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� A joint spatial–temporal–spectral filter combining common spatial pattern and wavelet filtering can
significantly increase the signal-to-noise ratio of single-trial visual evoked potentials.

� The proposed approach can obtain robust and reliable visual evoked potentials in an automated and
fast manner, thus satisfying the requirements of practical brain–computer interface systems.

� The proposed approach can be potentially used to achieve real-time and automated detection of
single-trial evoked potentials or event-related potentials in various paradigms.

a b s t r a c t

Objective: This study aims (1) to develop an automated and fast approach for detecting visual evoked
potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a
real-time and high-performance brain–computer interface (BCI) system.
Methods: The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter
and wavelet filtering (WF) a temporal–spectral filter to jointly enhance the signal-to-noise ratio (SNR)
of single-trial VEPs. The performance of the joint spatial–temporal–spectral filtering approach was
assessed in a four-command VEP-based BCI system.
Results: The offline classification accuracy of the BCI system was significantly improved from 67.6 ± 12.5%
(raw data) to 97.3 ± 2.1% (data filtered by CSP and WF). The proposed approach was successfully
implemented in an online BCI system, where subjects could make 20 decisions in one minute with
classification accuracy of 90%.
Conclusions: The proposed single-trial detection approach is able to obtain robust and reliable VEP
waveform in an automatic and fast way and it is applicable in VEP based online BCI systems.
Significance: This approach provides a real-time and automated solution for single-trial detection of
evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many
applications such as BCI and intraoperative monitoring.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Brain–computer interface (BCI) is an emerging technology
which can establish a pathway between the human brain and com-
puters through recording and decoding brain activity (Wolpaw
et al., 2002). Since the control of BCI system is directly based on
the recorded brain activity without the involvement of neuromus-
cular system, it allows people who suffer from motor dysfunction
or impairment (e.g., amyotrophic lateral sclerosis, brainstem
stroke, and spinal cord injury) to communicate with the external
world or control prosthesis (Vaughan et al., 2003). In addition,
BCI plays an important role in neurofeedback training (Strehl
et al., 2006), and can be used by healthy people in various applica-
tions, such as computer game control (Hjelm and Browall, 2000;
Lalor et al., 2005) and music generation (Miranda, 2010).
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Most existing BCI systems use electroencephalogram (EEG) to
capture information on the subject’s intention for controlling
external devices (Niedermeyer and Da Silva, 2005). Visual evoked
potentials (VEPs), which are phase-locked EEG responses evoked
by visual stimulation, are one of the most extensively used EEG
signals in BCI systems (Bin et al., 2009). According to the stimulus
sequence modulation approach used, VEP-based BCI systems can
be categorized into three types: (1) time modulated VEP (t-VEP)
BCI, where stimulus sequences of different targets have indepen-
dent and random flash onsets (Guo et al., 2008; Lee et al., 2006,
2008); (2) frequency modulated VEP (f-VEP) BCI, where stimuli
are flashed at different frequencies (Allison et al., 2008; Jia et al.,
2007; Middendorf et al., 2000; Müller-Putz et al., 2005); (3) code
modulated VEP (c-VEP) BCI, where stimuli are encoded in pseudo-
random binary sequences (Hanagata and Momose, 2002).

Recently, we have proposed a new encoding/decoding scheme
for BCI based on chromatic transient VEP (CTVEP), which is evoked
by low-frequency isoluminant chromatic stimuli for the purpose of
minimizing the risk of eliciting epileptic seizures and reducing
visual fatigue (Lai et al., 2011). In the CTVEP-BCI system, isolumi-
nant chromatic stimuli are time-encoded into different binary
codes (‘‘1’’: presence of a visual stimulation; ‘‘0’’: absence of a
visual stimulation), which are flickered simultaneously in different
positions on the screen to serve as different input commands.
Users can operate the BCI system by gazing at the target visual
stimulation, and the user’s intention can be decoded by calculating
and comparing correlation coefficients between the code modu-
lated CTVEP signals and CTVEP templates of different binary codes.
Because the low-amplitude CTVEPs are usually buried in high-
amplitude background of ongoing EEG and other non-cortical arti-
facts (Hu et al., 2010), the signal-to-noise ratio (SNR) of single-trial
CTVEPs is very low, and reliable code-modulated CTVEPs were
obtained by averaging EEG recordings of three identical epochs
(Lai et al., 2011). This averaging approach could markedly enhance
the SNR of CTVEPs, but greatly reduced the speed of the CTVEP-BCI
system.

To achieve a high-speed and high-accuracy VEP-based BCI
system, a fast and reliable approach to detect VEPs in single trials
is highly desirable. Spatial filtering, which separates stimulus-
elicited brain responses (e.g., VEPs) and ongoing EEG activity (or
non-cortical artifacts) based on their distinct scalp distributions,
has been popularly adopted to enhance the SNR of evoked poten-
tials (EPs) and event-related potentials (ERPs) (Hu et al., 2011).
One dominant spatial filter used is independent component analy-
sis (ICA) (Makeig et al., 1996, 1997), which can identify and remove
non-cortical artifacts, such as electrical activities related to eye
blinks, eye movements, and muscle movements. In addition,
temporal–spectral filtering, such as discrete wavelet filter (Quian
Quiroga and Garcia, 2003) and continuous wavelet filter (Hu
et al., 2010), can provide a time-varying filter based on time–
frequency patterns of single-trial EPs/ERPs.

