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Abstract
Objective. Brain Computer Interface (BCI) inefficiency indicates that there would be 10% to 50%
of users are unable to operate Motor-Imagery-based BCI systems. Importantly, the almost all
previous studieds on BCI inefficiency were based on tests of Sensory Motor Rhythm (SMR)
feature. In this work, we assessed the occurrence of BCI inefficiency with SMR and
Movement-Related Cortical Potential (MRCP) features. Approach. A pool of datasets of resting
state and movements related EEG signals was recorded with 93 subjects during 2 sessions in
separated days. Two methods, Common Spatial Pattern (CSP) and template matching, were used
for SMR and MRCP feature extraction, and a winner-take-all strategy was applied to assess pattern
recognition with posterior probabilities from Linear Discriminant Analysis to combine SMR and
MRCP features.Main results. The results showed that the two types of features showed high
complementarity, in line with their weak intercorrelation. In the subject group with poor
accuracies (< 70%) by SMR feature in the two-class problem (right foot vs. right hand), the
combination of SMR and MRCP features improved the averaged accuracy from 62% to 79%.
Importantly, accuracies obtained by feature combination exceeded the inefficiency threshold.
Significance. The feature combination of SMR and MRCP is not new in BCI decoding, but the large
scale and repeatable study on BCI inefficiency assessment by using SMR and MRCP features is
novel. MRCP feature provides the similar classification accuracies on the two subject groups with
poor (< 70%) and good (> 90%) accuracies by SMR feature. These results suggest that the
combination of SMR and MRCP features may be a practical approach to reduce BCI inefficiency.
While, ‘BCI inefficiency’ might be more aptly called ‘SMR inefficiency’ after this study.

1. Introduction

Brain Computer Interfaces (BCI) technology
provides direct communication pathways between
the brain and an external device and thus may aug-
ment or restore human functions. However, ‘BCI
inefficiency’ [1, 2], which occurs when a BCI system
cannot discriminate brain patterns from all users,
makes BCI less applicable in specific populations.
Over the past two decades, the inefficiency problem

5 These authors contributed equally to this work.
6 Author to whom any correspondence should be addressed.

in motor imagery (MI)-based BCI has aroused the
attention of the academic research community. Guger
et al [3] showed that 6.7% of the individuals showed
accuracies lower than 60% in a study of a two-class
BCI with 99 healthy subjects. Ang et al [4] showed
that six out of 46 patients (13%) performedMI-based
BCI of the stroke-affected hand at a chance level,
with accuracies between 43% and 58%. However,
the guidelines to specify the accuracy threshold to
determine BCI inefficiency were not consistent across
studies. It was further reported that the performance
of MI-based BCI could be predicted by the resting
state EEG and fMRI [5–7]. Overall, however, the
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understanding about BCI inefficiency has remained
insufficient.

The interrelatedness of a variety of underlying
factors complicates the understanding of BCI inef-
ficiency. First, the mode of motor imagery [8] and
feedback [9] will affect the results of MI-based BCI
directly. Second, transient factors, such as attention
and fatigue [10, 11], make it impossible to predict
whether a subject performing poorly in a certain
experiment will also be unable to use the same BCI
system in another setting. Third, training is a factor
of key importance in MI-based BCI. The lack of skills
needed to operate the system or an incomplete under-
standing of instructions given by the experimenters
could also account for deficient performance [12, 13].
A case study by Pfurtscheller et al [14] showed that
a 5 month training of a tetraplegic patient improved
performance with an MI-based BCI from 65% to
nearly 100%. Also, a 42-subject study with three ses-
sions [15] showed a training effect on SMR topo-
graphy. To obtain more robust results, a study design
with the consistency actions from participants would
be needed to minimize the interference of various
factors in MI-based BCI.

