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The power of common spatial pattern (CSP) has been widely validated in electroencephalogram (EEG)

based brain–computer interface (BCI). However, its effectiveness is highly dependent on subject-

specific time segment, channel configuration and frequency band. Hence, the preprocessing procedure

of CSP algorithm is critical to enhance the performance of BCI system. This paper proposes a feature

brain–computer interface (BCI). We formulate the optimization of spatial spectral patterns, channel

configuration and time segment as maximizing the proposed criterions including mutual information

algorithm, Fisher ratio algorithm and wrapper method. The proposed method is evaluated on single

trial EEG from dataset IVa of BCI competition III. The results show that best features are selected by a

wrapper method and these features in cross-validation yield better performance compared to most of

the reported results.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Brain–computer interface (BCI) technique aims to translate
humans’ thoughts into commands. In recent years there is
continuous progress in both invasive and noninvasive BCI tech-
nology [1]. The study of electroencephalogram (EEG) based BCI
is attracting more and more researchers because of its relatively
simple and inexpensive equipment [2]. Moreover, the open accessed
datasets in BCI competition provide a comparable platform to
evaluate algorithms [3]. In this paper, we focus on noninvasive,
EEG based BCI systems.

It is reported that both actual movement and imaginary
movement of different body parts can cause mu and beta
rhythms: event-related desynchronization/synchronization (ERD/
ERS) [4]. ERD/ERS has been used widely in motor imagery BCI. One
of the biggest challenges to such a system is the low signal-to-
noise ratio (SNR) [5]. Since raw EEG recordings have a poor spatial
resolution due to volume conduction, it has motivated applica-
tions of spatial filters, which extract spatial information of
humans’ intention as much as possible. The common spatial
pattern algorithm is one of the frequently used methods for this
purpose. It finds the directions simultaneously diagonalizing two
ll rights reserved.
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covariance matrices, which are associated with two classes of
motor imagery conditions [6,7].

The CSP algorithm focuses only on spatial information. How-
ever, the performance of CSP is sensitive to subject-specific
parameters such as the time segment, channel configuration
and temporal frequency band-pass filtering of the EEG signals.
To solve the problem of manually tuning the subject-specific
frequency band for the CSP algorithm, several extensions of CSP
have been proposed. The solutions can be divided into three
categories. The first one can be viewed as embedding one or
several time-delay signals into the CSP procedure, such as
common spatial spectral pattern (CSSP) [8] and its improved
version common sparse spectral spatial pattern (CSSSP) [9]. The
second one optimizes the temporal filters equivalently in fre-
quency domain. The spectrally weighted common spatial pattern
(SWCSP) proposed by Tomioka et al. [10] and iterative spatial
spectral pattern learning (ISSPL [11]) fall into this category. The
third one utilizes several narrow band filters and select a reduced
set of features from all the narrow bands. The sub-band common
spatial pattern and filter bank common spatial pattern [12,13]
belong to this category. All the solutions have its own advantages
and disadvantages in optimizing the frequency information.
Moreover, all the above methods do not consider the channel
configuration, which is another important factor to influence the
CSP performance.

Since multi-channel EEG signals are highly correlated, and
signals from different channels do not contain the same amount
ectral patterns jointly with channel configuration for brain–
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of discriminative information. Applying a large number of EEG
channels may include more noisy and redundant signals in some
channels [14,15], which in turn degrades the BCI performance.
Another additional problem associated with CSP is its tendency to
overfit with a large number of channels because of inaccurate
estimation of the covariance matrix [16]. While too few channels
may not include enough information for high performance. How
to choose an appropriate number of most discriminant channels
is still an open question. To the best of our knowledge, only a few
researchers try to solve the channel selection problem for com-
mon spatial pattern algorithm. It includes regularized CSP for
sparse solution [17,18], which shrinks the coefficient of some
unimportant channels to be zeros. However, these algorithms
project the signals in the most discriminative direction at the
expense of decreasing the accuracy. Recently, another extension
of sparse algorithm is proposed [19], which reports better
classification accuracy than regularized CSP [17,18]. It solves a
more complicated quadratically constrained quadratic program-
ming problem, while the computational time may be a bottleneck
for real application. Based on the fact that it is a lack of efficient
algorithm for CSP to select proper channels. We learn from the
study method provided by optimal subject-independent channel
configuration for sensorimotor rhythms (SMR) based brain–com-
puter interfaces [20]. Twelve different fixed channel configura-
tions are compared to the full dense placement of electrodes. The
aim is to find the most proper channel configuration for common
spatial spectral patterns, hence, classification accuracy might be
further improved.

To address the problem of optimizing time segment, channel
configuration and temporal frequency band-pass filtering for EEG
signals jointly, the spectrally weighted common spatial pattern
(SWCSP) is calculated on different time segments and channel
configurations. These SWCSP features are highly correlated and
feature selection techniques are used to select the best time
segment and channel configuration for each individual subject.
Feature selection techniques can be organized into three cate-
gories, depending on how they combine the feature selection
search with the construction of the classification model: filter
methods, wrapper methods and embedded methods [21]. Filter
methods based on mutual information and Fisher ratio, wrapper
method based on SVM classifier are used in this study.

The main contribution of this paper includes firstly the
optimization of spatial spectral pattern, channel and time config-
uration is arranged in an optimization framework for each subject
with few parameters to tune. Secondly, we show that the channel
configuration is equivalently important to the BCI performance as
temporal or frequency information optimization. The features of
spatial spectral patterns are extracted by learning spatial filters
and spectral filters separately but with close relationship. The
best features are selected from multiple channel configurations
and time segments according to maximize mutual information,
Fisher ratio or classification accuracy by the wrapper method.

The rest of paper is organized as follows. We describe the
method in Section 2 and show the description of datasets and
experimental setup in Section 3. The results and discussion are
given in Sections 4 and 5, respectively. Section 6 concludes the
paper.
2. Methodology

2.1. Problem definition

Denote the original short segment of EEG signals as
XðiÞARN�T , i¼ 1,2, . . . ,L, in the training set D and the correspond-
ing class labels as yðiÞAfþ1,�1g in the class label set O e.g. right or
Please cite this article as: J. Meng, et al., Optimizing spatial sp
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left hand imaginary movement. The XðiÞ corresponds to one trial of
imaginary movement in a specific time window, N is the number
of channels, T is the number of time points in the time window,
and L is the total number of trials. Throughout this paper, we
assume that XðiÞ has been centered, which means XðiÞ ¼ XðiÞðIT�1=
T � 1T � 1

y

TÞ, where y means the conjugate transpose of a matrix
and IT is the T � T identity matrix, 1T ¼ ½1,1, . . . ,1�y is a T � 1
vector. The time segment sets used in this paper are denoted as T ,
channel configuration sets as C. Let ðnt ,ncÞA ðT � CÞ, nt ¼ 1,
. . . ,9T 9, nc ¼ 1, . . . ,9C9 to be a specific setting of time segment
and channel configuration, where ðT � CÞ is the cartesian product,
9 � 9 is the cardinality of set.