However, to the best of our knowledge, few single-trial EP/ERP
detection methods have been successfully applied to real-time BCI
systems for the following reasons. First, most available single-trial
EP/ERP detection approaches are computationally demanding.
Second, some techniques used for single-trial EP/ERP detection
need intensive manual operation and cannot be executed automat-
ically. Third, some spatial filtering techniques (such as ICA) only
perform well on high-density EEG recordings (e.g., >16 channels),
while a few-channel montage is more favored in practical BCI
systems (Blankertz et al., 2011). To address these problems, we
proposed an optimal filter by jointly utilizing distinct characteris-
tics of VEPs in spatial, temporal, and spectral domains. This joint
spatial–temporal–spectral filter was achieved by combining a
common spatial pattern (CSP) based spatial filter and a wavelet
filtering (WF) based temporal–spectral filter (Hu et al., 2010).
The performance of the proposed spatial–temporal–spectral filter
was evaluated by means of the SNR of single-trial CTVEPs, and
the effectiveness of the proposed approach in the CTVEP-BCI
system was assessed using classification accuracy. Furthermore,
EEG data from fewer channels (i.e., 9, 7, and 5 channels) were used
to evaluate the robustness of the single-trial VEP detection
approach. Finally, the proposed approach was applied in a four-
command VEP-based real-time BCI system, and its performance
was evaluated in terms of information transfer rate.
2. Methods

2.1. Experimental design and EEG data collection

Eight healthy subjects (four males and four females) aged
21–25 years participated in the study. All subjects had normal or
corrected-to-normal vision of P20/20 Snellen visual acuity, and
were classified as normal color vision by the Ishihara test and
the Farnsworth-Munsell 100-Hue test. No previous ocular or
systemic disease was reported for these subjects. All subjects gave
their written informed consent, and the local ethics committee
approved the experimental procedures.

In each experiment, the subject was seated in a comfortable
chair in a dim and unshielded laboratory with reasonable activities
to simulate real-life situation. EEG signals were recorded using 13
Ag/AgCl channels positioned around the visual cortex based on the
NeuroScan Quik-cap electrode placement system (Compumedics
NeuroScan, EI Paso, TX, USA) with bandpass filtering of 1–30 Hz
and a sampling rate of 1 kHz. Channels Fz and Cz were respectively
used as ground and reference, and impedances of all channels were
kept below 10 kX.
2.1.1. Offline BCI experiment
In the offline experiment (Fig. 1), subjects were instructed to

gaze at the stimuli binocularly, and the viewing distance was
100 cm. Isoluminant red-green circular sinusoidal gratings with
spatial frequency of 2 cpd were presented on a Dell 17.300

HD + Anti-Glare LED-backlit monitor (Dell, Round Rock, TX, USA).
The monitor’s refreshing rate was 60 Hz, and the resolution of
the screen was 1600 � 900 pixels (equivalent to 22� � 12�). In
the CIE XYZ coordinate system, red was defined as x = 0.406,
y = 0.287; green was defined as x = 0.223, y = 0.374. Their mean
was x = 0.314, y = 0.330 with a mean luminance of 20 cd/m2. Note
that (x, y) represented the chromaticity coordinate in CIE 1931 XYZ
color space, and the background was kept unchanged at the mean
chromaticity and luminance. The stimulus had a diameter of 2�
with a small black dot acting as the fixation center. Our previous
study showed that such a configuration of visual stimulation could
maximize the amplitude of CTVEPs (Lai et al., 2011). Chromatic
stimuli were presented in a pattern onset/offset configuration. Pre-
cisely, a visual stimulus presented for 50 ms and then absented for
200 ms denoted the ‘‘1’’ bit, while one silent cycle without any
visual stimulus for 250 ms denoted the ‘‘0’’ bit. We encoded the
visual stimulation into six 4-bit binary codes, each containing
two ‘‘1’’-bits and two ‘‘0’’-bits (1–1–0–0, 1–0–1–0, 0–1–0–1, 1–0–
0–1, 0–0–1–1, 0–1–1–0), for these codes achieve a good tradeoff
between the number of control inputs and the quality of input sig-
nals (Lai et al., 2011). In this study, four codes (1–1–0–0, 1–0–1–0,
0–1–0–1, 0–1–1–0) were used in the four-command BCI system
(Fig. 1).

