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Abstract— Simultaneous collection of electroencephalogram 

(EEG) and functional magnetic resonance imaging (fMRI) is a 

promising neuroimaging technique, which can provide high 

resolution in both spatial and temporal domain. Because EEG 

recorded in MRI scanners is heavily contaminated with gradient 

artefact (GA), removal of GA from EEG is a crucial step in 

EEG-fMRI data analysis. To date, the most efficient methods to 

remove GA are the average artefact subtraction (AAS) method 

and its extensions. However, these methods assume perfect 

synchronization between EEG and fMRI recording, which could 

be violated in practice. In this paper, a least across-segment 

variance (LASV) method is proposed for correcting EEG-fMRI 

desynchronization. Simulation and real data tests were 

conducted to check the performance of LASV method. The 

results suggested that the LASV method is able to efficiently 

correct EEG-fMRI desynchronization in both synthetic and real 

data, providing a powerful tool for improving the performance 

of GA removal for desynchronized EEG-fMRI data. 

 

I. INTRODUCTION 

Simultaneous collection of electroencephalogram (EEG) 

and functional magnetic resonance imaging (fMRI) 

(EEG-fMRI) is a promising neuroimaging technique, because 

it is able to provide enhanced spatial and temporal resolution 

in human brain activities owing to the complementary nature 

of EEG and fMRI [1]. However, the simultaneously collected 

EEG signal is severely contaminated by the electromagnetic 

interference from fMRI, so EEG denoising is crucial for 

EEG-fMRI data analysis. 

Gradient artefact (GA), which is the EEG artefact caused by 

rapid-changing magnetic field of MRI scanning sequence [2], 

is the strongest artefact among various MRI-induced EEG 

artefacts. To date, the removal of GA is most typically 

achieved by applying average artefact subtraction (AAS) 

method [3] or its extensions [2, 4-6]. Despite the differences 

in technical details of these methods, all these methods assume 

perfect synchronization between EEG and fMRI recording, 

i.e., the period of GA is exactly an integer multiple of EEG 

sampling interval.  

However, EEG-fMRI synchronization could be violated in 

practice for various reasons. For example, it is known that the 

repetition time of an fMRI sequence (which determines the 
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period of GA) could be slightly deviated from its prescribed 

value due to the underlying rounding strategy of the MRI 

scanner [7]. Given the extremely large energy of GA, even a 

small violation in the synchronization could substantially 

reduce the effectiveness of GA removal of the AAS method or 

its extensions. Although EEG-fMRI recording systems with 

hardware-level synchronization technique are increasingly 

available [7, 8], many systems in use still run with 

independent EEG/fMRI clocks. Therefore, sophisticated 

signal processing methods are required for the correction of 

EEG-fMRI desynchronization.  

In the current study, a novel signal processing method 

named least across-segment variance (LASV) will be 

proposed for correcting EEG-fMRI desynchronization. The 

proposed method corrects desynchronization by resampling 

EEG signal with an appropriate sampling rate, such that the 

across-segment variance of the resampled EEG signal is 

minimized. The effectiveness of LASV method was validated 

using both a simulated dataset and a real EEG dataset 

collected simultaneously with fMRI recording. The results 

demonstrated that LASV method is able to correct EEG-fMRI 

desynchronization efficiently. 

 

II. METHODS 

The proposed least across-segment variance (LASV) 

method corrects EEG-fMRI desynchronization by resampling 

EEG signal to a new sampling rate, such that the resampled 

EEG signal is synchronized with fMRI sequence. It mainly 

consists of two steps: (1) estimate an EEG sampling rate that is 

synchronized with fMRI sequence; (2) resample EEG with the 

estimated sampling rate.  