Moreover, a crucial, but neglected issue, is that
previous studies showing BCI inefficiency were based
on the event-related desynchronization and syn-
chronization (ERD/ERS) analysis of Sensory Motor
Rhythm (SMR) [16]; whether other neurophysiolo-
gical features during motor imagery tasks would be
helpful to eliminate the BCI inefficiency remains
unclear. Several methods, including adaptive autore-
gressive modeling [11, 14, 17], Common Spatial Pat-
tern (CSP) procedures [18–20], and filter-bank type
technique [21–23], have been developed for better
SMR detection [24–26]. However, if the user cannot
produce any discriminative SMR pattern, advanced
algorithms for SMR detection cannot be applied
[1]. Hence, improvements in SMR detection could
reduce, but not eliminate, the issue of BCI inefficiency
[1, 27, 28]. In fact, motor imagery produces not
only SMR signals but also Movement-Related Cor-
tical Potential (MRCP) signals [29]. MRCP is a slow
negative brain potential with three components, the
Bereitschafts-, motor-, and movement-monitoring
potential, which are related to movement planning
and execution [30]. For both real executedmovement
and motor imagery, SMR and MRCP occur simu-
taneously over the somatosensory area [16, 29–31].
SMR was considered be generated by the parameters
changing in the nerual oscillations, and MRCP was
viewed as a summation of long-lasting EPSPs at the
apical dendrites [32]. Hence, with different under-
lineing neurophysiological mechanism, MRCP fea-
tures would potentially provide independent comple-
mentary information to the SMR features for the BCI
decoding. As reviewed by Shakeel et al [33], several
signal-processing and classification methods have
been used in MRCP detection, such as Independent

Component Analysis [34], Locality Preserving Pro-
jection [35], and CSP [36]. The combination of of
SMR and MRCP features is not new for the brain
response decoding in the BCI appliocation. As ear-
ily as in BCI competition III in 2005, MRCP has been
usedwith SMR features together on theDataset IVa of
theMI-based BCI by the winner team [37]. But to the
best of the authors’ knowledge, none had addressed
the BCI inefficiency problem with the combination
of SMR and MRCP features.

In summary, the issue of BCI inefficiency relates
to the fundamental question that whether all users
can produce detectable brain activity. The contri-
bution of a diversity of interacting factors complic-
ates the understanding of BCI inefficiency. Addition-
ally, most previous studies showing the inefficiency
in MI-based BCI were restricted to the analysis of
SMR features. In the present study, BCI inefficiency
was investigated with a relatively simple experimental
design, in which the combination of SMR andMRCP
features was investigated in 93 subjects who were
tested during two sessions on separate days.

2. Method

2.1. Experimental procedure
A total of 93 healthy participants (71 females, 22
males; 21.1 ± 5.3 years old) participated in the study
for two sessions which were scheduled on different
days separated by more than a week. The experim-
antal paradigm were the same for the two sessions.
All participants were BCI-naïve individuals and had
no known neurological deficits. All the participants
gave their written informed consent before the exper-
iment. Ethical approval of the study was sought and
obtained from the Medical Ethics Committee, Health
Science Center, Shenzhen University (No. 2 019 053).

The experimental paragdigm was illustrated in
figure 1. During the experimental sessions, the parti-
cipants were seated in comfortable chairs. They were
instructed to perform three types of real executed
in response to a visual cue displayed on a com-
puter screen placed at a 1 meter distance. Cue
presentation was programmed using Psychtoolbox-
3 (http://psychtoolbox.org/) in Matlab. The parti-
cipants were instructed to respond to the visual cue
by gripping their left hand (LH) or right hand (RH),
or to lift their right ankle (RF) for a duration of 3 s,
i.e. until cue offset. No feedback was provided dur-
ing the online recording. To ensure their motor areas
being fully activated, the subjects were required to
perform the real executed movements of LH, RF, and
RH at a rate of twice per second or faster, at approx-
imately 80% of their maximum voluntary contrac-
tion, while keeping their upper body still. There is no
external tool, like metronome or hint on the screen,
to remind the participant, since it may produce unne-
cessary evoked potential as an external stimulus. The
experimenters continuously monitored whether the
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Figure 1. The experimental paradigm consists of two
sessions in separated days. For each session, there were two
runs of 1 minute resting state with eye open and closed, and
four runs of movement. 60 trials of hand or foot movement
was arranged randomly in each run. For each trial, the
participant was required to perform right hand, left hand or
right foot movement for 3 s, and the inter-trial interval lasts
5.5–5.6 s randomly.