The offline experiment consisted of two sessions: a training ses-
sion and a test session. The training session was used to obtain
CTVEP templates for each subject, and the test session was used
to validate the performance of the proposed spatial–temporal–
spectral filter. In the training session, 20 segments of visual stimuli,



Fig. 1. Experiment design. (a) Channel montage used in the experiment. EEG data were collected from eleven channels over the visual cortex. Fz and Cz were respectively
used as the ground and reference channels. (b) The locations of CTVEP stimuli (isoluminant red-green circular sinusoidal gratings with spatial frequency of 2 cpd) in training
and test sessions were respectively displayed in the upper and lower panels. (c) The paradigm of the training session. Subjects were instructed to gaze at the fixation between
the first and the second notification sounds to minimize eye blink. Visual stimuli were delivered in segments of three identical time-encoded epochs (4-bit code). A visual
stimulus presented for 50 ms and then absented for 200 ms denoted the ‘‘1’’ bit, while one silent cycle without any visual stimulus for 250 ms denoted the ‘‘0’’ bit. Four types
of 4-bit codes were randomly delivered at the center of the screen, and EEG data from in a total twenty segments (five segments per code) were collected. (d) The paradigm of
the test session. The stimuli of four types of 4-bit codes were flickered simultaneously epoch by epoch with an inter-segment interval of 2 s in different locations of the screen
(i.e., top, bottom, left, and right sides of the screen). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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consisting of three identical time-encoded epochs (4-bit codes),
were randomly presented at the center of the screen. The time
interval between two consecutive segments was 2 s. Because two
‘‘1’’-bit CTVEP trials were included in each time-encoded epoch,
there were 60 epochs (20 segments � 3 epochs) and 120 ‘‘1’’-bit
CTVEP trials (60 epochs � 2 ‘‘1’’-bit trials) in total in the training
session. In the test session, the visual stimuli of the four types of
4-bit codes were flickered simultaneously in different locations
of the screen (i.e., top, bottom, left, and right sides of the screen).
Each segment contained only one epoch, and the time interval
between consecutive segments was 2 s. Subjects were asked to
gaze at the visual stimuli epoch by epoch in a clockwise order
starting from the top side. In total, 20 CTVEP epochs (5 epochs
per code) and 40 ‘‘1’’-bit CTVEP trials (20 epochs � 2 ‘‘1’’-bit trials)
were collected in the test session (Fig. 1). It is important to note
that, in this paper, an ‘‘epoch’’ denotes the EEG response to a
4-bit code and has a length of 1 s, while a ‘‘trial’’ denotes the EEG
response to one bit (‘‘1’’ or ‘‘0’’) and has a length of 250 ms.
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2.1.2. Online BCI experiment
In the online experiment, subjects were instructed to play a

mind-controlled Sokoban game, in which the game character was
required to push crates to pre-specified storage locations. EEG
signals were recorded and processed in real time by the proposed
single-trial VEP detection approach. Details of the online game
environment are introduced in Section 1 of the Supplementary
Material.

2.2. Data analysis: single-trial VEP feature extraction

A novel spatial–temporal–spectral filter based on CSP (to filter
the signal in the spatial domain) and WF (to filter the signal in
the temporal–spectral domain) was developed for single-trial
detection of CTVEPs. CSP can enhance the SNR of CTVEPs by
separating and retrieving stimulus-evoked EEG responses from
spontaneous EEG activity. WF is able to further enhance the SNR
of CTVEPs by identifying and retaining the time–frequency pattern
of CTVEPs matching that of the ‘‘1’’-bit template.

2.2.1. Common spatial pattern
CSP was originally applied in EEG studies to quantitatively

extract abnormal components from background EEG (Koles,
1991; Koles et al., 1990). Blankertz et al. (2008) showed that CSP
could serve as a powerful technique in BCI for discriminating
EEG signals with different mental intentions, and since then CSP
has gradually gained popularity in BCI research. Because we
encoded the visual stimuli into binary codes, i.e., ‘‘0’’ and ‘‘1’’ bits,
CSP could be used to discriminate CTVEPs (‘‘1’’-bit) and resting EEG
(‘‘0’’-bit) by regarding them as two different classes and maximiz-
ing the difference between the variances of the two classes.

Denote Xi
1 2 RN�T as the data of the ith ‘‘1’’-bit, where N is the

number of channels and T is the number of samples (in the present
study T ¼ 250 and N ¼ 11 when all EEG channels were used). Sim-
ilarly, denote Xi

0 2 RN�T as the data of the ith ‘‘0’’-bit. CSP calculates
the generalized eigenvector w, which maximizes the difference in
variance between two classes Xi

1 and Xi
0, by solving the equation:

hXi
1ðX

i
1Þ

T
iw ¼ khXi

0ðX
i
0Þ

T
iw ð1Þ

where h�i is the averaging operator and k is the generalized eigen-
value. The matrix W ¼ ½w1; . . . ;wN� 2 RN�N consists of N eigenvec-
tors, w1; . . . ;wN , estimated from Eq. (1), and A ¼W�1 2 RN�N is
the spatial pattern represented as a weighting matrix of EEG
channels. By sorting the eigenvalues, CSP provides an ordered list
of spatial patterns according to their discriminative power between
the two classes. The spatial pattern with the maximum variance of
CTVEP-related components (Xi

1) will capture the minimal variance
of resting EEG-related components (Xi

0). Typically, only a few pairs
of spatial patterns can effectively discriminate between the two
classes (Müller-Gerking et al., 1999). In this work, two spatial pat-
terns (two eigenvectors corresponding to the largest and smallest
eigenvalues) were selected to reconstruct spatial-filtered single-
trial EEG responses of all channels (see Section 2 in the Supplemen-
tary Material for the reason of selecting two CSP components).
These two spatial patterns, which isolated CTVEPs (contained only
in Xi

1) from spontaneous EEG (contained in Xi
0 as well as in Xi

1),
worked as an effective spatial filter. The CSP-based spatial filter
was modeled using EEG data collected in the training session, and
was applied to EEG data collected in the test session.