A. EEG Sampling Rate Estimation 

Let ( )x t  denote the EEG signal in a particular channel 

(which is zero-mean centered), where t  is the time index (in 

seconds). The EEG signal ( )x t  recorded simultaneously with 

fMRI recording could be decomposed as:  

 ( ) ( ) ( ), x t g t e t  

where ( )g t  is a periodic signal denoting the GA with a period 

of T  (i.e., the prescribed repetition time of fMRI sequence), 

and ( )e t  is the residual EEG signal containing 

ballistocardiogram artefacts and other EEG signals. Such 

additivity assumption has been commonly accepted in 

previous literatures given the generative process of GA [2] 
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(though possible psycho-physiological coupling between 

EEG signal and GA could not be completely ruled out). Let 

[ ]x n  denote the sampled version of ( )x t  under sampling rate 

s
f , that is, [ ] ( / )

s
x n x n f , where n  is the index of EEG 

samples. And similarly, let [ ]g n  and [ ]e n  denote sampled 

versions of ( )g t  and ( )e t  respectively. Further, assume that 

there exists an integer number m  such that /
s

T m f  holds 

(i.e., perfect synchronization). In this case, [ ]g n  is a periodic 

signal with a period of m , so the AAS method is able to 

extract GA template accurately.  

Suppose that the actual GA period T  deviates slightly from 

its prescribed value T . In this case, [ ]g n  is no longer a 

periodic signal with period m , so the AAS method fails to 

extract GA template accurately. To correct this problem, 

LASV method estimates a new EEG sampling rate such that 

the resampled GA is a periodic signal with period m .  

Further, suppose that the corrected EEG sampling rate is 

s
f . The corrected EEG sampling rate could be regarded as a 

scaling transformation of 
s

f  as /
s s

f f h , where h  is a 

frequency scaling factor. Based on this representation, 
s

f  is 

denoted as a function of  h  in the following (i.e., ( )
s

f h ). The 

goal of the current step is reformulated as finding an 

appropriate scaling factor h , such that:  

 / ( ).
s

T m f h  

To solve the above equation, suppose that 
0

h  is a solution, 

and consider the characteristic of EEG signal resampled with 

0
( )

s
f h . Let [ ]

h
x n  denote the sampled version of ( )x t  under 

the corrected sampling rate ( )
s

f h , that is, [ ] ( / )
h s

x n x n f . 

Similarly, let [ ]
h

g n  and [ ]
h

e n  denote sampled versions of 

( )g t  and ( )e t  with the corrected sampling rate respectively. 

Furthermore, suppose that [ ]
h

x n  is divided into segments 

(length = m ) as 
,

[ ] [ ] 
h k h

x q x q km , where 
,

[ ]
h k

x q  denotes 

the k -th segment ( {1, 2, ..., }k K ), and {0,1, ..., 1} q m  

denotes the index of samples in each segment. The sample 

variance of [ ]
k

x q  across segments could be expanded as:  


,

var ( [ ]) var ( [ ]) var ( [ ])

2 cov ( [ ], [ ]).

   

  

k h k k h k h

k h h

x q g q km e q km

g q km e q km
 

In above equation, var ( )
k

f  denotes the sample variance of 

function f  across dependent variable k , and 
1 2

cov ( , )
k

f f  

denotes the sample covariance between functions 
1

f  and 
2

f . 

The convergence of each additive component in (3) (when 

 K ) is analyzed as follows. It is easy to verify that:  


0

, 0

0, if ,
lim var ( [ ])     

, if ,


  


k h

K
q h

h h
g q km

C h h
 

where 
,q h

C  is a non-negative value. And it is reasonable to 

assume that:  

 lim var ( [ ]) ,     0,


   
k h

K

e q km C h  

where C  is a positive constant. In addition, since GA ( )g t  

and residual EEG signal ( )e t  are generated from very 

different processes, it is reasonable to assume that ( )g t  and 

( )e t  are uncorrelated, which means that their sampled 

covariance converges to zero:  

 lim cov ( [ ], [ ]) 0.


  
k h h

K

g q km e q km  

According to (4), (5) and (6), the convergence of (3) is 

determined as:  


0

,

, 0

, if ,
lim var ( [ ])     

, if .


 

 
k h k

K
q h

C h h
x q

C C h h
 

That means, 
0

h  is a global minimum of 
,

var ( [ ])
k h k

x q  as 

K  approaches infinity. The local smoothness of 

,
var ( [ ])

k h k
x q  around 

0
h h  is also easy to verify. Therefore, 

it is possible to approximate 
0

h  by minimizing 

across-segment variance 
,

var ( [ ])
k h k

x q  around 1h . To 

increase statistical stability of the estimation, LASV method 

defines an objective function ( )J h  as the average of 

,
var ( [ ])

k h k
x q  across q :  


1

,

0

1
( ) var ( [ ]).





 
m

k h k

q

J h x q
m

 

And 
0

h  is approximated by minimizing the above objective 

function. Batch gradient descent method [9], which is a 

popular numerical method for the optimization of smooth 

functions, is applied to solve the above optimization problem. 