The central task in this binary classification is to assign single
trial EEG data XðiÞ to one of the predefined class labels
yðiÞAfþ1,�1g. To achieve this, a discriminant feature extractor is
essential to reduce the observation data space D to suitable lower
dimensional subspace F. That means for any XðiÞAD, the goal is to
find a transform f n : D-F while preserving discriminability as
much as possible. For simplicity of notation, the subscript i which
denotes the trial number is omitted. We make it explicit when-
ever confusion may arise.

In this study, we use spatial spectral feature extractor, w.r.t. X

fjðX;wj,BjÞ ¼wyj XBjB
y

j Xywj, ð1Þ

fwj,Bjg is a pair of spatial and temporal filters, respectively. We
use the total number of J pairs of spatial and temporal filters,
denoted as fwj,Bjgj ¼ 1,...,J . The temporal filter Bj is optimized
equivalently in the frequency domain in this paper and its
equivalent spectral filter is denoted as bj. Hence the spatial
temporal filters fwj,Bjg are also called spatial spectral filters. We
do not make explicit distinction between the two terms. This
feature extractor consists of multiple pairs of spatial spectral
filters. In each pair of filters, the temporal filter aims to capture
the most discriminative frequency information, while the asso-
ciated spatial filter projects the multi-channel data into surrogate
channel.

Assuming total number of J spatial spectral features are used,
we denote the feature vector by

/¼ ½f1ðX;w1,B1Þ, . . . ,fJðX;wJ,BJÞ�
y: ð2Þ

Then for each pair of time segment, channel configuration ðnt ,ncÞ,
a feature vector /ðnt ,nc Þ is generated from this setting. Mutual
information and Fisher ratio between feature sets and class label
are computed, respectively. For wrapper method, classification
accuracy is computed by SVM classifier using extracted features.
Then feature sets with maximum Mutual information, Fisher ratio
or classification accuracy are chosen to be the best subject-
dependent channel configuration and time segment.

The method comprises four stages: multi-time segment and
channel configuration of original EEG data, spatial spectral learn-
ing, best setting selection (feature selection) and classification.
The best setting for time segment and channel configuration, the
most discriminative spatial spectral filters are computed from the
training data. These parameters computed from training phase
are then used to evaluate the test data.

2.2. Multi-time segment and channel configurations

The first stage employs various channel configurations to perform
the spatial spectral feature extraction on the multi-time seg-
ments of EEG. The time segments are 0.5–2.5, 1.0–3.0, 1.5–3.5, and
0.5–3.5 s from the onset of the visual cue given to the subject. The
first 0.5 s period after the cue-onset is excluded as it may contain the
spontaneous responses to the visual stimulus. The channel config-
urations are according to the 12 channel configurations defined in
ectral patterns jointly with channel configuration for brain–
16/j.neucom.2012.11.004
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[20] combined with the 118 full channels (see Fig. 2). Note that the
last channel configuration 12 is modified as (9ch) which is different
from the last one (8ch) in [20].

2.3. Spatial spectral pattern learning

2.3.1. Learning spatial filters

Common spatial pattern algorithm [6] is used to generate
spatial filters. Using a specific temporal filter Bj, ðj¼ 1, . . . ,JÞ,1 the
filtered EEG signal is written as XBj. Denote the mean spatial
covariance matrices for the two classes by Sðþ Þj and Sð�Þj , respec-
tively, with

Sðþ=�Þj ¼/XBjB
y

j XySðþ=�Þ, ð3Þ

where angle brackets denote expectation within a specific class.
The CSP is formulated to maximize the power of projected signal
for one class and minimize that for the other class simulta-
neously:

arg
w

max
wySþj w

wyS�j w
and arg

w
max

w y S�j w

wySþj w
: ð4Þ

The above optimization problem is easily solved by the following
generalized eigenvalue problem:

Sþj w¼ lS�j w ð5Þ

The eigenvectors correspond to the largest and smallest eigenva-
lue of Eq. (5) are solutions of problems (4), respectively. The
maximum values of problems (4) are denoted as lðþ Þj and lð�Þj ,
respectively. The discriminability of each eigenvector is measured
by the corresponding eigenvalue. Previous studies show that
the second or the third eigenvectors are helpful to improve the
classification. Therefore, we use the m pairs of eigenvectors corre-
sponding to the largest and smallest m eigenvalues as the set of
spatial filters, which means J¼ 2 m in Eq. (2). Denote W ðþ Þ

j as the set
of m eigenvectors that satisfy the first problem of Eq. (4), W ð�Þ

j as
the set of m eigenvectors that satisfy the second problem of Eq.
(4). Set W ðþ Þ : ¼W ðþ Þ

jn
with jn ¼ argj ¼ 1,...,Jmaxlðþ Þj and W ð�Þ :¼

W ð�Þ

jn
with jn ¼ argj ¼ 1,...,Jmaxlð�Þj . and W ¼ fW ðþ Þ, W ð�Þ

g.

2.3.2. Learning spectral filters

With the derived spatial filters fwjgj ¼ 1,...,J AW , we continue to
learn its corresponding temporal filter Bj. The temporal filter is
convenient to be derived in frequency domain as bj. A linear time-
invariant temporal filter Bj ðj¼ 1, . . . ,JÞ, which is a circulant
matrix, can be diagonalized by the discrete Fourier transform [22]

FyBj ¼ diagð½bð1Þj , . . . ,bðTÞj �ÞF
y, ð6Þ

where FART�T is the Fourier matrix, bj ¼ ½b
ð1Þ
j , . . . ,bðTÞj �

y is the
equivalent spectral filter of Bj. It then follows

FyBjB
y

j F ¼ diagð½bð1Þj , . . . ,bðTÞj �ÞF
yF diagð½bð1Þj , . . . ,bðTÞj �Þ

¼ diagð½að1Þj , . . . ,aðTÞj �Þ, ð7Þ

where aðiÞj ¼ ðb
ðiÞ
j Þ

2, i¼ 1, . . . ,T . Here we use the fact FyF ¼ IT for the
second equality. Then the feature fjðX;wj,BjÞ in Eq. (1) can be
rewritten as

fjðX;wj,BjÞ ¼wyj XBjB
y

j Xywj ¼wyj XFFyBjB
y

j FFyXywj

¼wyj
bX diagð½að1Þj , . . . ,aðTÞj �Þ

bX ywj
1 For the initial temporal filter Binit, we set its equivalent spectral filter to be

binit ¼ 1. After the first iteration, there are J spectral filters, learned by ‘learning

spectral filters’ automatically. Refer to Table 1 for more details.