movements from the participants met these stand-
ards, and corrected them when necessary. In this
experiment, executed movement was used instead of
motor imagery, and no feedback or training was given
to the participants. The discussion about the pros
and cons of the experiment design is arranged in
section 4.

During both sessions, the participants were asked
to have eight runs of EEG recording. The first and last
two runs were 1 minuntes resting state with eye open
and closed. A total of 240 movements (80 times for
each movement type) were arranged in the middle
four runs. The 240 trials were presented in random
order arranged in four runs; the inter-trial interval
was 5.5–6.5 s to make the participant unable to pre-
dict the coming event [38, 39]. Between the two adja-
cent runs, the participants could have a rest as they
want.

2.2. Signal acquisition and pre-processing
EEG signals were obtained via a multichannel EEG
electrode system (64 Channel, Easycap) and an EEG
Amplifier (BrainAmp, Brain Products GmbH, Ger-
many). The signals were recorded at a sampling rate
of 1000 Hz by 64 electrodes, placed at the stand-
ard 10–20 positions, and referenced to the FCz chan-
nel. Before data acquisition, the contact impedance
between EEG electrodes and cortex was calibrated to
be lower than 20 kΩ, to ensure quality EEG signals
during the experiments.

The raw EEG data were pre-processed by 0.01–
200 Hz band-pass filtering and 50 Hz notch filter-
ing; then, bad channel interpolation was performed
and ICA was applied for artifact removal. After seg-
mentation, EEG signals were re-referenced by Com-
mon Average Referencing [40]. To prevent overfitting

in the classification [41], twenty-one channels sur-
rounding C3, Cz, and C4 were selected for further
analysis: F5, F3, F1, Fz, F2, F4, F6, C5, C3, C1, Cz,
C2, C4, C6, P5, P3, P1, Pz, P2, P4, and P6.

Following common signal pre-processing, differ-
ent types of processing were applied for SMR and
MRCP signals. For SMR, only 8–30 Hz band-pass
filtering was applied. For MRCP, EEG signals were
filtered by 0.01–3 Hz band-pass filter, then down-
sampled to 20 Hz, and corrected by subtracting the
baseline from −1 to 0 s [40]. 4-order Butterworth
zero-phase digital filter was applied for the bandpass
filtering [42]. The bandwidth setting 8–30 Hz and
0.01–3 Hz corresponds to the main frequency bands
for SMR and MRCP features. The 50 times down-
sampling can retain the main information accord-
ing to shannon’s sampling theorem [43], but greatly
improves the computational efficiency.

2.3. Feature extraction and classification
2.3.1. SMR features
The CSP method [20] was applied for SMR feature
extraction as follows. First, for each trial, the normal-
ized spatial covariance matrix is obtained by

Σi =
XT
i Xi

trace
(
XT
i Xi

) ,
in which Xi ∈ Rchannel×time is the band-pass filtered
EEG signals in the 0.5–3.5 s interval and the aver-
aged spatial covariance matrix of Σ(c) was estimated
from all of the training trials from different move-
ment types (c= LH, RF and RH). Next, by solving
the generalized eigenvalue problems

Σ(c1)ω = λΣ(c2)ω,

three pairs of spatial filters ω, corresponding to the
largest and smallest eigenvalues λ of the spatial cov-
ariance matrix Σ(c1) and Σ(c2) from two different
classes were obtained. As a final step, SMR features
were extracted as the logarithmic band power coef-
ficients of the spatially filtered signals. To address the
three-class problem (LH vs. RH vs. RF), a one-versus-
one strategy was applied for CSP-feature extraction.
Hence, the feature size of SMR features was six for the
two-class problem (LH vs. RH, LH vs. RF, and RH vs.
RF) and 18 for the three-class problem.

