classification accuracy than decoding approaches based on conven- 

tional dimension reduction methods. Further, we applied SIR-DA on real-world pain-evoked fMRI data to 

decode the level of pain perception and showed that SIR-DA can achieve higher accuracy in pain predic- 

tion than conventional methods. These results suggest that SIR-DA is an effective data-driven technique to 

decode behavioral or cognitive states from fMRI data and to uncover unknown brain patterns associated 

with behavior or cognitive responses. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Decoding brain states from functional magnetic resonance

maging (fMRI) data using machine learning approaches has gained

opularity [1,2] . Because of the high dimensionality and multi-

ollinearity of fMRI data, effective dimension reduction is crucial

or fMRI decoding. Subspace-projection-based dimension reduction

echniques, such as principle component analysis (PCA) [3] and

artial least squares (PLS) [4] , are often used as a pre-processing

tep in fMRI decoding. On the other hand, sparsity-enhancing reg-

larization techniques, such as L 1 or L 2 norm-regularized linear re-

ression, can shrink small regression coefficients to zero to achieve

utomatic feature selection [5] . These two types of dimension re-

uction techniques could be combined for higher effectiveness in

imension reduction and one example is LASSO principle compo-
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ent regression (LASSO-PCR) used in [6] for fMRI-based pain pre-

iction. 

Existing dimension reduction techniques in fMRI decoding nor-

ally over-simplified the complex relationship between fMRI and

lass labels as a linear function and some even did not make use of

lass information. As clearly revealed by many studies, the linear

ssumption about the relationship between neural activities and

ehavioral responses is problematic. For example, pain perception

as nonlinearly correlated with the magnitudes of laser-evoked

otentials and fMRI responses in medial prefrontal cortex (mPFC)

7,8] . Consequently, linear dimension reduction methods may fail

o select the most predictive features and could degrade predic-

ion accuracy when the relationship between fMRI and class labels

s complex and possibly even unknown. 

In the present work, we aim to introduce a new fMRI decod-

ng approach based on a powerful dimension reduction method,

amely sliced inverse regression (SIR). SIR was originally intro-

uced to estimate the effective dimension reduction (e.d.r.) direc-

ion along which the reduced data can well explain class labels re-

ardless of linear or nonlinear relationship between data and labels

http://dx.doi.org/10.1016/j.neucom.2017.07.045
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.07.045&domain=pdf
mailto:zgzhang@szu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2017.07.045
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Table 1 

Detailed procedure for SIR. 

Input x ∈ R n × p : a matrix of fMRI data with n samples and p predictors; 

y ∈ R n : a vector of n samples of observations. 

Output ˆ βk : e.d.r. directions. 

Step 1 Standardize x using the sample mean x̄ = 

1 
n 

∑ n 
i =1 x i and the sample covariance matrix ˆ �x = 

∑ n 
i =1 

1 
n −1 

( x i − x̄ ) 
T 
( x i − x̄ ) , where x i is the i th row of x . 

Step 2 Divide the range of y into M slices, G 1 , ���, G M , and calculate the proportion of y i that falls into the m th slice G m , m = 1 , · · · , M, as ˆ p m = 

1 
n 

∑ n 
i =1 ξm ( y i ) , 

where ξm ( y i ) equals 1 or 0 depending on whether y i falls into the m th slice or not. 

Step 3 For each slice, calculate the sliced mean x̄ m = 

1 
n ̂ p m 

∑ 

i ∈ G m x i and weighted covariance ˆ �W = 

∑ M 
m =1 ˆ p m ( ̄x m − x̄ ) T ( ̄x m − x̄ ) . 

Step 4 Solve the generalized eigen-decomposition problem: ˆ �W 
ˆ βk = ̂

 λk ̂
 �x ̂

 βk , and λ1 ≥ λ2 ≥ . . . ≥ λK , where ˆ βk denotes SIR directions. 
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[9] . Because of its generality and effectiveness, SIR has been used

in bioinformatics [10,11] and economics [12] . But, SIR can only deal

with a dataset where the number of features is smaller than the

number of samples, which is obviously not the case of fMRI data,

so it cannot been used for fMRI decoding directly. To overcome

this problem, we proposed to use singular value decomposition

(SVD) prior to SIR to transform fMRI data into a low-dimensional

orthogonal basis, which has a dimension equal to or lower than

the number of samples. We further integrate SVD-SIR into a classi-

fier or a prediction model to build a new and general fMRI decod-

ing analysis approach (namely, SIR-DA) which can decode behavior

responses from SIR-reduced features and identify predictive fMRI

patterns. 

The effectiveness of SIR-DA was evaluated on simulated fMRI

data under a variety of testing conditions (combinations of dif-

ferent linear or nonlinear fMRI-class relationships and different

noise levels). Simulation results show that SIR outperformed other

projection-based dimension reduction techniques (PCA and PLS)

in terms of finding the correct e.d.r. directions, and SIR-DA pro-

vided better prediction accuracy than projection-based as well as

regularization-based decoding analyses (PCA-DA, PLS-DA, LASSO-

PCR and elastic net). 

Further, we applied the proposed SIR-DA approach on real-

world laser-evoked fMRI data, with the aim to predict the level

of subjective pain perception elicited by laser stimulation. Results

show that SIR-DA can identify brain patterns both linearly and

nonlinearly correlated with pain perception, and achieved signifi-

cantly higher pain prediction accuracy than linear decoding tech-

niques. 