Please cite this article as: J. Meng, et al., Optimizing spatial sp
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¼
XT

i ¼ 1

aðiÞj wyj bxðiÞbxðiÞywj ¼ 2
XT 0
i ¼ 1

aðiÞj wyj Re½bxðiÞbxðiÞy�wj

¼
XT 0
i ¼ 1

aðiÞj
bzðiÞj ¼ ayj bzj ðj¼ 1, . . . ,JÞ, ð8Þ

where bX ¼ XF denote the discrete Fourier transformed data

matrix, and bxðiÞ is its ith column. The third equality holds from
Eq. (7) and the fifth equality due to the spectral coefficient of a

temporal filter are symmetric around T 0 ¼ dðTþ1Þ=2e (de means
rounding to the nearest integer towards zero). We denote

2wyj Re½bxðiÞbxðiÞy�wj by bzðiÞj , and define bzj ¼ ½bzð1Þj , . . . ,bzðT 0 Þj �. The variablebzðiÞj is the power at the ith frequency bin of spatially filtered data,

hence, bzj is the power spectrum. The CSP takes a homogeneous

weighting of the spectrum, i.e. aj ¼ 1ART 0�1. Different frequency

bands might make different role in discriminating ERD/ERS of two
classes. In order to achieve good discrimination, we formulate the
problem of optimizing aj as follows [10]:

max
a

ayð/bzSþ�/bzS�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½aybz�þ þVar½aybz��q

s:t: aðiÞZ0 ð8i¼ 1,2, . . . ,T 0Þ: ð9Þ

Here, we omit the subscript j of a and bz for simplicity of notation.
The angle brackets denote expectation and Var½�� denote the
variance for the specific class. Eq. (9) takes nonhomogeneous
weighting of power spectrum in order to discriminate signals
from two classes as much as possible. This optimization can be
viewed as Fisher discriminant analysis with an additional con-
straint that all coefficients must be positive. The solution of FDA
might not be right for the constrained problem (9). We use the
assumption that the signal is a stationary Gaussian process like in

[10]. Then the frequency components of bzj can be seen indepen-

dent to each other for a given class label.
Without loss of generality, we assume that the first m spatial

temporal filters correspond to the ‘‘þ1’’ class, and the latter m

ones correspond to the ‘‘�1’’ class. It is reasonable to assume the
following relationship [11]:

XT 0

i ¼ 1

aðiÞj
bzðiÞj

* +
þ

4
XT 0

i ¼ 1

aðiÞj
bzðiÞj

* +
�

ðj¼ 1, . . . ,mÞ, ð10Þ

for the first m spatial temporal filters according to Eq. (4). Then
the solution of Eq. (9) is given by

aðiÞj ¼
S�1

zi ð/bzðiÞj Sþ�/bzðiÞj S�Þ if ð/bzðiÞj Sþ�/bzðiÞj S�ÞZ0,

0 otherwise,

(
i¼ 1, . . . ,T 0 ð11Þ

where Szi ¼ Var½bzðiÞj �þ þVar½bzðiÞj ��. Having solved aðiÞj , it is direct to
get bðiÞj . Note that the labels ‘‘þ ’’ and ‘‘� ’’ are exchanged for the
latter m spatial temporal filters which correspond to ‘‘�1’’ class.
Because the convergence of SWCSP, ISSPL is not proved, and
several iterations of spatial and spectral learning also take more
computational time. We simply iterate the spatial and spectral
learning twice.

2.4. Feature selection

The spatial spectral features of the ith trial for the EEG from
the ntth time segment and ncth channel configuration are given by

/ðnt ,nc Þ

i ¼ ½logðf1Þ, . . . ,logðfJÞ�
y: ð12Þ

The logarithm operation is favored for its purpose as ‘‘to approx-
imate normal distribution of the data’’ [6]. Another positive effect
ectral patterns jointly with channel configuration for brain–
16/j.neucom.2012.11.004
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of the logarithm operation is the reduced dynamic range, which
facilitates the subsequent processing [23]. For a specific setting
ðnt ,ncÞAðT � CÞ, the feature sets from all the training data XðiÞAD
form a feature vector Fnt ,nc ¼ ½/

ðnt ,nc Þy

1 , . . . ,/ðnt ,nc Þy

L �y. The corre-
sponding class labels form a vector Y ¼ ½y1, . . . ,yL�

y. In this stage,
the spatial spectral features in the most discriminative setting
ðnn

t ,nn
c Þ are chosen for a specific subject. Various feature selection

algorithms can be used. Based on the reported study of BCI
competition III in [24], the mutual information based best
individual feature (MIBIF) [25] yielded better results than others.
While because features in different channel configurations and
time segments might be correlated with each other, the features
cannot be seen as mutually independent. Hence only the estima-
tion of mutual information is used as a criterion to evaluate the
efficiency of feature selection. In the study, we also find feature
selection based on Fisher ratio yielded comparable results, some-
times even better results than MIBIF. Therefore, it is also used in
this paper.

Mutual information algorithm

Step 1: For each ntth time segment, ncth channel configuration,
compute the set of CSP features or spatial spectral (SWCSP)
features Fnt ,nc from the training dataset D.

Step 2: Calculate the mutual information of each feature set
Fnt ,nc with the class label set O¼ fþ1,�1g

IðFnt ,nc ,OÞ ¼HðOÞ�HðO9Fnt ,nc Þ, ð13Þ

where HðOÞ ¼�
P

oAOPðoÞ logðPðoÞÞ; and the conditional entropy
of O given obtained feature vector Fnt ,nc is

HðO9Fnt ,nc Þ ¼�
X
oAO

Pðo9Fnt ,nc Þ logðPðo9Fnt ,nc ÞÞ

¼ �
1

L

X
oAO

XL

i ¼ 1

Pðo9/ðnt ,nc Þ

i Þ logðPðo9/ðnt ,nc Þ

i ÞÞ, ð14Þ

where /ðnt ,nc Þ

i is the feature vector of ith trial in the setting of
ðnt ,ncÞAðT � CÞ.

The probability function Pðo9/ðnt ,nc Þ

i Þ can be estimated from
the samples using the Bayes rule given in the following two
equations:

Pðo9/ðnt ,ncÞ

i Þ ¼
pð/ðnt ,nc Þ

i 9oÞPðoÞ
pð/ðnt ,nc Þ

i Þ
, ð15Þ

where pð/ðnt ,nc Þ

i 9oÞ is the conditional probability density function
of /ðnt ,nc Þ

i given class o, which is also called likelihood. PðoÞ is the
prior probability of class o; and the evidence factor

pð/ðnt ,nc Þ

i Þ ¼
X
oAO

pð/ðnt ,nc Þ

i 9oÞPðoÞ: ð16Þ

The conditional probability density function pð/ðnt ,nc Þ

i 9oÞ can be
estimated from samples using kernel density estimation [26]

bpð/ðnt ,nc Þ

i 9oÞ ¼ 1

no

X
lA Io

jð/ðnt ,nc Þ

i �/ðnt ,nc Þ

l Þ, ð17Þ

where Io is the set of indices of the training data belonging to
class o, no ¼ 9Io9. In this paper, we use Gaussian kernel function
j for density estimation. A multivariate Gaussian function is
given by

jðrÞ ¼ ð2pÞ�nl=29c9�1=2
eð�ð1=2Þryc�1rÞ, ð18Þ

where nl is the dimensionality of vector r, r denote the term
/ðnt ,nc Þ

i �/ðnt ,nc Þ

l , c usually takes a diagonal matrix form. The
diagonal elements of c are given by

cm,m ¼ z2s2

¼
ð4=3noÞ

2=5

no�1

Xno
i ¼ 1

ðfðnt ,nc Þ

im �f
ðnt ,nc Þ

m Þ
2
ðm¼ 1, . . . ,nlÞ, ð19Þ
Please cite this article as: J. Meng, et al., Optimizing spatial sp
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where f
ðnt ,nc Þ

m is the empirical mean of ffðnt ,nc Þ

im g. The normal
optimal smoothing strategy as in [24,27] is used to set coefficient,
i.e. z¼ ð4=3noÞ

ð1=5Þ.
Step 3: Select the setting ðnn

t ,nn
c Þ which satisfies

ðnn

t ,nn

c Þ ¼ arg
ðnt ,nc Þ

maxIðFnt ,nc ,OÞ ð20Þ

to be the best time segment and channel configuration for the
subject. The fwn

j ,bn

j g is the corresponding spatial spectral filters.
Fisher ratio algorithm

Step 1: This step is the same as step 1 of the mutual
information algorithm.

Step 2: Calculate the fisher ratio [26] of each feature set Fnt ,nc

with the class label set O¼ fþ1,�1g

RF ðFnt ,nc ,OÞ ¼
J//ðnt ,nc ÞSþ�//ðnt ,nc ÞS�J

2

trðVar½/ðnt ,nc Þ�þ þVar½/ðnt ,nc Þ��Þ
: ð21Þ

Step 3: Select the setting ðnn
t ,nn

c Þ which satisfies

ðnn

t ,nn

c Þ ¼ arg
ðnt ,nc Þ

maxRF ðFnt ,nc ,OÞ ð22Þ

to be the best time segment and channel configuration for the
subject. The fwn

j ,bn

j g is the corresponding spatial spectral filters.
Wrapper method

In the wrapper approach, the feature subset selection algorithm
exists as a wrapper around the induction (classification) algorithm.
The feature subset selection algorithm conducts a search for a good
subset using the induction (classification) algorithm itself as part of
the function evaluating feature subsets [28]. The SVM classifier is
used for wrapper method in this paper. The best features are selected
by maximizing the classification accuracy. Cross-validation on the
training dataset is used to avoid overfitting. The steps of wrapper
method are shown in the following:

Step 1: For each ntth time segment, ncth channel configuration,
compute the set of CSP features or spatial spectral (SWCSP)
features Fnt ,nc from the training dataset D.

Step 2: Split the training dataset into m-fold subsets for cross-
validation.

Step 3: Repeat the m-fold cross-validation n times and calcu-
late the average accuracy of cross-validations. Denote the average
accuracy as

RF ðnt ,ncÞ ¼ AveðACCÞ ð23Þ

Step 4: Select the setting ðnn
t ,nn

c Þ which satisfies

ðnn

t ,nn

c Þ ¼ arg
ðnt ,nc Þ

maxRF ðFnt ,nc ,OÞ ð24Þ

to be the best time segment and channel configuration for the subject.

2.5. Classification

The best time segment and channel configuration for a subject
is chosen according to the training dataset D. Let ðnn

t ,nn
c Þ be the

best setting, fwn

j ,bn

j gj ¼ 1,...,J is the corresponding spatial spectral
filters. Then for the test data set E, the test feature vector is
computed according to the spatial spectral filters fwn

j ,bn

j gj ¼ 1,...,J in
the best setting. Table 1 summarizes the steps of feature extrac-
tion and selection algorithm for optimal spatial spectral filters
from various settings. Denote the test feature vectors as F nt ,nc ,
we use the SVM as the classifier. Note that the SVM is used as
the classifier to verify the classification accuracy of test feature
vectors F nt ,nc for both filter ones (including mutual information
and Fisher ratio feature selection methods) and wrapper method.
Furthermore, the SVM is also used as the classifier for nested
cross-validation (in wrapper method).

Support vector machine (SVM) has broad applications in
classification. A lot of good results using SVM have been reported
ectral patterns jointly with channel configuration for brain–
16/j.neucom.2012.11.004
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Fig. 1. Methodology of the proposed feature extraction and selection of optimal spatial spectral filters from various settings ðT � CÞ for the training and test phase.

Table 1
Learning algorithm for optimal spatial spectral filters jointly with best setting.

Input: The training dataset D¼ Xð1Þ , . . . ,XðLÞ , corresponding class labels yð1Þ , . . . ,yðLÞ and the initial temporal filter Binit, its corresponding spectral filter binit ¼ 1. J, the used

total number of spatial spectral filters. Time segment set T and channel configuration set C.
Output: The best setting includes time segment nn

t and channel configuration nn
c and the corresponding spatial and spectral filters fwn

j ,bn

j g,j¼ 1, . . . ,J.

Step 1: Construct the set of time segments and channel configurations ðT � CÞ.
Step 2: The EEG signals for training are configured as Xðnt ,nc Þ

ðiÞ , i¼ 1, . . . ,L. For simplicity, the superscript ðnt ,ncÞ is omitted.

(1) Compute the discrete Fourier transformed data bX ðiÞ ¼ XðiÞF, i¼ 1, . . . ,L.

(2) Repeat spatial and spectral pattern learning twice.

(a) Compute the empirical covariance matrix Sðþ=�Þj by Eq. (3) for each set of spectral coefficients. The initial spectral coefficients are given by binit .

(b) Select J¼ 2 m eigenvectors that correspond to the largest and smallest m eigenvalues of Eq. (5). Denote W ðþ Þ

j as the set of m eigenvectors that satisfy the first

problem of Eq. (4), W ð�Þ

j as the set of m eigenvectors that satisfy the second problem of Eq. (4).

(c) Set W ðþ Þ :¼W ðþ Þ

jn
with jn ¼ argj ¼ 1,...,J max lðþ Þj and W ð�Þ :¼W ð�Þ

jn
with jn ¼ argj ¼ 1,...,Jmaxlð�Þj .

(d) For each spatial filters wj AfW
ðþ Þ ,W ð�Þ

g ðj¼ 1, . . . ,J¼ 2 mÞ calculate the spectral filters bj according to Eq. (11) for the first m ones and exchange the labels ‘þ ’

and ‘-’ in Eq. (11) for the last m spectral filters.

(3) Compute the spatial spectral features f according to Eqs. (1) and (2) by fwj ,bjgj ¼ 1,...,J and denote the feature vector as Fnt ,nc ¼ ½/
ðnt ,nc Þy

1 , . . . ,/ðnt ,nc Þy

L �y .