2.3.2. MRCP features
A template-matching technique [44] was used for
MRCP feature extraction. The template for each
class,TMPLT(c),was obtained by averaging data from
all the training trials from the 0–3 s interval within
that class

TMPLT(c) =
1

|Ic|
Σi∈IcXi,

Where Ic is the set of indices of the training trials cor-
responding to each class (c= LH, RF and RH), |Ic|
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is the size of set, and Xi ∈ Rchannel×time is the EEG sig-
nal with 0.01–3Hz band pass filtering, downsampling
and baseline correction by the special pre-processing
forMRCP. For both the training and testing trials, the
MRCP features, Fea(Xi, c), were extracted by calculat-
ing the dot product between the trial and three tem-
plates

Fea(Xi, c) =
⟨
Xi,TMPLT(c)

⟩
,

where ⟨·, ·⟩ is the dot product along the dimension of
time. Since 21 channels were used, the feature size of
the MRCP features was 42 for the two-class problem
and 63 for the three-class problem.

2.3.3. classification
Linear Discriminant Analysis (LDA) [45] was applied
to classify SMR and MRCP features separately. Let
S=Σ2

i=1Σx∈Di (x−µi)(x−µi)
T to be the within-

class scatter matrix, µi =
1
Ni
Σx∈Dix to be the mean

value of features in class i, the linear discrimination
function would be

g(x) = ωTx+ω0,

whereω = S−1 (µ1 −µ2) andω0 =− 1
2 (µ1 +µ2)

TS−1

(µ1 −µ2). To account for the increased dimension-
ality, we did not combine the two types of features
directly to train a new classifier. Instead, a winner-
takes-all strategy was applied. Specifically, the label of
each testing trial was predicted by the maximum pos-
terior probabilities of the two LDA classifiers, which
were trained separately for SMR and MRCP features.
A trial-wise leave-one-out cross-validation [45, 46]
was applied for within-subject level predictions.

2.4. Statistic analysis
2.4.1. The threshold for BCI inefficiency
The tested null hypothesis stated that one user could
not produce any detectable brain activity for a given
BCI system. Permutation tests were applied to gener-
ate the distribution for accuracy at chance level, which
depended on the number of classes and trials in the
task. Hence, in cases where the accuracy of the BCI
system was established to lie within the 95% confid-
ence interval of the distribution, we accepted the null
hypothesis and considered the subject as BCI ineffi-
cient. The results from permutation tests are the same
as those established by Müller-Putz’s analysis [47].
When considering N datasets per test, the 95% con-
fidence interval was adjusted to a (1–0.05/N)× 100%
by Bonferroni correction. If the N datasets with the
corresponding accuracies were all outside of the con-
fidence interval, then statistically we rejected the null
hypothesis and concluded that all users could produce
detectable brain activity, and no inefficiency problem
occurred in the examined BCI system.

The inefficiency threshold is related to the num-
ber of datasets and trials studies. For the two-class
problem, the 95% confidence interval was 65.0%with

40 trials per dataset, which decreased to 57.5% with
160 trials per dataset. In the present study, 186 data-
sets (93 subjects; 2 sessions) were analyzed, with 160
trials for the two-class problem and 240 trials for the
three-class problem. The boundaries for the 99.97%
confidence interval with Bonferroni correction were
circa 64.4% for the two-class problem and 44.6%
for three-class problems. The observed proportion
of datasets with accuracies below these thresholds
represents the ‘inefficiency rates’ for the BCI system
under study.