In our previous work (Lai et al., 2011), spatial filtering was
achieved by re-referencing EEG signals to Oz. Such a re-reference
(Re-Ref) operation can suppress spontaneous EEG activities that
had similar amplitudes widely spreaded over the visual cortex.
Here, the performance (assessed using classification accuracy) of
both spatial filters (CSP vs. Re-Ref) was compared.
2.2.2. Wavelet filtering
WF was used to isolate phase-locked CTVEPs from EEG artifacts

in the time–frequency domain in the following steps (Fig. 2): (1)
single-trial CTVEPs were transformed into time–frequency repre-
sentations using continuous wavelet transform (CWT); (2) a spe-
cific time–frequency region (a mask for WF) representing power
distribution of phase-locked CTVEPs was identified from the CWT
of the averaged CTVEPs; (3) single-trial filtered CTVEPs were
reconstructed from the wavelet coefficients within the CTVEP-
related mask using inverse CWT (ICWT). The mask for WF was
obtained from EEG signals collected in the training session, and
applied to EEG signals collected in both the training and test
sessions.

2.2.2.1. Continuous wavelet transform. CWT is able to obtain the
time–frequency representation of a signal with an optimal com-
promise between time resolution and frequency resolution by
adapting the temporal window width as a function of frequency.
The CWT of one trial of CTVEP waveform xðtÞ was obtained as:

Wðs; f Þ ¼
Z

t
xðtÞ

ffiffiffiffiffiffiffiffiffi
f=f0

q
w�ðf=f0ðt � sÞÞdt ð2Þ

wðtÞ ¼ 1ffiffiffiffiffiffiffi
pf0

p e2ipf0te
�t2

fb ð3Þ

where s and f are the time samples and frequency index respec-
tively, and wðtÞ is the Morlet wavelet acting as mother wavelet with
central frequency f0 and bandwidth fb. In this study, fb was set to 0.1,
while f0 was selected by an empirical function:

f0 ¼ 8:8PLF � 3:52 ð4Þ

where PLF was the power ratio of low frequency (<10 Hz) compo-
nents of xðtÞ. The empirical function implied that f0 was propor-
tional to the low-frequency power of CTVEPs to be analyzed (see
Section 3 of the Supplementary Material for details).

2.2.2.2. Time–frequency masking. A binary time–frequency mask Mf

was generated from the CTVEP waveform averaged across all trials
of one subject in the training session. The cumulative distribution
function (CDF) of the time–frequency representation of the aver-
aged CTVEP waveform was calculated. Where the CDF was larger
than the threshold 0.55 � [max(CDF)�min(CDF)] + min(CDF), the
corresponding time–frequency pixels were set to 1, while others
were set to 0. The threshold was determined with the objective
of retaining the major feature of CTVEPs while removing as much
noise as possible. In the present study, the threshold value was
selected to achieve the highest classification accuracy in the train-
ing dataset (see Section 4 of the Supplementary Material). The fil-
tered time–frequency representation WF of one trial was given by:

WFðs; f Þ ¼ Mf Wðs; f Þ: ð5Þ
2.2.2.3. Inverse continuous wavelet transform (ICWT). Finally, the fil-
tered single-trial CTVEP was obtained from the masked time–fre-
quency representations using ICWT:

yðtÞ ¼
Z

s

Z
f
ðf=f0Þ2WFðs; f Þ

ffiffiffiffiffiffiffiffiffi
f=f0

q
wðf=f0ðt � sÞÞdsdf ð6Þ

where yðtÞ is the filtered single-trial CTVEP.

2.3. Performance evaluation

In order to quantitatively assess the performance of the pro-
posed spatial–temporal–spectral filter, a similarity index (SMI)
(Su et al., 2012), which was the power ratio between the



Fig. 2. Flowchart describing the procedure of WF to enhance the SNR of CTVEP responses. (a) The time–frequency representation of averaged CTVEPs was obtained using
CWT, and the time–frequency mask was generated by thresholding this time–frequency representation. (b) The time–frequency mask was applied to single-trial time–
frequency representations of both CTVEPs (‘‘1’’-bit) and resting EEG (‘‘0’’-bit). Filtered single-trial time-course data of both CTVEPs and resting EEG were reconstructed in the
time domain using ICWT.
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‘‘CTVEP-like’’ signal in a test trial and the residual, was employed.
Let X1 be the average of all training trials of ‘‘1’’-bit and Xi

1 be the ith

test trial of ‘‘1’’-bit. Then, the SMI was calculated as:
SMI ¼ 10log10ðr2ðSÞ=r2ðNÞÞ ð7Þ
where S ¼ ðX1Þ
T

Xi
1

ðX1Þ
T

X1

X1 is the orthogonal projection of Xi
1 onto X1, and

N ¼ Xi
1 � S is the residual part. A large SMI implies that the test trial

Xi
1 is similar to the average X1 of training trials. Thus, SMI can be

used to approximate the SNR of single-trial CTVEPs (Huang et al.,
2013).