During each iteration of gradient descent, the values of ( )x t  

at the timings that are not sampled by [ ]x n  should be 

assessed, which are approximated by linear interpolation of 

[ ]x n . 

The above contents described the method of sampling rate 

estimation for a single EEG channel. For multi-channel EEG 

signal, sampling rate estimation is performed on a 

representative EEG channel. The EEG channel is selected 

automatically by finding the channel with the lowest 

signal-to-noise ratio (SNR) (i.e., the channel with the 

strongest GA), which is estimated by calculating the variance 

ratio of residual EEG signal (signal) and GA (noise) isolated 

by the AAS method.  

B. Resampling EEG Signal 

After the new EEG sampling rate is estimated, the next step 

is to resample the original EEG signal with the new sampling 

rate. That is, given the observations at ( / )
s

x n f  (i.e., [ ]x n ), 

interpolate at ˆ( / )
s

x nh f . In the current implementation, cubic 

spline interpolation was applied for this purpose, since it 

could achieve this goal with sufficient accuracy and 

computational efficiency. After resampling, GA removal 

methods (e.g., the AAS method) could be applied to the 
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resampled EEG signal.  

Restoring original EEG sampling rate after GA removal is 

not recommended to avoid possible signal degradation. But in 

the current paper, this step was still applied because we need 

to compare the residual signal after GA removal with the 

ground truth in the performance test (Section III). 

III. PERFORMANCE TEST 

A. Simulation Test 

Synthetic single-channel EEG data were constructed as the 

linear superposition of simulated GA and residual EEG signal, 

which were generated respectively as follows. 

On one hand, simulated GA was generated by sampling 

(sampling rate = 5000 Hz, which equals to the EEG sampling 

rate) the following sine wave signal: 


0

( ) sin(2 15.5 / ),  s t A t h  

where A  is a parameter modulating the strength of ( )s t  (and 

hence the SNR of synthetic signal), and 
0

h  is a frequency 

scaling factor (taken as the ground truth) modulating the 

deviation of the actual frequency of ( )s t  from its base 

frequency 15.5 Hz. Apparently, when 
0

1h , the simulated 

GA is perfectly synchronized with the EEG sampling rate. 

( )s t  was generated with different combinations of the 

parameter values listed in TABLE I.  

TABLE I.  PARAMETER VALUES FOR GENERATING ( )s t  

Parameters Values 

0
h    (1 - 10-5) – (1 + 10-5) in steps of 10-7 

SNR (modulated by A )   –30dB, –20dB, –10dB, 0dB  

 

On the other hand, the residual EEG signal was generated 

by directly using the real EEG signal recorded from a healthy 

subject with a 32-channel MR-compatible EEG cap (Brain 

Products GmbH, Munich, Germany; sampling rate: 5000 Hz; 

reference: FCz; duration: 5 mins) in an MRI recording 

environment without starting the MRI sequence. EEG signals 

in all EEG channels were band-pass filtered (pass-band: 1 – 

100 Hz), and normalized to have zero mean and unit variance. 

The signal from each EEG channel was added with the above 

simulated GA, yielding multiple synthetic EEG data for each 

possible combination of the parameter values. 

To assess the performance of the LASV method, the 

following tests were conducted (based on synthetic EEG 

signal divided into 150 segments). First, the accuracy of the 

estimated frequency scaling factors ĥ  under varying SNR 

was assessed. More specifically, the estimated scaling factors 

ĥ  was compared with the ground truth 
0

h  by calculating their 

mean squared error (MSE) under varying degree of 

desynchronization (controlled by 
0

h ) and SNR for each 

channel, and then the MSE values were averaged across 

channels. Second, the influence of the LASV method on the 

performance of the AAS method was assessed under a 

reasonable SNR in real data (SNR = –20 dB). In the current 

test, the AAS method was applied to remove the simulated GA 

from the synthetic dataset before and after LASV correction. 

The MSE between the residual synthetic signal after GA 

removal and the ground truth was calculated and averaged 

across all channels to measure the performance GA removal in 

both simulation conditions. 