Step 3: Calculate mutual information or Fisher ratio of each feature set Fnt ,nc with the class label set O¼ fþ1,�1g by Eq. (13) or (21), respectively. Calculate the average

accuracy of cross-validations for features set Fnt ,nc from the training dataset D (by Eq. (23)).

Step 4: Select the setting ðnn
t ,nn

c Þ that satisfies Eq. (20), (22) or (24) to be the best setting. The fwn

j ,bn

j g, j¼ 1, . . . ,J is the corresponding spatial spectral filters.
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in the BCI system [29,11]. In this paper, we use the SVM Matlab
packet [30] as the classification tool. The basic idea is to separate
feature vector xARn�1 from two classes by finding a weight
vector bARn�1 and an offset b0AR of a hyperplane

H : x/signðby � xþb0Þ, ð25Þ

with the largest possible margin [31]. One variant of the algo-
rithm is to solve the following optimization problem:

min
bARn

1

2
JbJ2

2þC
XN

i ¼ 1

xi

s:t: yiðb � x
ðiÞ þb0ÞZ1�xi 8i:

xiZ0 ð26Þ

The parameters xi are called slack variables and ensure that the
problem has a solution in case the data are not linear separable. C is
the penalty parameter of the error term. In this study, the Gaussian
radial basis function (RBF) Kðxi,xjÞ ¼ expð�gJxi�xjJ

2
Þ, g40 is

chosen as the kernel function. The cost value C and g in kernel
function are fixed as experience values 10 and 0.17, respectively,
although grid search to optimize these parameters for individual
person might further improve the performance. The main purpose of
this study is to evaluate the efficiency of optimizing spatial spectral
patterns jointly with channel and time segment configurations,
hence, the optimization of SVM classifier is out of the scope of this
research.

As a summary, the proposed optimal spatial spectral patterns
selected by feature selection algorithm is illustrated in Fig. 1.
Please cite this article as: J. Meng, et al., Optimizing spatial sp
computer interface, Neurocomputing (2012), http://dx.doi.org/10.10
3. Application

3.1. Data description

The EEG data used here are dataset IVa in BCI competition III.
They are provided by Fraunhofer FIRST (Intelligent Data Analysis
Group) and Campus Benjamin Franklin of the Charité—University
Medicine Berlin (Neurophysics Group) [32]. The EEG data were
recorded from five healthy subjects (aa, al, av, aw and ay) and 118
electrodes were placed for each subject with a sampling rate of
1000 Hz. These datasets contain data from four initial sessions
without feedback. Subjects sat in a comfortable chair with arms
resting on armrests. In each trial, the subject was given visual
cues for 3.5 s (tA ½0,3:5� s), during which one of the three motor
imageries should be performed: left hand, right hand and right
foot. The presentation of target cues was intermitted by periods of
random length, 1.75–2.25 s, in which the subject could relax. Only
EEG trials for right-hand and right-foot movements were pro-
vided for analysis. A total of 280 trials were performed by each
subject and the number of trials for each task is equal.

3.2. Data preprocessing

As described before, the time segment set is T ¼ f½0:5,2:5� s,
[1.0,3.0] s, [1.5,3.5] s, [0.5,3.5] s}. Channel configuration set C is
shown in Fig. 2. The 118 full channel configuration is not showed
on the figure for better visualization. The cardinality of set T and
C is 9T 9¼ 4, 9C9¼ 13, respectively. Firstly, the EEG data were
ectral patterns jointly with channel configuration for brain–
16/j.neucom.2012.11.004
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Fig. 2. Predefined channel configurations. Channels ‘C3’, ‘Cz’, ‘C4’ are labelled and filled with red color, labels of other channels are omitted for a better visualization. The

first 118 full channel configuration ‘‘1(118ch)’’ is omitted. The other 12 channel configurations are sequenced according to the number of channels in descending order.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
10�10-fold cross-validation results of average classification accuracy7standard deviation (%) of SWCSP and CSP features in different time segments, with 118 full

channel configuration. The best performance for each subject is highlighted in bold and bold italic for SWCSP and CSP, respectively.

Subject [0.5,2.5] s [1.0,3.0] s [1.5,3.5] s [0.5,3.5] s

SWCSP CSP SWCSP CSP SWCSP CSP SWCSP CSP

aa 85.876.3 78.477.8 83.276.5 79:177:4 75.877.2 71.777.4 83.976.6 78.877.1

al 97.972.6 97.672.9 97.273.2 97.572.9 96.673.2 96.873.5 97.772.7 97:672:8
av 75.678.5 73.778.4 72.578.3 71.678.5 67.978.6 69.079.4 73.779.0 73:878:4
aw 95.574.3 93.175.2 97.872.6 93.975.8 96.573.8 91.175.9 98.172.5 95:773:6
ay 95.774.2 94:474:5 94.474.3 94.074.2 92.274.6 92.075.0 95.674.0 94.274.2

Average 90.175.2 87.475.7 89.074.9 87.275.8 85.875.5 84.176.3 89.875.0 88:075:2
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down-sampled to 100 Hz for use. The initial temporal filter Binit

(binit) is set to be (7–32 Hz) band-pass filter (the fifth order
Butterworth bandpass filter was used in this study). Hence, the
frequency bins in binit that belong to (7–32 Hz) are all ones, other
frequency bins are set to be zeros. Ordinary CSP with (7–32 Hz)
band-pass filtered signals are also computed with optimal feature
selection algorithms for comparison. Usually more than one pair
of CSP features are used, we choose three pairs of spatial spectral
patterns, i.e., m¼ 3, J¼ 2m¼ 6 in this study.
4. Results

In this paper, we focus on optimizing several parameters for
spatial spectral patterns rather than to deal with small training
dataset problems. Hence we use all the 280 trials of dataset IVa
to perform cross-validation rather than to use the splitting of
dataset IVa in competition for convenient of analysis. Ten-fold
cross-validation is used to assess the performance of extracted
features. In each fold of this procedure, each nine parts are used as
the training dataset, the remaining one part is used as the test
Please cite this article as: J. Meng, et al., Optimizing spatial sp
computer interface, Neurocomputing (2012), http://dx.doi.org/10.10
dataset. The 10-fold cross-validation is then repeated 10 times to
get the 10�10 cross-validation results.

In order to investigate the effect of feature selection, the cross-
validation results with and without feature selection are reported
separately. Firstly we show the cross-validation results without
feature selection in Section 4.1. The SWCSP and CSP features
are extracted from fixed setting, respectively. The corresponding
classification results are reported in this section. Secondly, the
feature selection methods including filter ones and wrapper
method are applied to SWCSP and CSP features. The details are
reported in Section 4.2.