SMI values calculated from the raw data, filtered data after CSP,
and after CSP + WF were compared using a 3-level one-way
repeated-measures analysis of variance (ANOVA). If the main effect
of ANOVA was significant (p < 0.05), post hoc pairwise comparisons
(two-sample t-test) were performed.
2.4. Feature extraction and classification

The Pearson’s correlation method (PCM) (Rodgers and
Nicewander, 1988) was used in our BCI system to classify the
coded CTVEP epochs into four categories. Precisely, four CTVEP
templates corresponding to four different binary codes were
obtained in the training session. For each epoch in the test session,
correlation coefficients between the current epoch and the four
templates were calculated and compared. The epoch was classified
into the category whose CTVEP template had the largest correla-
tion coefficient with the epoch.

It should be noted that the PCM worked at the level of epochs
instead of trials (one epoch consisted of four trials), and it was spe-
cific to the CTVEP-BCI system. To test whether the single-trial VEP
detection approach contributes to single-trial classification, we
used several classifiers, including support vector machine (Cortes
and Vapnik, 1995; Kaper et al., 2004; Rakotomamonjy and
Guigue, 2008), linear discriminant analysis (Bostanov, 2004;
Garrett et al., 2003; Scherer et al., 2004), and Naïve Bayes (Zhang,
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2004), to classify CTVEP waveforms (‘‘1’’-bit) and EEG activities
(‘‘0’’-bit) based on extracted features (e.g., latency and amplitude).
The results showed that each step of the single-trial VEP detection
approach was able to significantly improve the accuracy of single-
trial classification. Please refer to Section 5 of the Supplementary
Material for details about classification based on latency and
amplitude of VEP.

2.5. Performance assessment with fewer channel montages

Because a fewer channel montage is preferred in real BCI appli-
cations (Blankertz et al., 2011; Popescu et al., 2007), the perfor-
mance of the proposed single-trial VEP detection approach was
assessed (using classification accuracy) under nine settings of
fewer-channel montages around the visual cortex (one 11-channel
montage (I), two 9-channel montages (II and III), three 7-channel
montages (IV, V, and VI), and three 5-channel montages (VII, VIII,
and IX); see Fig. 3).

2.6. Performance assessment of online BCI system

The performance of the online BCI system was assessed using
the information transfer rate (ITR):
Fig. 3. Nine types of montages with fewer channels were used to evaluate the performan
two types of 9 channels (II, III), three types of 7 channels (IV, V, VI), and three types of 5
strongest CTVEP responses were detected.
ITR ¼ L � plog2ðpÞ þ ð1� pÞlog2
1� p
N � 1

� �
þ log2ðNÞ

� �
ð8Þ
where L is the number of decisions in one minute, and p is the accu-
racy of the subject in making decisions among N targets.
3. Results

3.1. CTVEP responses

Distinctive CTVEP responses (with two distinct deflections: a
negative CII deflection and a positive CIII deflection) were obtained
at all channels and from all 8 subjects in the offline training session
(Fig. 4), although there was large variability across channels and
subjects. The latencies and amplitudes of averaged CII and CIII at
Oz were as follows: CII latency (106.3 ± 21.9 ms); CII amplitude
(�4.2 ± 1.1 lV); CIII latency (194.1 ± 40.4 ms); CIII amplitude
(3.7 ± 2.3 lV). Another positive CI deflection, which is mainly
responsible for isochromatic luminance modulation (Odom et al.,
2004), was presented with a small amplitude, which was consis-
tent with our previous work (Lai et al., 2011).
ce of the single-trial VEP detection approach, including one type of 11 channels (I),
channels (VII, VIII, IX). Note that the selected channels were close to Oz, where the



Fig. 4. Averaged CTVEP responses (raw data) of all channels. Colored lines denote the averaged CTVEP responses of each subject, and the bold and dash black lines denote
respectively the group average and standard deviation of CTVEP responses across subjects. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3.2. Performance of the spatial–temporal–spectral filter

Fig. 5 (a) showed the effect of each filtering step (CSP and WF) in
the proposed spatial–temporal–spectral filter on ‘‘0’’-bit trials and
‘‘1’’-bit trials at Oz for a representative subject. Fig. 5 (b) demon-
strated that both CSP and WF significantly enhanced the SMI of
CTVEP trials (raw data: �6.44 ± 4.23; after CSP: 0.22 ± 3.95; after
CSP + WF: 10.80 ± 6.18; F = 37.79, p < 0.0001; one-way repeated-
measures ANOVA). Post hoc comparison revealed that the enhance-
ments of SMI (1) from raw data to filtered data after CSP, (2) from
raw data to filtered data after CSP + WF, and (3) from filtered data
after CSP to filtered data after CSP + WF were significant (p = 0.004,
p < 0.001, and p < 0.001 respectively; two-sample t-test).
3.3. Classification accuracy of offline BCI