2. Material and methods 

2.1. Sliced inverse regression 

SIR is based on a generalized linear model and it assumes that

the response variables y ∈ R 

n depend on the predictors x ∈ R 

n × p 

( n ≥ p ) via K linear combinations of x as: 

y = f (x β1 , x β2 , ..., x βK , e ) , (1)

where f ( · ) is an unknown function, βk , k = 1 , · · · , K, are unknown

p -dimensional projection vectors, and ɛ is zero-mean random noise

independent of x . If K < p , the dimension of predictors can be ef-

fectively reduced from p to K . Any linear combination defined by

βk is an e.d.r. direction, and the linear subspace B spanned by all

βk ’s is called the e.d.r. space. The basic principle of the SIR algo-

rithm (shown in Table 1 ) is to estimate a crude inverse regression

curve E ( x | y ), which will fall into the e.d.r. space if x is standardized

to have zero mean and identity covariance [9] . The inverse regres-

sion curve E ( x | y ) can be estimated by partitioning x into M slices

(each of which has the same number of samples, generally) accord-

ing to the values of y and calculating the mean values of x within

the slices. Then, a generalized eigen-decomposition is applied to

the slice mean values to locate the most important K -dimensional

subspace for tracking the inverse regression curve. It is important

to note that, SIR can only work for cases where n ≥ p , because the
ample covariance matrix ˆ �x will be singular when n < p and con-

equently the solution to the eigen-decomposition problem will

ot be unique. 

.2. Sliced inverse regression-decoding analysis 

Suppose in an fMRI decoding problem, we have behavioral data

r cognitive parameters ψ ∈ R 

n with n samples and fMRI data

∈ R 

n × p with p voxels for each sample. According to ( 1 ), an SIR

odel, ψ = f (�β1 , �β2 , ..., �βK , ε) , can be used to reduce the di-

ension of �. But, the number of voxels (tens of thousands) is

ormally much larger than the number of samples (a few dozens

r hundreds), so SIR cannot be directly applied to ψ and �. To ad-

ress this problem, we proposed to reduce the number of columns

predictors) of � from p to q ( q ≤ n ), which can be achieved by SVD

rior to SIR. More precisely, we perform SVD on � as � = U�V 

T 

o obtain the principle components U �∈ R 

n × n and the column-

rthogonal matrix V ∈ R 

p × n . To keep as much information from

as possible, we retain all principle components to construct

he dimension-reduced fMRI data matrix as ˜ � = U� ∈ R 

n ×n . Then,

he new SIR model reads ψ = f ( ̃  � ˜ β1 , ˜ � ˜ β2 , ..., ˜ � ˜ βK , ε) , where ˜ β =
 ̃

 β1 , 
˜ β2 , ..., 

˜ βK ] ∈ R 

n ×K are the e.d.r. directions in the dimension-

educed space. Note that in the proposed dimension reduction pro-

ess, the number of predictors is reduced from p to K (first from

 to n by SVD and finally from n to K by SIR), yielding the feature

et S = 

˜ � ˜ β ∈ R 

n ×K . Subsequently, a pattern classifier with ψ as the

esponse variables and S as predictors is used for fMRI decoding. 

Since SIR is based on a generalized linear model, it can be fol-

owed by any classifier that is also based on a generalized linear

odel, enabling the contribution (i.e., magnitudes of coefficients)

f each feature to the classification to be reconstructed. Suppose

 generalized linear classifier ψ = C(S a ) with a weighting vector

∈ R 

K is adopted, where the contribution of each variable in S

o predict ψ is represented by the corresponding element in the

eighting vector a [13] . Considering that S = 

˜ � ˜ β and 

˜ � = �V , one

ets 

 = C(S a ) = C( ̃  � ˜ βa ) = C( �V ̃

 βa ) (2)

Hence, the weighting vector denoting the contribution of each

ariable in the original fMRI data matrix � to predict ψ is θ =
 ̃

 βα. A summary of the SIR-DA approach, including all above pro-

edures is given in Table 2 . 

Cross-validation (CV) is often used in a classifier to determine

arameters and to evaluate performance. The use of CV in the

ramework of SIR-DA is illustrated in Fig. 1 . In each fold of CV,

he e.d.r. directions are firstly obtained from all training trials

with labels) and applied on both training and test trials to ob-

ain dimension-reduced feature sets. Next, still in the same fold of

V, a classifier or a prediction model is trained by the dimension-

educed training data and then applied on the dimension-reduced

est data to predict the class labels. 

.3. Complexity and parameter selection 

Computational complexity and the selection of parameters are

wo practical issues when applying the SIR-DA in an fMRI study. 
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Table 2 

Procedures of SIR-DA. 

Input �∈ R n × p : fMRI data with n samples and p voxels; 

ψ ∈ R n : n samples of behavioral data or cognitive parameters. 

Output ˜ β = [ ̃  β1 , ̃  β2 , ..., ̃  βK ] ∈ R n ×K : e.d.r. directions; 

θ ∈ R p : regression weights for whole brain fMRI voxels. 

SVD Perform SVD on � as � = U�V T to obtain the principle components ˜ � = U� ∈ R n ×n and the column-orthogonal matrix V ∈ R p × n . 

SIR Perform SIR on ˜ �, resulting in the e.d.r. directions ˜ β and SIR-derived feature set S = 

˜ � ˜ β ∈ R n ×K . 