4.1. Cross-validation without feature selection

Firstly, we test whether the time segments make any differ-
ence in the performance of extracted features. Table 2 shows the
10�10 cross-validation classification accuracy of SWCSP and CSP
features in different time segments with 118 full channels. The
best performance for each subject by SWCSP and CSP are high-
lighted in bold and bold italic font, respectively. From the table,
we can see that the most active time segment by SWCSP is
ectral patterns jointly with channel configuration for brain–
16/j.neucom.2012.11.004
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[0.5,2.5] s for all the subjects except subject ‘aw’, whose most
active one is [0.5,3.5] s. While the most active time segment by
CSP is [0.5,3.5] s for most of the subjects. The results suggest the
best time segment might be subject specific, it might be helpful to
choose most active time segment for different subjects. Also we
can see that SWCSP features is superior than CSP features in most
situations, especially for subjects ‘aa’ and ‘aw’. The broad band
CSP features are not the best one for each subject, despite it might
be a convenient choice.

Next, we use fixed time segment [0.5,2.5] s and [0.5,3.5] s
for all the subjects to test the performance of SWCSP and CSP,
respectively, with different channel configurations based on the
results of Table 2. Although, the most active time segment for
each subject and method is different, we use the average best
performance to choose the most reactive time segment for SWCSP
and CSP. The average performance of all the five subjects with
SWCSP and CSP features is shown in Fig. 3. Clearly, the 118 full
channel configuration is not the best choice. The average perfor-
mance of SWCSP and CSP features with channel configuration 7
(SWCSP: 92.174.6%, CSP: 89.375.2%) is better than all the
others, however, the situation is different for every single subject.
The results in the next subsection show the performance of
SWCSP and CSP with feature selection by the wrapper method
will further improve the accuracy nearly 1% on average for the
dataset (SWCSP: 93.074.3%, CSP: 90.775.0%).
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Fig. 3. Average accuracy (five subjects) comparison between SWCSP and CSP

features with 13 different channel configurations, fixed time segment [0.5,2.5] s,

[0.5,3.5] s for SWCSP and CSP, respectively. The horizontal axis shows the index of

channel configuration, the vertical axis is the 10�10 cross-validation average

classification accuracy of five subjects.

Table 3
Average 10�10 cross-validation classification accuracies7standard deviation (%) of CS

subject is highlighted in bold.

Subject CSP

MI Fs Wrapper

aa 84.676.4 83.876.6 86.676.

al 98.672.4 97.373.0 98.772.

av 75.378.5 75.379.1 76.279.

aw 94.875.2 92.575.9 95.773.

ay 95.174.3 95.174.4 96.273

Average 89.775.3 88.875.8 90.775.

Please cite this article as: J. Meng, et al., Optimizing spatial sp
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4.2. Cross-validation with feature selection

The proposed various feature selection algorithms are per-
formed on the training dataset, the remaining test dataset is kept
unseen and used to evaluate the efficiency of the feature selection
algorithms. In each fold of this procedure, the SWCSP and
CSP features are extracted for each setting ðnt ,ncÞ, respectively.
For example, the SWCSP and CSP features for subject ‘aa’ are
extracted from each of the 13 channel configurations and 4 time
segments. Totally, 52 SWCSP and CSP feature sets denoted as
FSWCSP

nt ,nc
and FCSP

nt ,nc
are extracted from each training dataset. Then the

mutual information algorithm, Fisher ratio algorithm and SVM
based wrapper method are used to select the best setting ðnn

t ,nn
c Þ,

respectively. The classification accuracy of the proposed feature
selection algorithms is evaluated on the remaining test dataset by
SWCSP and CSP features in the best setting.

Table 3 shows the results of 10�10-fold cross-validation
performed on dataset IVa. The best performance for each subject
is highlighted in bold. In the column of ‘‘CSP’’, the results are
derived from the CSP features with selection of best setting by
mutual information (MI), Fisher ratio (Fs) and wrapper method
(wrapper), respectively. The results for optimal spatial spectral
patterns are those columns corresponding to SWCSP. Note that
the mutual information (MI) and Fisher ratio (Fs) are computed
for every training dataset in each fold of the 10�10 cross-
validation. Take subject ‘aa’ with channel configuration 2 and
time segment 1 as an example. In each 10-fold cross-validation,
there are 252 trials for training, the SWCSP features are generated
by signals in the channels shown in Fig. 2 (channel configuration
2 (64ch_std)) and in the time segment [0.5,2.5] s after the visual
cue onset. The spatial spectral filters fwj,bjgj ¼ 1, . . . ,J contain
three pairs of spatial filter wj, which is a 64-dimensional vector
and spectral filter bj which is a 200-dimensional vector in this
situation. The mutual information between the training dataset
and class label is computed and denoted as IðFSWCSP

2,1 ,OÞ. Also the
Fisher ratio is computed as RF ðF

SWCSP
2,1 ,OÞ. The best setting ðnn

t ,nn
c Þ is

chosen as the maximum among all the IðFSWCSP
nt ,nc

,OÞ or RF ðF
SWCSP
nt ,nc

,OÞ.
Then the classification accuracy is evaluated by SWCSP features in
best setting (FSWCSP

nn

t ,nn
c

) on the remaining 28 test trials. The wrapper
one is the method of selecting features by the SVM classifier,
where the best setting is selected by 2�10 nested cross-
validation on the training dataset. This feature selection is only
performed on the first training dataset, since the computational
burden increases greatly if all the 10�10 training dataset are
used to perform feature selection by nested 2�10 cross-
validation. To alleviate the unfairness between the wrapper
method and the other two filter ones, we perform the above
10�10 cross-validation by the wrapper method another 10
times. Then we sort the average performance of all the five
subjects in descending order and report the median performance
of this method.
P, SWCSP with various feature selection algorithms. The best performance for each

SWCSP

MI Fs Wrapper

2 93.175.3 90.975.3 94.274.5
1 98.872.1 99.071.9 99.271.8
3 73.979.9 74.679.3 78.078.5
6 97.872.6 98.372.3 97.772.9

.6 93.374.7 94.374.5 95.673.8

0 91.474.9 91.474.6 93.074.3

ectral patterns jointly with channel configuration for brain–
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Table 5
Comparison of classification accuracies by standard competition procedure. The

training trials for subject ‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’ are 168, 224, 84, 56 and 28,

respectively. The wrapper method is used to perform feature selection for SWCSP

and CSP.