Fig. 6 (a) showed the correlation coefficients between code-
modulated CTVEP epochs and four CTVEP templates for a represen-
tative subject. Correlation coefficients between each epoch and
their corresponding template (CCC) were marked in red, while
correlation coefficients between each epoch and mismatched
templates (CCM) were marked in other colors. Intuitively, a high
classification accuracy required CCC to be larger than the corre-
sponding CCM in most epochs. In the top row of Fig. 6 (a), CCC

obtained from raw data was not the largest among all four CC in
most epochs, which indicated the classification accuracy was not
high. In the middle row of Fig. 6 (a), CCC obtained from filtered data
after CSP was the largest among all four correlation coefficients in
most epochs while the distance between CCC and CCM was small. In
the bottom row of Fig. 6 (a), CCC obtained from filtered data after
CSP + WF was the largest among all four correlation coefficients
in almost all epochs and the distance between CCC and CCM was
larger, indicating higher classification accuracy.

Fig. 6 (b) illustrated the significant increase of classification
accuracy across subjects after each step (raw data: 67.6 ± 12.5%;
data after Re-Ref: 78.3 ± 7.1%; data after Re-Ref + WF:
85.6 ± 9.0%; data after CSP: 88.4 ± 6.2%; data after CSP + WF:
97.3 ± 2.1%; F = 26.14, p < 0.0001; one-way repeated-measures
ANOVA). Post hoc comparison revealed that the classification accu-
racy from data after CSP + WF was significantly higher than those
from raw data, data after Re-Ref, data after Re-Ref + WF, and data
after CSP (p < 0.01 for all comparisons; two-sample t-test).
3.4. Performance on fewer channel montages

Tables 1 and 2 respectively summarized the classification accu-
racy of each subject obtained from filtered data after CSP and data
after CSP + WF using nine types of fewer-channel montages around
the visual cortex (Fig. 3). Generally, the classification accuracy was
decreased with the reduction of the channels, implying that the
performance of CSP was limited by fewer-channel montages. In
addition, the classification accuracy obtained from filtered data
after CSP + WF was significantly larger than that from filtered data
after CSP for all types of fewer channel montages (p < 0.01 for I and
II; p < 0.05 for III, IV, VI, VII, and VIII), which indicated that the WF
could compensate for the limited performance of CSP to some
extent when fewer-channel montages were used.

3.5. Performance of online BCI system

All eight subjects were instructed to play the mind-controlled
Sokoban game through the online CTVEP-BCI system, and all of
them successfully operated the online BCI system. Specifically,
subjects could make 20 decisions in one minute (L = 20) with an
average accuracy of 90%. Thus, the ITR of the online CTVEP-BCI
system was 27.5 bits/min. In addition, the proposed spatial–
temporal–spectral filter and the PCM-based classification were
computationally effective (<100 ms for one trial with PC configura-
tion of Intel Core i7–2600 CPU @ 3.40 GHz and 8 GB RAM) so that
they can be well used for online BCI systems.

4. Discussion

In this paper, an automated and fast single-trial VEP detection
approach, which combined a CSP-based spatial filter and a WF-
based temporal–spectral filter, was developed for a CTVEP-BCI sys-
tem. Results obtained from an offline BCI system showed that the
SNR of single-trial VEPs was significantly improved by using the
proposed approach. The single-trial VEP detection approach can
significantly increase the classification accuracy of a four-com-
mand offline CTVEP-BCI system from 67.6 ± 12.5% to 97.3 ± 2.1%.
Further, the proposed approach was successfully implemented in
a four-command online CTVEP-BCI system, which worked accu-
rately and effectively on normal subjects achieving an ITR of
27.5 bits/min.



Fig. 5. Performance of the proposed single-trial VEP detection approach on CTVEP trials and resting EEG trials (measured at Oz). (a) One hundred and twenty single-trial
CTVEPs and resting EEG from a representative subject were processed by CSP and WF. (b) The proposed single-trial VEP detection approach significantly enhanced the SMI of
CTVEP responses (lower panel; F = 37.79, p < 0.0001; one-way repeated-measures ANOVA).
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4.1. Methodological considerations

4.1.1. Spatial filter
Numerous spatial filter algorithms have been well developed to

enhance the SNR of EP/ERPs and to improve the prediction accu-
racy in BCI systems (McFarland et al., 1997). Because of the capa-
bility of identifying and removing electrooculographical or
electromyographical artifacts from EEG, ICA has been extensively
used in BCI systems based on P300 (Xu et al., 2004), auditory EP
(Hill et al., 2004), steady-state VEP (Wang et al., 2006), and motor
imaginary EEG (Qin et al., 2004). However, it has been shown that
the performance of ICA in isolating stimulus-evoked components
was not satisfactory because ICA essentially attempts to find
non-Gaussian components but EEG source components are often