2.4.2. Correlaction analysis
To illustrate the effectiveness of feature combinations,
Pearson’s linear correlation coefficient was firstly per-
formed between the classification accuracy with SMR
and MRCP features separately in the two-class classi-
fication problem RF vs. RH.

Furthermore, since the performance with SMR
features could be predicted by the resting state EEG
[5], It would also be intersting to explore the suitu-
ation for MRCP features. Hence, the correlation ana-
lysis were also performed between resting state EEG
and classification accuracy. Specifically, the logar-
ithmic power spectral density (logPSD) was extrac-
ted from the resting state EEG signals with eyes closed
by Welch’s averaged modified periodogram with 2 s
segmentation and 50% overlap. Pearson’s correlation
coefficient were estimated between logPSD and the
classification accuracy with SMR and MRCP features
separatly for each channel and each frequency bin.

3. Results

3.1. SMR andMRCP visualization
Most MI-based BCI systems rely on the fact that the
amplitude of SMR can be controlled voluntarily by
users. The time courses of SMR (8–30Hz) by executed
real movements of LH, RF, and RH are shown in
the left panel in figure 2, with corresponding topo-
graphies from 0.5 to 3 s. During themovements, ERD
produced by LH and RH were stronger than that
generated by RF. For hand movements, contralat-
eral electrodes displayed slightly larger ERD than the
electrodes in the ipsilateral area. After termination of
movements, ERS occurred on the corresponding sen-
sorimotor area with an equal amplitude for all the
three types of movements.

The time courses of the amplitude of MRCP for
LH, RF, and RH are shown in the right panel in
figure 2, together with the corresponding topograph-
ies between 0.5 and 3 s. The cue-based movement
makes the Bereitschafts-potential component (ran-
ging from 0 to 0.4 s) shorter than the self-paced one.
Different from the transient movement, the three-
second steadymovement in this experiment increased
the duration of the motor potential components. The
amplitude ofMRCP for RFwas found to bemore neg-
ative than those for LH and RH.

4



J. Neural Eng. 17 (2020) 035003 T Liu et al

Figure 2. The grand averaged Sensory Motor Rhythm (SMR) and Movement Related Cortical Potential (MRCP) during the real
movement of the left hand (LH), right foot (RF), and right hand (RH) from all subjects at channel C3 in red, Cz in yellow, and C4
in purple. The topographical maps were obtained by calculating the averaged amplitude at all channels in the shade time interval
from 0.5 to 3 s after the cue turning on. In the left panel, the time courses of the SMR signals have been calculated by Hilbert
transform after 8–30 Hz band-pass filtering. In the right panel, the time courses of the MRCP signals have been obtained by
0.01–3 Hz band-pass filtering. All results are based on the common average reference and base correction to−1 to 0 s.

Table 1. The performance of SMR and MRCP features used in the
classification of RF vs. RH.

Accuracies (%)
Correlation between

Exp1 and Exp2

Feature Exp1 Exp2 Avg r p

SMR 80.57 75.99 78.28 0.86 6.91× 10−28

MRCP 81.10 77.19 79.14 0.75 4.06× 10−18

Both 88.90 84.72 86.81 0.81 1.01× 10−22

3.2. Classification results
3.2.1. Two-class classification
Take the two-class classification problem RF vs. RH
for example. The mean classification accuracy was
78.3%± 13.2% for SMR features among the 186 data-
sets; forMRCP features, an accuracy of 79.1%± 8.2%
was achieved. The combination of both two features
improved the accuracy to 86.8% ± 8.3%. Further
analysis showed high correlation coefficients (> 0.75)
between the first and second sessions; they were stat-
istically significant for all of the three types of features
used in the classification. Compared with session 1, a
decline of circa 4% for the classification accuracy in
session 2 could be observed. All results are summar-
ized in table 1.

By sorting the results from the 186 datasets in
ascending order (figure 3(A)), the inefficiency rates
were found to be 14.5% for SMR features (red curve),
4.3% for MRCP features (yellow curve), and 0%
for the two features in combination (purple curve).
Compared with SMR features, MRCP features were
associated accuracies with lower variance across

subjects. Combining SMR and MRCP features
improved the accuracies, with all subjects’ perform-
ance higher than the threshold.