Classification Construct a classifier ψ = C( S t α; t = 1 , · · · , n ) with α ∈ R K to estimate classification accuracy and the contribution of each variable in the reduced 

space to predict ψ. 

Reconstruction Transform α back to the original space by multiplying ˜ β and V , resulting in the weights for whole brain voxels θ = V ̃  βα. 

Fig 1. Flowchart of proposed SIR-DA pipeline in each fold of CV. 
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We first consider the arithmetic complexity of SVD. Since SVD

s performed on �∈ R 

n × p , n < < p , it has a complexity of O ( p 3 ).

IR is performed on the square matrix ˜ � = U� ∈ R 

n ×n , and the

ost demanding operation is eigenvalue decomposition which has

 complexity of O ( n 3 ) . Therefore, SVD-SIR still has a complexity of

 ( p 3 ). 

It is necessary to specify the number of slices M and the num-

er of projection vectors K in SIR-DA for practical implementation.

he number of slices, M , affects the tradeoff between reliability of

lice mean estimation and adequacy in the number of slice means

or robust inverse regression curve estimation. More specifically, a

arger M (more slices) will lead to more slice means for building a

ore precise inverse regression curve, but it will increase the esti-

ation variance in the slice means due to the smaller sample size

f each slice. On the contrary, a smaller M (fewer slices) will lead

o smaller estimation variance in the slice means, but the inverse

egression curve may not be very accurately estimated because of

ewer number of slice means. The optimal M can be obtained by

V from training data. The literature and our simulation results

uggested that M would not largely affect the output estimates if it

s sufficiently large ( M > 4) [14] . The number of e.d.r. directions, K ,

an also be trained by CV. In our application, we determined the

alue of K using the output eigenvalues of the generalized eigen-

ecomposition in SIR (Step 4 in Table 1 ). More precisely, the first

eading K eigenvalues should explain the majority of data variance.

. Simulation 

.1. Subjects and data acquisition 

In this section, a resting state fMRI dataset collected from 32

ealthy subjects (20 females) aged 22.1 ± 2.0 years (mean ± SD,
ange = 19–24 years) were used to generate synthetic fMRI activa-

ions. All subjects gave their written informed consent and were

aid for their participation. The local ethics committee approved

he procedures. 

The fMRI data were acquired using a Siemens 3.0 Tesla Trio

canner with a standard head coil at the Key Laboratory of Cogni-

ion and Personality (Ministry of Education) of the Southwest Uni-

ersity (China). A whole-brain gradient-echo, echo-planar-imaging

equence was used for functional scanning with a repetition time

TR) of 1500 ms (29 ms echo time, 25 contiguous 5.0 mm thick

lices with 0.5 mm thick inter-slice gaps, 3 × 3 mm in-plane resolu-

ion, field of view 192 × 192 mm, matrix 64 × 64, flip angle = 90 °).
uring the scan, subjects were instructed to rest with their eyes

losed and in total 330 images were collected for each subject.

or spatial normalization and localization, a high-resolution, T1-

eighted structural image (1 mm 

3 isotropic voxel MPRAGE) was

cquired after functional imaging. 

The fMRI data were preprocessed and analyzed using SPM8

Wellcome Trust Center for Neuroimaging, London, UK). Images

ere slice-time corrected, motion corrected, spatially smoothed

sing a Gaussian kernel of 8 mm full width at half maximum

FWHM = 8 mm) and normalized to the Montreal Neurological In-

titute (MNI) space by matching grey matter [15] . 

.2. Simulated data 

Six linear and nonlinear models between variables � (fMRI

ata) and ψ (response variables) were constructed and they were

ummarized in Table 3 . fMRI data were synthesized by Monte-

arlo simulation. In each Monte-Carlo run, we randomly selected

00 images from the total 330 images of one subject to simulate

00 trials of this subject, and added a zero mean Gaussian noise
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Table 3 

Functions used in simulation. 

Relationship type Description 

Linear ( K = 1) ψ = (�β1 ) + e 

Cubic ( K = 1) ψ = (�β1 ) 
3 + e 

Exponential ( K = 1) ψ = exp (�β1 ) + e 

Linear ( K = 2) ψ = (�β1 + �β2 ) + e 

Cubic ( K = 2) ψ = [ (�β1 ) 
3 + (�β2 ) 

3 ] + e 

Exponential ( K = 2) ψ = [ exp (�β1 ) + exp (�β2 )] + e 
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to the trial. For each subject, we run above Monte-Carlo testing for

100 times and then different methods (SIR, PCA, PLS) were com-

pared on these 100 runs. Two projections vectors β1 and β2 in

Table 3 were binary masks, both of which contains either “1” for

specified region of interest or “0” elsewhere. In our stimulation,

β1 and β2 were used to define fMRI activation patterns in two re-

gions, the part of the insular cortex (Brodmann area [BA] 13) and

the primary auditory cortex (A1, BA42/BA43), respectively. The re-

lationships between ψ and �β1 or �β2 in different models are

given in Supplementary Material Fig. 1 . 

In SIR-DA, the number of slices was set as M = 10 and the num-

ber of e.d.r. directions set to K = 1 or 2 depending on the number

of β ’s in the model of Table 3 . SIR-derived feature sets were fitted

in a support vector regression (SVR) model with linear kernels and

the regression weights were reconstructed in the original space to

indicate the contribution of each voxel in predicting ψ. A point-

by-point one-sample t -test against zero with Bonferroni correction

was performed on reconstructed whole-brain regression weights

across subjects to detect the significantly activated regions. We

tested the performance of SIR-DA under different levels of signal-

to-noise ratio (SNR). Here, SNR is defined as: 

SNR = 

σ 2 (A ) 

σ 2 (e ) 
(3)

where A is the synthetic activation and e is the additive random

noise generated from normal distribution with zero mean. By ad-

justing the variance of the additive noise e , we can vary the SNR. 