Fig. 6. Improvements of classification accuracy by the proposed single-trial detection approach. (a) Correlation coefficients between code modulated CTVEP epochs and four
CTVEP templates from a representative subject. Red circles indicate correlation coefficients calculated between CTVEP epochs and their corresponding template (CCC). Circles
with other colors indicate correlation coefficients calculated between CTVEP epochs and mismatched templates (CCM). (b) The proposed single-trial detection approach
significantly improved the classification accuracy (F = 26.14, p < 0.0001; one-way repeated-measures ANOVA). Error bars represent standard deviation across subjects. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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not far from Gaussian (Hyvärinen et al., 2010). Therefore, ICA may
not be able to effectively discriminate and isolate stimulus-related
EEG responses from various artifacts.
In contrast, CSP, being a supervised algorithm that makes use of
prior information on two populations of multivariate signals,
decomposes EEG signals into a set of spatial patterns, which



Table 1
Classification accuracy obtained from data after CSP with montages of fewer channels.

Subjects I II III IV V VI VII VIII IX

#1 0.87 0.80 0.70 0.57 0.75 0.82 0.78 0.42 0.73
#2 0.87 0.75 0.57 0.52 0.72 0.88 0.67 0.68 0.77
#3 0.98 0.80 0.52 0.52 0.98 0.95 0.62 0.32 0.78
#4 0.83 0.45 0.82 0.65 0.83 0.58 0.72 0.67 0.67
#5 0.90 0.90 0.75 0.77 0.93 0.58 0.82 0.62 0.92
#6 0.94 0.97 0.98 0.87 0.57 0.83 0.80 0.80 0.58
#7 0.78 0.82 1.00 1.00 0.93 0.77 0.92 0.55 0.50
#8 0.90 0.90 0.88 0.80 0.93 0.87 0.88 0.87 0.93

Mean 0.88 0.80 0.78 0.71 0.83 0.79 0.78 0.61 0.74
Std 0.06 0.16 0.18 0.18 0.14 0.14 0.10 0.18 0.15

Table 2
Classification accuracy obtained from data after CSP + WF with montages of fewer
channels.

Subjects I II III IV V VI VII VIII IX

#1 0.94 0.95 0.92 0.92 0.87 0.92 0.98 0.75 0.77
#2 0.95 0.92 0.63 0.80 0.77 0.92 0.85 0.77 0.78
#3 0.98 0.92 0.97 0.70 0.98 0.97 0.88 0.70 0.83
#4 0.97 0.55 0.92 0.68 0.93 0.63 0.73 0.75 0.70
#5 0.97 0.97 0.87 0.92 0.97 0.75 0.87 0.80 0.95
#6 1.00 1.00 1.00 0.98 0.95 0.98 0.97 0.78 0.87
#7 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.97
#8 0.97 0.91 0.91 0.87 0.93 0.89 0.89 0.81 0.86

Mean 0.97 0.91 0.91 0.87 0.93 0.89 0.90 0.81 0.86
Std 0.02 0.15 0.12 0.12 0.07 0.13 0.08 0.11 0.10
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maximizes their difference in variance (Blankertz et al., 2008;
Müller-Gerking et al., 1999). Importantly, the decomposed compo-
nents obtained using CSP are ordered according to their discrimi-
native powers. For this reason, unlike the selection of
independent components which heavily relies on the experience
of operators, the CSP components can be selected automatically
based on their discriminative powers. Although CSP has been pop-
ularly used in motor-imagery BCI for detecting event-related syn-
chronization or desynchronization (Blankertz et al., 2008; Müller-
Gerking et al., 1999), its application for extracting EP waveforms
has rarely been explored. In the present study, EEG data after visual
stimuli and resting EEG data were regarded as two populations of
multivariate signals in the CSP analysis. Since VEPs capture major
difference between the two populations of EEG data, they can be
well isolated from resting EEG by using CSP. In addition, CSP can
be executed rapidly and therefore is suitable for BCI applications.

Visual stimuli will sometimes induce eye blinks and muscle
activities, which cannot be identified and removed by CSP because
these non-cortical activities also account for the difference
between spontaneous activities and evoked responses. To address
the problem, an improved CSP using local temporally neighboring
samples can be applied to take into account the temporal informa-
tion of non-cortical activities in the estimation of covariance since
the outliers can only affect their neighboring samples (Wang and
Zheng, 2008). Another variant of CSP, called common spatio-spec-
tral pattern (CSSP) (Lemm et al., 2005), can also be used to improve
the performance of CSP. CSSP embeds a finite impulse response
spectral filter into CSP to produce a spatio-spectral filter. Since it
simultaneously performs filtering in the spatial domain and the
spectral domain, CSSP is expected to better discriminate evoked
EEG responses than CSP.
4.1.2. Temporal–spectral filter
To further enhance the SNR of single-trial VEPs, especially when

the number of EEG channels was limited, WF was adopted to ana-
lyze the CSP-filtered single-trial VEPs in the present study. WF was
achieved by thresholding the time–frequency representation of
group-averaged CTVEPs, with an aim to retain only the phase-
locked CTVEPs. Compared with conventional filtering in the fre-
quency domain, the temporal–spectral filter has time-varying filter
coefficients, so that it is better suited to enhance the SNR of EPs/
ERPs, whose spectrum varies greatly with time.