Method Mean acc (%) aa (%) al (%) av (%) ay (%) aw (%)

First 94.17 95.5 100.0 80.6 100.0 97.6

Second 85.12 89.3 98.2 76.5 92.4 80.6

SWCSP 83.92 83.0 100.0 73.5 91.5 82.1

Third 83.45 82.1 94.6 70.4 87.5 88.1

CSP 77.98 83.0 100.0 63.8 78.1 81.7

Fourth 72.62 83.9 100.0 63.3 50.9 88.1
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From Table 3, we can see that the group of CSP with feature
selection yields a little improvement over CSP ones in Table 2. The
SWCSP with feature selection is superior than CSP according to
the average classification accuracy. But this is not the truth for
subjects ‘av’ and ‘ay’ with MI and Fs feature selection. That might
be caused by overfitting or underfitting on these two subjects. The
SWCSP with feature selection by the wrapper method yields the
best average results. Since the best spatial spectral patterns are
selected among the whole settings, the best average accuracy can
be expected. In this study, the feature selection by the filter
method performs inferior than the wrapper method. The reason
might be that the features behave more likely non-stationary and
non-Gaussian in the motor imagery based BCI. Hence, the filter
approach might perform inferior than the wrapper method. In the
next section, we show that the best time segment and channel
configuration is subject dependent.

In Table 4, we compare the average classification errors with
several typical reported results on dataset IVa. Because several
papers [12,33,34] report classification errors and paper [11]
reports classification accuracy, we transform classification accu-
racy (the last column of Table 3) into classification errors. Our
method performs better than all the other results except the ISSPL
one. The reason might be, like the author said, for ISSPL the
temporal filter, channels, time window and the number of spatial
filter were tuned according to the winning entry of the dataset
[11]. The selection of channel and time segment is unclear in
the paper. These manually tuned parameters are sensitive to
researchers’ experience and are hard to be generalized to other
applications. However, we report median performance of SWCSP
features with wrapper method to select the features. Our method
only use SWCSP features and 13 typical channel configuration and
4 rough split of time segments. By the way, the computation of
our method might be much more efficient than the ISSPL one. The
ISSPL algorithm solves a regularized quadratic programming
problem to optimize the spectral filters. It is time consuming to
optimize the regularization term for ISSPL [35].

To further investigate the performance of proposed algorithm
with the competition dataset, we report the results following
the exact competition procedure by the proposed algorithm. The
preprocessing procedure is exactly the same as those described in
Section 3.2, the difference is that we use the same training dataset
provided in BCI competition to perform feature selection and the
same test set to validate the proposed algorithm. The wrapper
method is used to perform feature selection. The challenge of
dataset IVa is to validate the efficiency of algorithms to deal with
various sizes of training dataset. For subjects ‘aa’, ‘al’, ‘av’, ‘aw’ and
‘ay’ the corresponding training dataset contains 168, 224, 84, 56
and 28 trials, respectively. In Table 5, we list the first four results
of 14 submissions of the dataset IVa of BCI competition III.
Without the need of exhausting tuning parameters, the SWCSP
with feature selection from 4 given time segments and 13 channel
configurations takes the third place compared to all the submis-
sions. Note that we do not take any adaptation or extension of
training dataset by classified test samples as those reported by the
Table 4
Comparison of average classification errors7standard deviation (%) provided by other

Subject SWCSP CSP [33] SBCSP (MC) [12] SBCSP (RBE

aa 5.874.5 8.575.4 10.775.6 9.274.5

al 0.871.8 0.871.8 1.471.8 2.273.4

av 22.078.5 29.178.2 29.675.3 31.077.3

aw 2.372.9 3.172.8 4.374.0 4.273.3

ay 4.473.8 5.373.8 4.372.8 5.073.4

Average 7.074.3 9.474.4 10.173.9 10.374.4

Please cite this article as: J. Meng, et al., Optimizing spatial sp
computer interface, Neurocomputing (2012), http://dx.doi.org/10.10
first and second contributors [36], hence, our results are still to be
improved by considering such operations. On the other hand, the
combination of several features including readiness potential
might be the reason for the winner to have superior results.
5. Discussion

5.1. Best time segment and channel configuration

Based on the results of the last section, we focus our discussion
on SWCSP features. The best time segment and channel config-
uration are subject and feature selection method dependent. Take
subjects ‘aa’ and ‘av’ as examples shown in Fig. 4. The left column
shows the selection results of channel configuration and the right
column corresponds to the selection results of time segment. The
horizontal axis corresponds to the label of channel configuration
or time segment. Since the channel configuration or time segment
selected by Mutual information or Fisher ratio is dependent on
the training dataset which is split by a 10�10 cross-validation
procedure. The value of the vertical axis shows the accumulated
number where the corresponding channel configuration or time
segment is selected. While only the first training dataset is used
to select the time segment and channel configuration by 2�10
nested cross-validation on training dataset for wrapper method.
The reason is explained in the last section. Hence, the selection of
best setting is determined by the first splitting of training dataset
and its accumulated number is always 100.

We can see that the electrodes around central and posterior
motor cortex is preferred by subject ‘aa’ from Fig. 4. Although the
118 full channels contain more information, the classification
accuracy is 85:876:5 (Table 2), which is much lower than that
94:174:5 in Table 3. The similar phenomenon is found in subject
‘av’. From the next section, we can see that the topography of
spatial patterns is not neurophysiological plausible for ‘aa’ and
‘av’ with 118 full channel configuration. We make a simple
discussion on this. The CSP is sensitive to outliers, which has
been reported by several researchers. Unfortunately, the SWCSP
shares the same disadvantage, since it uses the same strategy as
CSP to optimize spatial filters. The discriminative criterion in
researchers.

) [12] SWCSP [11] ISSPL [11] FBCSP [34] DFBCSP [34]

13.276.3 6.473.3 6.975.8 9.875.6

2.572.9 0.070.0 1.072.4 1.372.9

23.279.4 20.777.1 31.0714.2 22.279.9

6.173.8 0.471.1 4.978.9 2.173.7

7.573.9 1.473.0 6.279.7 5.875.3

10.575.3 5.872.9 10.078.2 8.275.5

ectral patterns jointly with channel configuration for brain–
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Fig. 4. Selection results of channel configuration and time segment by three different algorithms (mutual information, Fisher ratio and wrapper method) for subject ‘aa’

(first row) and ‘av’ (second row). In the left column, the horizontal axis shows the sequence of channel configuration (corresponding to the number of channel

configuration in Fig. 2); the vertical axis shows ‘accumulated number’, where ‘accumulated number’ means how many times the corresponding channel configuration is

selected by 10�10-fold cross-validation (the sum of accumulated number for each method is 100). The best channel configuration selected by wrapper one is shown

above the corresponding number of label. In the right column, the horizontal axis shows the label of time segment; the vertical axis shows accumulated number.
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Eq. (4) uses the separation of mean power of two classes, which
might be sensitive to outliers [37]. Sometimes, artifacts like
blinking or other muscle movements happen to be unevenly
distributed in two class conditions. Then CSP algorithm, which
uses channel configuration containing distorted EEG signals in
some channels, will capture the artifact with very high eigenva-
lue. Taking subject ‘aa’ as an example, we plot the log power of
signals in the surrogate channels, which is filtered by the most
significant spatial and spectral filters, in Fig. 5. The maximizing
power of right hand versus right foot in full channel configuration
shows nearly no discriminability because of artifacts which is
shown on the left plot of Fig. 5(a). The similar results have been
reported in paper [37, Fig. 8]. The class-specific box-plots in
Fig. 5(a) show no difference in median of the variances. While
the discriminability for optimal channel configuration becomes
better (see Fig. 5(c)). This might explain why fewer channels in
configuration 11 improve the classification accuracy. The situa-
tion is a little different for subject ‘av’. The electrodes around
central, posterior and pre-motor cortex are all selected, see the
left plot in lower row of Fig. 4. More electrodes may provide more
information for SWCSP algorithm. However, the full channel
configuration is still not the best choice in this example.