It should be noted that, SNR defined in this study is used to

describe the “cleanness” of response variables, not the “cleanness”

of fMRI signals. Thus, SNR used in our study is different from the

conventional use of SNR in fMRI research, which normally denotes

the ratio between the magnitudes of fMRI activities and of additive

interference/noise [16] . We use such a definition of SNR because

we focus on the classification problem, in which the noise is not

only added to features but also to responses (similar definitions of

SNR are popular in pattern recognition). In our simulation, SNR is

set to 1, 2, 5, and 10. Particularly, an SNR of 1 should be a small

value because it means the additive noise is as large as the true

response variables. In our pain study ( Section 4 ), we approximated

the variance of noise as the variance of prediction error (the differ-

ence between predicted pain rating and true pain rating), which is

a commonly-used method to estimate the amount of additive noise

in estimation theory [17] , and the approximated SNR is 2.66 ± 0.85

(for 32 subjects). 

Compared to the conventional simulation approach which

adds noise to synthetic fMRI time-series, we added noise to the

response variables in the fMRI decoding model. We adopted the

current simulation approach because of two reasons. First, the-

oretically, SIR regresses explanatory variables x against response

variables y . The reliability of the estimates of sliced means and

inverse regression curve are largely influenced by the slicing

according to the values of y . So, to examine the performance of

SIR, it is common to add noise on the response variables [9,14] .

Second, in fMRI decoding, response variables may not be correctly

decoded from fMRI data solely, because other factors, such as brain
tructures and genetics, could also contribute to response variables

ut they may not be encoded by fMRI recording. For example, in

ur problem of pain prediction, fMRI data alone cannot completely

xplain the intra- and inter-subject variability in pain experience

18,19] . In our simulation approach, the noise term is used to

escribe all possible predication biases which are not related to

MRI data but caused by other factors. 

.3. Performance evaluation 

To assess the accuracy of an estimated e.d.r. direction, the

ost direct criterion is based on some distance between the es-

imated e.d.r. direction 

ˆ βk and the true e.d.r. direction βk . How-

ver, distance-based criterion is not applicable due to the change

f scale or affine transformation of �. Here, we used the abso-

ute correlation (AC), | cor r (�β1 , ˜ � ˆ β1 ) | , as the performance mea-

ure when K = 1 , and the squared canonical correlation (SCC),

 canoncor r ( �β, ˜ � ˆ β)] 2 with β = [ β1 , β2 ] and 

ˆ β = [ ̂  β1 , 
ˆ β2 ] , when

 = 2 [9,20] . A higher AC or SCC indicates a more accurate esti-

ate of the e.d.r. direction. 

The prediction accuracy of SIR-DA was measured by the mean

bsolute error (MAE), 

AE = 

1 

T 

T ∑ 

t=1 

∣∣∣ψ t − ˆ ψ t 

∣∣∣ (4)

here ψ t and 

ˆ ψ t are the real and predicted values of the t th trial

nd T is the total number of trials for each subject. The MAE values

ere estimated using 5-fold CV: the e.d.r. directions and the pre-

iction model were trained using 80 trials from each subject and

ested on the remaining 20 trials of the subject. 

To compare the performance of estimation of e.d.r. directions(s),

onventional projection-based dimension reduction methods in-

luding PCA and PLS (regularization-based methods do not esti-

ate e.d.r. directions), were also applied on the same ψ and �
enerated by the models in Table 3 . Reduced feature sets were ex-

racted by maximizing the variance and covariance using PCA and

LS respectively. For PCA, we kept the principle components ac-

ounting for 90% of the total variance of the data. PLS was com-

uted by nonlinear iterative partial least squares (NIPALS) algo-

ithm, and the number of latent components was estimated using

oefficient of determination [21] . Further, to compare the perfor-

ance of prediction accuracy, PCA-DA, PLS-DA and regularization-

ased methods including LASSO-PCR [6] and elastic net [22] were

pplied on the models in Table 3 . For LASSO and elastic net, the

ntire regularization path (from zero activate variables to least

quares solution) were obtained and the optimal penalties were

elected using Bayesian Information Criterion (BIC). 

The performances of different methods in dimension reduction

nd classification were tested on these 100 sets of simulated data

nd compared using paired t -test with Bootstrap hypothesis tests

23] . Specifically, the statistical comparisons between different ap-

roaches were carried out as follows: 

1. Calculate the statistics t using paired t -test from all Monte-

Carlo simulation samples, 

2. Select 20 samples with replacement from the Monte-Carlo sim-

ulation samples in each bootstrap, 

3. Calculate the statistics t ∗
i 

using paired t -test from each boot-

strap run, i = 1 , ..., 10 0 0 , 

4. Get p value by estimating p = min (2 k, 2 − 2 k } , where k =
1 
N 

∑ N 
i =1 1 { t ∗i ≤ t} , N = 10 0 0 . 