Many time–frequency analysis methods, such as the short-time
Fourier transform, can be used in the temporal–spectral filtering.
We chose CWT because it achieves an optimal compromise
between time and frequency resolutions by adapting the temporal
window width as a function of estimated frequency. Therefore,
CWT is able to obtain clear representations of both low-frequency
components and high-frequency components of the VEPs, facilitat-
ing subsequent temporal–spectral filtering. Our online BCI experi-
ment also showed that the CWT-based temporal–spectral filtering
could be implemented in real time.

4.2. Extensions of CTVEP BCI

In the proposed CTVEP-BCI system, a 4-bit coding scheme was
adopted and only four (each of them consisted of two ‘‘1’’ bits)
out of 16 possible codes were used to encode the control com-
mands. Since the proposed single-trial VEP detection approach
was applied to every bit of EEG signals, the CTVEP-BCI system
could be easily extended in two aspects: (1) use more codes in
the 4-bit coding scheme and (2) increase the number of bits in
the coding scheme. Such an extended CTVEP-BCI system can be
used for more complicated tasks that require more commands. It
should however be noted that too many ‘‘1’’ bits should be avoided
in a code, since CTVEPs can be suppressed due to repeated presen-
tation of visual stimuli with short interstimulus interval (Lai et al.,
2011).

4.3. Potential applications

4.3.1. Application to BCI
Single-trial detection of ERPs/EPs is crucial for ERP/EP-based BCI

systems, and, therefore, the proposed approach can be potentially
applied to various types of ERP/EP-based BCI systems, such as BCI
based on t-VEP (Guo et al., 2008; Lee et al., 2008), c-VEP (Hanagata
and Momose, 2002), and P300 (Krusienski et al., 2007; Pires et al.,
2009). In all these BCI systems, the CSP-based spatial filter can be
used to isolate components containing ERP/EP by defining EEG
data before and after the presentation of stimulation as two popu-
lations of multivariate signals. Subsequently, the WF-based tempo-
ral–spectral filter can be adopted to further enhance the SNR of
single-trial ERPs/EPs at each channel.

4.3.2. Application to neuroscience and clinical neurophysiology
Conventionally, the detection of ERPs/EPs relied on the across-

trial averaging (Rugg and Coles, 1995), which assumes that ERPs/
EPs are constant across trials. However, this assumption does not
hold, since converging evidence show that ERPs/EPs are largely
modulated by changes in stimulus parameters and cognitive fluc-
tuations, which vary considerably from trial to trial (Hu et al.,
2010; Mayhew et al., 2010; Mouraux and Iannetti, 2008). There-
fore, it is beneficial to apply single-trial ERP/EP detection tech-
niques in various fields of neuroscience and clinical
neurophysiology to reveal trial-to-trial dynamics in electrophysio-
logical recordings (Makeig et al., 2004). In addition, since the pro-
posed approach does not require any manual intervention, it will
not lead to any detection bias caused by subjective judgment and
can relieve operators from laborious manipulations. Importantly,
single-trial ERP/EP detection can serve as a key technology for inte-
gration of simultaneously-recorded EEG and functional magnetic
resonance imaging signals (Bénar et al., 2007; Debener et al.,
2006). By correlating trial-to-trial ERP/EP features with fMRI
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responses, we can reveal brain responses that were elicited by any
stimulus presentation or cognitive event with both high temporal
and spatial resolutions. Also, the proposed single-trial detection
approach can be applied in intra-operative neuro-monitoring to
detect ERP/EP changes with the progressive of operation and to
prevent any possible and potential neurologic damage (Hu et al.,
2001; Luk et al., 2001; Thomusch et al., 2002).

In this study, the proposed single-trial EP/ERP detection method
performed well at the within-subject level (i.e., the method was
trained on and applied to the same subject). But in clinical neuro-
physiology, it is more desirable to detect single-trial EP/ERP wave-
forms at the between-subject level (i.e., the proposed method can
be trained on a cohort of subjects and applied to another subject).
We also tested the performance of the proposed method at the
between-subject level using leave-one-subject-out cross-valida-
tion (see Section 6 in the Supplementary Material). It was shown
that the single-trial EP/ERP detection approach can also signifi-
cantly increase the classification accuracy at the between-subject
level (p = 0.01, paired sample t-test) when all subjects have normal
VEPs, but the accuracy at the between-subject level was not as
high as that at the within-subject level due to the relatively large
inter-subject variability. If the inter-subject variability is too large
(for example, some subjects have too short latencies or prolonged
latencies in VEPs), the proposed approach may not work well at the
between-subject level. Lastly, the good performance of the pro-
posed single-trial VEP detection approach is heavily dependent
on the compatibility of the VEP template with the single-trial
VEP response to be classified. When dealing with abnormal VEPs
(which are often encountered in clinical applications), the pro-
posed method can achieve satisfactory performance only if we
can have a template of abnormal VEPs and the morphology of
abnormal VEPs is consistent across trials (for within-subject classi-
fication) or across subjects (for between-subject variability).
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