Based on the results from SMR features, the 186
datasets could be divided into three groups, with poor
(< 70%), moderate (70%–90%), and good (> 90%)
results. The bar graph in figure 3(B) shows the per-
formance of the three feature types in these three
groups. In contrast to the stepwise growth for the
performance of SMR feature (red bars), the results
from MRCP feature were similar (yellow bars) in
the three groups. Feature combination (purple bars)
yielded better results than single features in all the
three groups. For the poor-results group (< 70%),
the mean accuracies increased from 62.2% by SMR
feature to 79.5% when two features were combined.
More importantly, the combination of two features
increased the accuracies for all datasets in this group
above the inefficiency threshold of 64.4%.

Detailed comparisons of the performance of these
three types of features are shown in figures 3(C)
and (D). The weak correlation coefficient (r = 0.16,
p= 0.03 in figure 3(B)) proves the high complement-
arity between the two features. Hence, as shown in
figure 3(D), feature combination improved the clas-
sification performance greatly in most datasets, espe-
cially in the datasets with lower accuracies for SMR
features.

3.2.2. Three-class classification
For the classification of LH vs. RF vs. RH
(figure 3(E)), the BCI inefficiency problem was less

5



J. Neural Eng. 17 (2020) 035003 T Liu et al

Figure 3. The classification results. For the two-class
classification problem, (A) the sorted recognition accuracies
from 186 datasets (93 subjects; 2 sessions) are shown by
curves in different colors; SMR in red, MRCP in yellow, and
both two features in purple. The dashed line indicates the
inefficiency threshold of 64.4%. The triangles with different
colors indicate the inefficiency rates. (B) The bar graph
indicates the comparison of the classification accuracies
with three types of features in three groups, which are poor
(< 70%), moderate (70%–90%), and good (> 90%) by the
results of SMR. (C) The pairwise comparison of the
accuracies between SMR and MRCP features from 186
datasets. (D) The pairwise comparison of the accuracies
between SMR and both features from 186 datasets. Similar
results for three-class classification is shown in (E).

severe when three types of movements involved in the
classification (inefficiency rates: 6.5% for SMR, 0.1%
for MRCP, and 0% for both).

3.3. Neurophysiological predictor
As is shown in figure 4, both the classification results
from SMR and MRCP features can be predicted by
resting state EEG with eye closed.

For SMR features, the high correlation coefficient
came frommu band (10–13 Hz) near channel C3 and
C4. This result is consistent with that from Blankertz
et al [5]. In addition, the second peak cames from
beta band (20–23 Hz) with different topographies.
Gamma band (except 50 Hz power frequency inter-
ference) also showed a negtive correlation results.

ForMRCP features, the logPSDof the resting state
EEG at mu (10–13 Hz) and beta (20–23 Hz) band
was less correlated with the classification accuracies,
in which the correlation coefficient were close to zeros
at the the trough of the curve. By careful observa-
tion, it can be found that trough of the curve is a little

Figure 4. Correlation between logPSD from resting state
EEG with eye closed and the classification accuracy with
SMR and MRCP features separately at channel C3, Cz and
C4. The scalp topographies illustrated the mean correlation
coefficient in the corresponding brain rhythm 10–13 Hz,
20–23 Hz and 35–48 Hz.

earlier than the peak for SMR features. Furthermore,
the gamma band spectrum at channel Cz showed a
positive correlation results, especially the low gamma
band (35–48 Hz).

Due to length limitations, only the correlation res-
ults with eye closed for SMR and MRCP features was
presented in the manuscript. The correlation coeffi-
cient with eye open were similar with that was illus-
trated in figure 4, but slightly higher at 10–13 Hz
for SMR features and slightly lower at 35–48 Hz for
MRCP features.