B. Real Data Test 

A real EEG dataset collected simultaneously with fMRI 

was applied in the current test (based on EEG signal divided 

into 450 segments). The dataset was collected from 21 healthy 

subjects (11 males and 10 females) aged 22.8 ± 3.7 years 

(mean ± SD; range = 20 - 33 years). All volunteers signed their 

informed consent before the experiment, and the experimental 

procedure was approved by a local research ethics committee. 

The subjects were instructed to be engaged in an eyes-closed 

resting condition, during which EEG-fMRI data were 

recorded. EEG data were recorded using a 65-channel 

MR-compatible cap (Neuroscan; sampling rate: 5000 Hz). 

Functional MRI data were recorded using a Philips Achieva 

3T scanner with EPI sequence (repetition time = 2 s). The 

EEG signals were band-pass filtered (pass-band: 1 – 100 Hz) 

to remove artefacts that are not in the frequency range of EEG.  

To assess the performance of the LASV method on this 

dataset, the AAS method was applied to remove GA before 

and after LASV correction. Since the ground truth is 

unavailable in the current test, standard deviation (SD) of 

residual EEG signal (instead of MSE) was used to measure the 

performance of GA removal. Usually, a lower residual energy 

(as indexed by SD here) is an indicator of a more efficient GA 

removal [2, 10]. To avoid circularity problem, SD was 

calculated within the EEG segments. The SD (averaged across 

all channels) between the two conditions were compared at 

group level using paired t-test. To provide further insight in 

the difference in SD in the above test, the power spectral 

density (PSD) of residual EEG signal was also compared 

between the two conditions.  

IV. RESULTS 

A. Simulation Test 

TABLE II shows the MSE between the estimated scaling 

factor and ground truth under different SNR level (averaged 

across channels), suggesting high estimation accuracy of 

LASV under realistic SNR (in our experience, the SNR of real 

data is typically –15 to –25 dB). 

TABLE II.  THE MSE BETWEEN THE ESTIMATED SCALING FACTOR AND 

GROUND TRUTH 

SNR 0 -10 -20 -30 

MSE (mean ± 

SD; × 10-12) 

0.3071 

± 0.3339 

0.0330 

± 0.0399 

0.0037 

± 0.0043 

0.0004 

± 0.0004 

MSE (mean ± 

SD; % Scale*) 

0.8774 

± 0.9541 

0.0942 

± 0.1139 

0.0105 

± 0.0123 

0.0011 

± 0.0013 

*: percentage with respective to the MSE between h0 and 1. 
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Figure 1.  The MSE between the residual synthetic data after GA removal 

(SNR = -20 dB before GA removal) and ground truth (averaged across 

channels) with (blue) and without (red) LASV correction.  

 
Figure 2.  (A) The within-segment SD of the residual EEG signal after GA 

removal before and after LASV correction. (B) The PSD of residual EEG 

signal before and after GA removal. ***: p < 0.001. 

Fig. 1 shows the MSE between the residual synthetic data 

after GA removal (SNR = –20 dB before GA removal) and 

ground truth before and after LASV correction, which clearly 

illustrated that the influence of desynchronization was 

removed after LASV correction. 

B. Real Data Test 

Fig. 2(A) shows the within-segment SD of residual EEG 

signal before and after LASV correction, suggesting improved 

GA removal performance after LASV correction. Fig. 2(B) 

further illustrates the PSD of residual EEG signal before and 

after GA removal. The PSD of uncorrected signal shows a 

strong comb-like distribution (which should be closely related 

to residual GA) that are largely suppressed in the 

LASV-corrected signal, suggesting that the reduction in SD 

after LASV correction in Fig. 2(A) mainly reflects the 

removal of residual GA.  

V. CONCLUSION 

In the current study, a novel signal processing method 

called LASV for correcting EEG-fMRI desynchronization has 

been proposed, which achieves its goal by minimizing 

across-segment variance of EEG signal. Through simulation 

and real data tests, it has been demonstrated that the LASV 

method is able to efficiently remove the effect of EEG-fMRI 

desynchronization. This LASV method could be flexibly 

embedded in various popular GA removal methods (e.g., the 

AAS method and its extensions), holding great promise to 

improve their GA removal performance in desynchronized 

EEG-fMRI data. 
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