Lastly, we also assessed the performance of SIR-DA with differ-

nt number of slices ( M ). We repeated the above simulation pro-

edure with M ranging from 3 (being the least number of slices

eans to build a curve) to 20 (with a minimal of five samples in
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ach slice to estimate slice means). Performance of dimension re-

uction (in terms of AC or SCC) and prediction accuracy (in terms

f MAE) were summarized in Figs. 4 and 5 . 

. FMRI pain prediction 

.1. Experimental design 

The analyses of this study were performed on the dataset col-

ected from the same 32 healthy subjects as in the simulation

tudy. Prior to data collection, we delivered a small number of

aser pulses with different energies to familiarize the subjects with

he stimulation. During fMRI data collection we delivered ten laser

ulses at each of the four stimulus energies (E1: 2.5 J, E2: 3 J, E3:

.5 J, E4: 4 J), making a total of 40 pulses. The order of stimuli at

ifferent ener gies was pseudorandomized. The inter-stimulus in-

erval (ISI) varied randomly from 27 to 33 s (rectangular distribu-

ion). A visual cue delivered between 15 and 18 s after each stim-

lus prompted the subject to rate the intensity of pain perception

licited by the laser stimulus, using a visual analogue scale (VAS)

anging from 0 (corresponding to “no pain”) to 10 (corresponding

o “pain as bad as it could be”). 

.2. General linear model analysis 

The fMRI data were preprocessed following the standard proce-

ure suggested by SPM8 (see preprocessing in simulation) and fil-

ered using a high-pass filter with a cutoff frequency of 1/128 Hz.

o obtain the brain activations from the conventional linear

ethod, single-subject fMRI data were analyzed using a general

inear model (GLM) approach [24] . BOLD responses were modeled

s a series of events using a stick function and ratings were in-

luded as a parametric modulator of each stimulus, which were

hen convolved with a canonical hemodynamic response function

HRF). Group-level statistical analyses were carried out using a ran-

om effects analysis with the one-sample t -test as implemented in

PM8. To account for multiple comparisons, the significance level

 p value) was corrected using a false discovery rate (FDR) in the

hole-brain exploratory analysis (Heller et al., 2006). Trials were

orted according to the subjective pain rating and 10 trials were

ategorized into each of the four pain levels (R1-R4; R1 denoted

rials with minimal pain perception, while R4 denoted trials with

aximum pain perception). 

.3. SIR-DA analysis 

SIR-DA ( M = 4, K = 2) was applied on whole-brain fMRI data

t the third image after stimulus onset, when the brain had the

argest responses to the pain stimuli (as shown in Fig. 6 ). The num-

er of slices, M , was set to 4 because there are 4 levels of laser

timulation, and we also used CV to make sure M = 4 is an ap-

ropriate selection. In our case, the first eigenvalue can explain

9.1 ± 7.0% of the total variance, and the second one can explain

2.3 ± 5.7%. Since first two eigenvalues can explain more than 90%

f the total variance, we chose K as 2 here. Regression weights

ere reconstructed in the original space by fitting the pain rat-

ng and SIR-derived feature set. To identify the brain regions that

ignificantly contributed to pain perception, a point-by-point one-

ample t -test against zero was performed on the estimated re-

ression weights across subjects. The significance level was cor-

ected using an FDR to account for multiple comparisons. PCA-DA,

LS-DA, LASSO-PCR and elastic net were also applied on the same

ataset to compare the performance (See Supplementary Figs. 2–5

or details). 
.4. Pain prediction 

We performed a binary pain prediction, which used supported

ector machine (SVM) with linear kernels to classify high-pain tri-

ls (VAS ≥ 5) and low-pain trials (VAS < 5), and a continuous pain

rediction which used SVR with linear kernels to predict the level

f pain perception within the range between 0 and 10 for each

rial. Both binary and continuous predictions were performed us-

ng 5-fold CV strategy and at the within-subject level. The predic-

ion performances were measured by classification accuracy and

AE between reported pain intensity and predicted pain intensity.

e also compared the prediction performance of SIR-DA with SVM

without dimension reduction), PCA-DA, PLS-DA, LASSO-PCR and

lastic net using one-way repeated-measures ANOVA. When the

ain effect was significant, post hoc pairwise comparisons were

erformed. 

. Results 

.1. Simulations results 

.1.1. Accuracy of e.d.r. direction 

Fig. 2 summarizes the performance of dimension reduction

easured by AC and SCC for K = 1 and K = 2. For linear mod-

ls ( K = 1 and K = 2), PLS-DA had the best performance at differ-

nt noise levels. SIR-DA performed significantly worse than PLS-DA

hen the noise was large (SNR = 1 for K = 1, p = 0.012; SNR = 1 and

 for K = 2, p = 0.010 and p = 0.008 respectively), but had compara-

le results with PLS-DA at higher levels of SNR (SNR = 2, 5 and 10

or K = 1, SNR = 5, and 10 for K = 2; p > 0.05). For nonlinear mod-

ls, SIR-DA performed significantly better than PLS-DA under most

onditions ( p < 0.05) except for Cubic/Exp, K = 1, and SNR = 1. As an

nsupervised method, PCA-DA cannot accurately detect e.d.r. direc-

ion(s) under all testing conditions. Here, we only report SCC val-

es obtained from the first component of SIR-DA and PLS-DA when

 = 2 because they already captured the major contribution of in-

ula and A1 so that the second direction can be ignored without

uch performance loss [14] . 