4. Discussion

In the present study, the issue of BCI inefficiency
was investigated by using both SMR and MRCP fea-
tures. Considering that the interrelatedness of a vari-
ety of underlying factors complicates the understand-
ing of BCI inefficiency, we tried to make the experi-
mental design and methodology as simple as possible
to help us understand this issue. The discussion of
these factors are as follows,

4.1. The threshold for BCI inefficiency problem
BCI inefficiency indicates that a certain percentage
of users perform with a ‘chance’ accuracy. However,
there are no guidelines to determine the inefficiency
threshold for accuracy. As noted by Allison et al
[1], 6.7% of subjects showed accuracies of less than
60% in Guger’s study [3] and 48.7% subjects with
accuracies less than 70%. Thus, fairly small changes
in the definition of threshold can dramatically affect
the percentage of the subjects’ scores classified as
inefficient.

6
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In the present study, permutation tests with Bon-
ferroni correction were applied to determine the
threshold, related to the number of datasets and tri-
als in the studies. Bonferroni correction reduces the
number of false positive results but is also very con-
servative, producing a higher rate of false negatives.
Assuming there are 186 subjects with a true perform-
ance of 70% in a two-class problem, simulations with
160 trials in 186 datasets showed that the probability
for scores of some users to be classified as inefficient
is 100%. It should be noted that such thresholds can
only be used to determine whether subjects achieve
results at chance level but not to assess how well the
subjects can use the BCI system.

In this study, 14.5% of datasets showed accuracies
less than 64.4% in the classification of RH and RF by
SMR features. Considering the different thresholds,
this result is compatible with that found in Guger’s
study [3]. The inefficiency rate could be reduced to
0 by using both SMR and MRCP features in all the
examined classification problems, except LH vs. RH.
The three-class problems showed lower inefficiency
rates than two-class problems, because chance level
efficiency in three-class problems means that any two
classes in the three classes cannot be distinguished.

4.2. Decoding algorithms
In this study, CSP and template matching methods
were used for SMR- and MRCP-feature extraction,
and LDA was applied for classification. CSP is the
basic algorithm for decoding SMR features. Consider-
ing the poor spatial resolution, CSP algorithm could
make full use of spatial correlation among channels
to make the difference between the two classes max-
imum [20]. Hence, CSP achieved a better perform-
ance than directly using power band and logPSD
fetures, and widely used in the ERD/ERS based SMR
feature decoding [11, 14, 17]. Several methods, such
as common spatio-spectral pattern [48], common
sparse spectral spatial pattern [49] and filter bank
CSP [21–23] are developped based on it. Since the
motion detection by MRCP has becoming a research
hotspot in the recent years, various methods has been
proposed [34–36]. But there is no open competition,
like BCI competition, to make an objectively evalu-
ation on these methods. Templated matching tech-
nique was widely used for MRCP decoding [50, 51]
because of its simplicity and effectiveness. In this
study, the basic decoding algorithms, CSP and tem-
plated matching were applied because of their stable
performance and the smaller number of hyperpara-
meters to select, which should make the results in this
paper easier to be compared with previous and future
studies.

There is a clear need for further improvements
by using the state-of-art and/or newly developed
algorithms. The extent to which the new algorithm
can improve the busyness of the brain-computer
interface is also an important issue to consider. Future

studies should explore the deep learning method in
automatic feature extraction, to address the BCI-
inefficiency issue.

4.3. Inefficiency prediction
SMR and MRCP are both motor related brain
response, but are considered with different neuro-
physiological mechanisms [32]. In this study, two
evidences, the weak correlation between SMR and
MRCP performances, and the correlation coefficient
close to zero between mu rhythm resting state EEG
and the MRCP performance, have also indirectly
proven the different origions of SMR andMRCP. The
results of this study suggest that the previously well-
defined concept of ‘BCI inefficiency’ for MI-based
BCI might be more aptly called ‘SMR inefficiency’.
The inclusion of MRCP features greatly improved the
performance in individuals with poor performance
on SMR features. The previously SMR-based index
for inefficiency predictions in Ref. [5] may not work
well for the combination of SMR andMRCP features,
it is necessary to develop the new prediction index in
the future.