The results for best time segment are simpler than channel
configuration. Time segments [0.5,2.5] s and [0.5,3.5] s are chosen
by the algorithms most frequently, see the right column of Fig. 4.
For real application, time segment [0.5,2.5] s is preferred since the
time window is short and the response is more quickly. None-
theless, more or less differences exist among different methods
and different persons.
Please cite this article as: J. Meng, et al., Optimizing spatial sp
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5.2. Optimal spatial spectral patterns

From the results of Section 4, the SWCSP features selected by
the wrapper method provide the best average performance.
Hence, this section discusses the spatial and spectral patterns
selected by the wrapper method. Let us continue the examples of
‘aa’ and ‘av’, whose topography of spatial patterns and spectral
filters are plotted in Figs. 6 and 7, respectively. Only the most
significant spatial patterns, which are corresponding to the spatial
filters with largest and smallest eigenvalues, are shown in
the figures. The spatial patterns of subject ‘aa’ and ‘av’ with full
channel configuration (the plots are shown in upper rows
of Fig. 6 and 7, respectively), derived by SWCSP, show similar
concentration areas as those that are reported in Fig. 5 of paper
[13]. However, the counterparts with channel configuration
selected by the wrapper method show more neurophysiological
plausibility, see the lower rows of Figs. 6 and 7. At the same time,
these SWCSP features get higher classification accuracy, where
the average accuracy improves 8.4% and 2.4% for ‘aa’ and ‘av’,
respectively. From Fig. 6, we may conclude that the ERD/ERS
rhythm activity is contaminated by the abnormal EEG activity for
subject ‘aa’, which leads to focus around electrodes ‘FC6’ and ‘FT8’.
After channel configuration selection by the wrapper method, the
best channel configuration excludes the abnormal EEG electrodes.
Hence, the ERD/ERS rhythm activity concentrates around the mid-
central region (near foot representation area [4,38]) in optimal
channel configuration rather than focus on the electrodes ‘FC6’
and ‘FT8’ (see plots on the left column of Fig. 6). The similar effect
can be found in subject ‘av’ shown in Fig. 7, but this time the
ectral patterns jointly with channel configuration for brain–
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Fig. 5. This example is drawn from dataset ‘aa’. In the first row, the common spatial filters are derived from the 118 full channel configuration. In the second row, the common

spatial filters are derived from best channel configuration selected by wrapper method. The left column (a) and (c) shows log variance of the CSP surrogate channel which is

corresponding to the largest eigenvalue of maximizing power of right hand versus right foot (green: right hand imagery, red: right foot imagery). The horizontal axis shows the

number of trial in chronological order. The vertical axis shows log variance value of the trial. The right plot of (a) and (c) shows class-specific box-plots. The right column (b) and

(d) shows log variance of the reverse CSP surrogate channel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of spatial patterns and spectral filters with 118 full channels (first row) and selected channels by wrapper method (second row). The topography is generated

from dataset ‘aa’. The most significant spatial patterns, which are corresponding to the spatial filters with largest and smallest eigenvalues, are shown as ’spatial pattern for foot’

and ’spatial pattern for right’, respectively. Their corresponding spectral filters are shown in the middle plots. The SWCSP spatial patterns with full channels for right foot are

highly influenced and concentrate on electrodes ‘FC6’ and ‘FT8’. While the counterparts with selected channels shift to the mid-central foot representation area.
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Fig. 7. Comparison of spatial patterns and spectral filters with 118 full channels (first row) and selected channels by wrapper method (second row). The topography is

generated from dataset ‘av’. The most significant spatial patterns, which are corresponding to the spatial filters with largest and smallest eigenvalues, are shown as ’spatial

pattern for foot’ and ’spatial pattern for right’, respectively. Their corresponding spectral filters are shown in the middle plots. The SWCSP spatial patterns with full

channels for right hand are highly influenced and concentrate on electrodes ‘FT9’. While the counterparts with selected channels shift to the hand representation area. The

spectral filters for subject ‘av’ are rather flat compared to those for subject ‘aa’.
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unreasonable spatial pattern is for right hand. With the help of
feature selection by the wrapper method, the spatial pattern for
right hand is more interpretable(shift focus on electrode ‘FT9’ to
hand representation area). Note that, like CSP, SWCSP is also not a
source localization algorithm [37], the result presented here
cannot correspond to the physiological phenomenon exactly.

The spectral filter in ordinary CSP takes homogeneous weight-
ing of spectrum, while SWCSP takes nonhomogeneous weighting
of spectrum (see middle plots of Figs. 6 and 7). The weighting
coefficient is adjusted according to subject-specific EEG signals.
More important frequency bands like mu rhythm (8–12) Hz and
beta rhythm (16–24) Hz usually get larger weight coefficients,
while signals in other frequency bands (might be noise) usually
get smaller or even zero weight coefficients. This might be the
reason for improvement of the classification accuracy by SWCSP
algorithm, especially for some subjects like ‘aa’ and ‘aw’ in this
dataset. While for subject ‘av’, the spectral filters are apt to
homogeneous weighting of spectrum (see middle plots of Fig. 7.
The weightings of spectrum for subject ‘av’ are relatively flat
compared to those of ‘aa’.) that might be the reason why the
difference between SWCSP and CSP is not statistically significant
for some subjects.
6. Conclusion

Machine learning approach used in BCI aims to translate
humans’ intention as accurately as possible. In two-class motor
imagery classification, there are several factors that play impor-
tant roles in improving the subjects’ performance such as time
segment, channel configuration and frequency bands proposed in
this paper. Several previous studies propose methods to solve
these problems separately. Few of papers have considered to
Please cite this article as: J. Meng, et al., Optimizing spatial sp
computer interface, Neurocomputing (2012), http://dx.doi.org/10.10
optimize these parameters jointly to further improve subjects’
performance. In this paper, we attempt to propose a machine
learning approach to solve these optimization jointly. Optimal
frequency bands are automatically weighted by SWCSP algorithm.
The best time segment and channel configuration are selected by
employing various feature selection algorithms. In the motor ima-
gery BCI setting, the feature selection by the wrapper method shows
superiority than filter ones. After feature selection by the wrapper
method, the spatial patterns show more neurophysiological inter-
pretable results and also better cross-validation average accuracy.
Although part of the algorithm relies on some statistical assumption,
the improvement of classification suggests that the mild assumption
might be reasonable for two-class motor imagery BCI.
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