.1.2. Mean absolute error 

The prediction performances of different methods measured by

AE are summarized in Fig. 3 . For linear models ( K = 1 and K = 2),

IR-DA showed comparable performance to PLS-DA, LASSO-PCR

nd elastic net at higher SNR (SNR = 5 and 10). In contrast, SIR-

A had significantly better performance than other linear meth-

ds on cubic and exponential models (SNR = 2, 5 and 10; p < 0.05).

s an unsupervised method, PCA-DA always had the worst perfor-

ance among all three methods under test. For better illustration,

e only showed the pair-wise statistical comparisons between SIR-

A and other methods in Fig. 3 . We also conducted simulation in

he canonical way and compared the results of two simulation ap-

roaches. Details of the comparison can be referred to Supplemen-

ary Fig. 7 . 

.1.3. Performance of parameter selection 

Fig. 4 summarizes the influence of M (the number of slices)

n the performance of dimension reduction (in terms of AC or

CC) in all six models and under four SNR conditions. In most cir-

umstances, SIR-DA had stable performance within a wide range

f number of slices. Particularly, for SNR = 1, the performance de-

reased with increasing M . It is possible that less samples (more

lices) within each slice may lead to unreliable estimation of slice

eans when the noise is large, and consequently hampered the

erformance. Fig. 5 summarizes the influence of M on MAE of pre-

iction using SIR-DA in six models and under four SNR conditions.

n all circumstances, MAE was decreased with increasing M , and
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Fig 2. Performance of dimension reduction measured by AC and SCC. Each circle represents the mean value from 100 Monte Carlo simulations and the error bar represents 

standard deviation (STD). Significant differences between SIR (red dots), PLS (blue dots) and PCA (green dots) in different scenarios are indicated using asterisks ( p < 0.05). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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tended to be stable for large number of slices ( M > 10). Based on

Figs. 4 and 5 , we conclude that the performance of SIR-DA is not

sensitive to the selection of M . We can also see from Figs. 4 and 5

that, varying M may lead to a minor tradeoff between dimension

reduction and decoding when SNR = 1. This may be due to two rea-

sons: ( 1 ) different degrees of influences of noise on dimension re-

duction and decoding; ( 2 ) the influence of M on the performance

of SIR, but it is still difficult to quantify the influences of noise and

the parameter M . We also provided the performance of SIR-DA in

terms of dimension reduction and decoding using different number

of slices ( M = 5 and M = 15) in the Supplementary Tables S1–S4. 

5.2. Real data results 

5.2.1. Psychophysics 

Laser stimuli of the four energies elicited graded subjective

pain intensities (E1: 2.9 ± 1.5; E2: 3.8 ± 1.7, E3: 5.7 ± 1.6, and E4:

6.9 ± 1.5). One-way repeated-measures ANOVA revealed that the

intensity of pain was significantly modulated by stimulus intensity

( F (3,93 ) = 163.51, p < 0.001). Post-hoc pairwise comparisons revealed

that the intensity of pain was significantly larger at higher stimu-

lus energies ( p < 0.001 for all comparisons). 

5.2.2. Pain-related brain patterns 

The identified pain-related brain patterns (P FDR < 0.05) using

GLM and SIR-DA are summarized in Fig. 6 . In the top left panel,

GLM detected that pain perception was positively modulated by

BOLD signals in cerebellum (CB), insula, thalamus, anterior cingu-

late cortex (ACC), primary somatosensory cortex (S1), secondary
omatosensory cortex (S2), mid-cingulate cortex (MCC) and sup-

lementary motor area (SMA). Group level BOLD time courses

n some representative regions (ACC, S1 and insula) at different

ainful levels are displayed in the bottom left panel. We checked

he relationships between BOLD magnitudes at peak scan (TR = 3)

n ACC/S1/insula and pain perception by a linear fitting. P val-

es from the linear fitting (ACC: p = 0.009; S1: p = 0.013; insula:

 = 0.015) indicate possible linear relationships between pain per-

eption and BOLD responses at these regions (in the linear re-

ression model, the independent variables are the mean values

f BOLD magnitudes for different pain levels and the dependent

ariables are pain ratings). In contrast, SIR-DA detected that pain

erception was positively activated in CB, insula, thalamus, ACC,

1, S2, MCC and SMA, while negatively activated in mPFC, poste-

ior cingulate cortex (PCC) and bilateral angular gyrus ( Fig. 6 , top

ight panel ). Group-level BOLD signal time courses in ACC, S1, and

PFC at different painful levels are displayed in the bottom right

anel of Fig. 6 . P values from the linear fitting (ACC: p = 0.012;

1: p = 0.016; mPFC: p > 0.05) indicates possible linear relation-

hips between pain perception and BOLD responses at ACC and S1

nd the nonlinear relationship between pain perception and BOLD

esponses at mPFC. 