4.4. Comparison of executed movement andmotor
imagery
In this study, real executed movement, instead of
motor imagery, was examined to explore the ineffi-
ciency problem inMI-based BCI, which is an import-
ant feature in experiment design but also the major
limitation of this work.

By monitoring real movements, the experimenter
can determine the completion of the participant’s
movement while minimizing the variance contrib-
uted by fatigue, attention, etc Since motor imagery
tasks are new for BCI-naïve participants, different
individuals might have a different understanding of
the instructions. In addition, motor imagery is largely
a mental process, which makes it difficult to mon-
itor differences in participation in different subjects.
Logically, all these factors might also increase the
inefficiency in MI-based BCI. However, real executed
movements are relatively simple tasks for which no
training is needed. Participants can complete the task
easily at a variety of levels of attention and fatigue.
While it is not possible to ensure the consistency
of mental states for different participants in exper-
imental settings, their movements can be standard-
ized to a certain degree. For this reason, the results
demonstrated that BCI inefficiency cannot be attrib-
uted primarily to inconsistent actions of subjects.

However, the lack of direct evidence from motor
imagery constitutes a major limitation of the present
study. We conclude that the combination of SMR and
MRCP features could provide the accuracies above
chance level in real executed movements. Although
we still have no direct evidence, the results from
the executed movements suggest that the inefficiency
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problem in MI-based BCI may be addressed by fea-
ture combination. Previously, it was reported that
motor imagery and executed movement can produce
SMR [16] and MRCP [30, 33] activity in the sensor-
imotor areas in a highly similar way but that the brain
activity accompanying executed movements showed
better signal noise ratios and could be detected more
easily [52]. In addition, executed movement-based
BCI has also been widely used in the rehabilitation
of stroke patients [53]. Applying our current feature-
fusion approach from real-movement to MI tasks
would merit future investigation.

4.5. Feedback and training
In the present study, no feedback or training was
provided to the participants. Feedback is an import
element in BCI systems, and different types of feed-
back can affect their performance greatly [12]. Several
studies have demonstrated that training with appro-
priate feedback effectively improves BCI perform-
ance [14, 15]. However, to identify the contribution
of various factors to the BCI inefficiency problem,
the impact of feedback and training was excluded as
much as possible in the design of the present study.
However, a lack of feedback was associated with a
decrease in user engagement across time, resulting
in lower accuracies during the second, compared to
the first experimental session, although both sessions
consisted of the same actions.

There is also another practical reason for exclud-
ing feedback and training. Since the performances of
SMR and MRCP features are compared in this study,
any kind of feature or their combination used for
immediate feedback and training would be improper
for use in the comparison, because participantsmight
learn to generate specific brain activity patterns to
improve their performance during the experiment.

5. Conclusion

In the present study, the problem of BCI ineffi-
ciency was examined in an experiment featuring real
executedmovements without feedback or training, in
93 participants during two sessions that were sched-
uled on separate days. Performances based on only
SMR or MRCP features were compared with those
based on their combination.

Since executed real movements were used instead
of motor imagery, the actions from all participants
could be kept maximally consistent. Hence, we could
confirm that the existence of BCI inefficiency on SMR
features, whichwas also happened onMRCP features.
However, the weak correlation between the two fea-
tures suggested that MRCP features provide comple-
mentary information to SMR features. Combining
two features is an effective way to improve the recog-
nition rate in MI-based BCI systems. This improve-
ment was particularly evident in participants with
poor performance on SMR features. By using both

features, all participants had their performance in the
classification problem of RF vs. RH above chance
level, a finding that turned out to be reproducible in
the two-session experiment.
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