.2.3. Pain prediction 

Fig. 7 summarizes the prediction performance by the six

ethods. For binary prediction, SVM, PCA-DA, PLS-DA, LASSO-

CR, elastic net and SIR-DA achieved classification accura-

ies of 71.52 ± 2.48%, 70.98 ± 2.52%, 74.06 ± 2.31%, 73.39 ± 2.00%,

3.05 ± 2.40% and 77.61 ± 1.69% (mean ± standard error of the

ean [SEM]) respectively. One-way repeated measures ANOVA
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Fig 3. The prediction performances of different methods measured by MAE. Each color bar represents the mean value from 100 Monte Carlo simulations and the error bar 

represents STD. Significant differences between SIR-DA, PLS-DA and PCA-DA in different scenarios are indicated using asterisks ( p < 0.05). For linear models, SIR-DA showed 

comparable results to PLS-DA at higher SNR. In contrast, SIR-DA had significantly better performance than PLS-DA on cubic and exponential models (SNR = 2, 5 and 10; 

p < 0.001; paired t -test). As an unsupervised method, PCA-DA always had inferior performance than the other two supervised methods. 
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evealed significant difference in classification accuracy between

he six methods ( F (5,155 ) = 5.33, p = 0.002). Post hoc paired t -test

howed that our proposed approach, SIR-DA, provided the best

rediction performance. For continuous prediction, SVR, PCA-DA,

LS-DA, LASSO-PCR, elastic net and SIR-DA had MAE of 1.87 ± 0.12,

.88 ± 0.11 1.73 ± 0.10, 1.75 ± 0.12, 1.76 ± 0.11 and 1.62 ± 0.09, re-

pectively. One-way repeated measures ANOVA also revealed sig-

ificant difference in MAE between six methods ( F (5,155 ) = 12.22,

 < 0.001). Post hoc paired t -test showed that SIR provided the best

rediction performance 

. Discussion 

Dimension reduction is important in fMRI decoding for extract-

ng an essential set of meaningful neural features to predict men-

al states or behavior responses from high-dimensional fMRI data.

onventional dimension reduction methods used in fMRI decod-

ng do not use class labels or simply assume the relationship be-

ween class labels and fMRI data is linear, so they cannot always

etect the most e.d.r. directions. To address this problem, we in-

roduced the SIR-DA approach to accomplish supervised dimension

eduction even when the complex relationship between fMRI data

nd class labels is not explicitly known. Results on simulated data

nd real data showed that the SIR-DA can more correctly estimate

he e.d.r. direction(s) for dimension reduction and more accurately
redict behavior responses for both linear and nonlinear fMRI pre-

iction models. 

.1. Significance of SIR-DA 

The relationship between neural activities and behavioral re-

ponses is complicated, and so dimension reduction method based

n unjustified linear assumption could be sub-optimal. Nonlinear

ffects in the brain are actually very common. Such nonlineari-

ies are believed to arise from both vascular response [25] and

euronal activity [26] , and may be present between tasks and

eural activations, between neural activity and BOLD response, or

etween tasks/behavior response and BOLD response [27] . Some

tudies have mentioned that the linear assumption for dimension

eduction has some limitations, such as creating prediction er-

or and causing unreliable brain activation [28,29] , and nonlinear

ethods were suggested in a few studies [30,31] . In the present

tudy, a new and general SIR-DA approach is developed to deal

ith the nonlinearity between behavior response and BOLD re-

ponse. 

The proposed SIR-DA approach is very useful because it allows

he relationship between behavior responses and brain activity to

e implicitly modeled. Due to the complex neurovascular mecha-

ism, it is often difficult to formulate a clear hypothesis to model

he relationship between behavior responses and brain activity.

ur results showed that SIR-DA can well handle various types of
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Fig 4. The performance of dimension reduction with SIR-DA using different numbers of slices in all six models and under four SNR conditions. In most circumstances, SIR-DA 

had stable performance within a wide range of numbers of slices. 

Fig 5. MAE of prediction using SIR-DA in six models and under four SNR settings. In all simulation circumstances, MAE was generally reduced with an increase in M , and 

tended to be stable for larger number of slices ( M > 10). 
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Fig 6. Pain-related brain regions and BOLD responses. Top left panel : Pain related brain regions detected by GLM (P FDR = 0.05). BOLD responses in cerebrum (CB), insula (INS), 

thalamus (THAL), anterior cingulate cortex (ACC), primary somatosensory cortex (S1), secondary somatosensory cortex (S2), medial cingulate cortex (MCC) and supplementary 

motor area (SMA) were positively correlated with pain perception. Bottom left panel: Time series of BOLD responses in ACC, S1, INS and the relationships between BOLD 

responses at peak time (TR = 3) in these regions and pain intensity. Top right panel : Pain related brain regions detected by SIR-DA (P FDR = 0.05). BOLD responses in CB, INS, 

THAL, ACC, S1, S2, MCC and SMA were positively correlated with pain perception, while in medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC) and angular gyrus 

(ANG) were negatively correlated with pain perception. Bottom right panel : Time series of BOLD responses in ACC, S1, mPFC and the relationship between BOLD responses at 

peak time (TR = 3) in these regions and pain intensity. The time courses of PCC and ANG were shown in Supplementary Fig. 6. 

Fig 7. Performance of six methods in pain prediction. Each color bar represents the mean prediction performance across all subjects and the error bar represents SEM. 

Significant differences between SIR-DA and other methods are indicated by asterisks. 
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relationships (linear and nonlinear) between fMRI data and class

labels. Therefore, this study provides a new data-driven approach

for uncovering unknown brain patterns associated with behavior

or cognitive responses. 

Other supervised nonlinear dimension reduction methods also

exist, such as kernel PL S (KPL S) [32] , and they model nonlinear

relationships in a different way. SIR assumes the relationship be-

tween features (in the original space as well as in the new reduced

space) and class labels is nonlinear, but the transformation link-

ing the reduced space with the original space is linear; while KPLS

links the new feature space and the original space with a nonlin-

ear transformation through an inner product operation, but it still

assumes that the relationship between features in the new feature

space and class labels is linear (so that the relationship between

features in the original space and classes is still nonlinear). SIR has

the advantage of being more suitable for interpreting the fMRI de-

coding result, because it enables the estimation of the contributing

weight of each voxel in the original space from that in the reduced

space since the relationship between these two spaces is linear.

But it is hard for kernel-based methods to construct contributing

weights of original fMRI voxels because new features are related

nonlinearly to original features through inner product. 

Because SIR can efficiently reduce the dimensionality under

nonlinear relationship, it is possible to incorporate a nonlinear

classifier into SIR-DA to boost its performance. However, the per-

formance of a nonlinear classifier varies for it depends on how well

its model matches the nonlinearity of the fMRI-class relationship.

Searching for a most suitable nonlinear classifier for a specific ap-

plication is outside the scope of this study, so we did not perform

a more comprehensive comparison between different classifiers in

this study. 

6.2. Implementation of SIR-DA 

In contrast to many sophisticated nonlinear dimension reduc-

tion techniques, such as projection pursuit [33] , mutual informa-

tion maximization [34] and kernel dimension reduction [35] , SIR

is very simple to implement. Two parameters, namely the number

of slices and the number of e.d.r. directions, need to be prescribed

for SIR-DA. It has been shown that the estimation of e.d.r. direc-

tions is not very sensitive to the choice of the number of slices

[9,14] . For the number of e.d.r. directions, chi-squared test and BIC

were suggested to determine the dimension [9,14] ,. In simulation

results, we have shown that the performance of SIR-DA was stable

within a wide range of the number of slices. But the number of

slices may still affect the tradeoff between reliability of slice mean

estimation and adequacy in the number of slice means for robust

inverse regression curve estimation (as explained in Section 2.3 ).

For the experimental results on real data, we empirically selected

the number of slices as the levels of laser stimulation ( M = 4), and

set the number of e.d.r. directions as 2 since the first leading two

eigenvectors had captured more than 90% variance of the data. 

SIR is also computationally inexpensive. The computational

time to find e.d.r. directions for one subject was around 0.58 s (av-

eraged from 10 0 0 simulations; dimension of fMRI data: 40 × 71,450

[trials × voxels]; PC configuration: Intel Core i7-2600 CPU @

3.4 GHz and 16 GB RAM; software: MATLAB 7.1). Thus, SIR has the

potential to be used for real-time neuroimaging data analysis. 

SIR can achieve its maximum performance in finding the e.d.r.

when brain-behavior relationships are monotonic, which holds

true in most cases of fMRI research. The performance of SIR would

be degraded when brain-behavior relationships are not mono-

tonic [36] . Possible solutions (improved versions of SIR for non-

monotonic relationships) have been reported in some studies, such

as, second moment based sliced average variance estimate (SAVE)

[36] and principle Hessian directions (pHd) [37] . These improved
ersions of SIR could be considered for fMRI decoding in future

tudies. 

.3. SIR-DA for pain prediction 

The possibility of pain prediction using neuroimaging tech-

iques including EEG and fMRI has been widely explored in recent

ears [6,38–41] . Due to the high spatial resolution, whole-brain

MRI technique could not only reveal spatially distributed patterns

f pain perception, but also provide a relatively high prediction

ccuracy [6] . Machine learning approaches have been adopted in

MRI-based pain prediction studies, because it can reveal impor-

ant brain patterns (spatial pattern in fMRI) without sophisticated

eature extraction processes. However, the performance of fMRI de-

oding has been hampered by the ultra-high dimension of predic-

ion variables. Including all whole-brain voxels in a classifier (e.g.,

VM) is not only computationally expensive but also has the risk

f overfitting. Therefore, dimension reduction techniques should be

pplied to extract most predictive patterns or feature sets before

rediction. 

However, the relationship between pain perception and brain

atterns may not be linear. In the present study, SIR-DA and other

inear methods identified a series of patterns of BOLD responses

elated to pain perception. Among them, insula, thalamus, ACC, S1,

2, MCC and SMA have been widely reported and they are com-

only referred to as ‘pain matrix’ [42] . Notably, compared to linear

ethods, SIR-DA found the contribution of default model network

DMN), including mPFC, PCC and angular gyrus, in the prediction

f pain. Such negative relationship between BOLD activity in DMN

nd behavior responses have been widely studied, and confirmed

he indispensable role of DMN in the modulation of perception

8,43–45] . More importantly, SIR-derived feature sets provided the

est pain prediction performance ( Fig. 6 ), indicating that conven-

ional linear methods may not fully detect the contribution from

rain patterns nonlinearly correlated with pain perception. 

FMRI-based pain prediction has been reported in a few studies.

rodersen et al., showed a prediction accuracy of 61% using a

ear-threshold experimental design [40] , and Marquand et al.,

eported results for classifying three different levels of painful

timuli with accuracies ranging from 68.3% to 91.7% (the highest

ccuracy was obtained from classifying nonpainful and maximal

olerance painful stimuli) [38] . Although it is not appropriate to

irectly compare the prediction accuracy of this study with others

ecause of different pain modalities and experimental settings,

he prediction accuracy of 77.61% for binary prediction and MAE

f 1.62 for continuous prediction achieved in this study are con-

idered satisfactory. As a future development, the predication

ccuracy could be further improved by incorporating other pain-

elated variables (such as demographic parameters, resting-state

euroimaging data, etc.) into the prediction model, with an aim

hat, ultimately, the fMRI-based pain prediction method could be

sed in clinical practices. 
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