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SUMMARY

An important property of brain signals is their nonstationarity. How to adapt a brain–computer interface
(BCI) to the changing brain states is one of the challenges faced by BCI researchers, especially in real
application where the subject’s real intent is unknown to the system. Gaussian mixture model (GMM) has
been used for the unsupervised adaptation of the classifier in BCI. In this paper, a method of initializing
the model parameters is proposed for expectation maximization-based GMM parameter estimation. This
improved GMM method and other two existing unsupervised adaptation methods are applied to groups
of constructed artificial data with different data properties. Performances of these methods in different
situations are analyzed. Compared with the other two unsupervised adaptation methods, this method
shows a better ability of adapting to changes and discovering class information from unlabelled data. The
methods are also applied to real EEG data recorded in 19 experiments. For real data, the proposed method
achieves an error rate significantly lower than the other two unsupervised methods. Results of the real
data agree with the analysis based on the artificial data, which confirms not only the effectiveness of our
method but also the validity of the constructed data. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

People with severe neuromuscular disorders or suffering from a locked-in syndrome need alternative
methods for communication and control. Brain–computer interfaces (BCIs) are systems that allow
their users to communicate with a computer program or control a mechanical device directly by
intent rather than by neuromuscular pathway [1]. One of the challenges faced by BCI researchers
is the nonstationarity of the subject’s brain states, reflected as changes in the statistical properties
of the electroencephalogram (EEG) signals, which has been reported in the literature [2–5]. The
nonstationarity may be caused by various reasons, e.g. changes in the concentration or excitation
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level, changes in the mental task involved, influence of feedback, demands for visual processing,
fatigue, artifacts such as swallowing and blinking, changes in the impedance or even position of the
electrodes, and ambient noise [2–4, 6–13]. Owing to the nonstationarity, the BCI system trained
on one session may become ill-suited to the succeeding sessions.

In order to improve the adaptability of a BCI system to the changing brain states, various
adaptation methods have been investigated. In [14–16] the classifier was updated manually after
several runs, according to the experimenter’s experience and judgement. In [2–4, 13, 17–19]
the classifier was updated automatically by different machine learning methods. Most of these
methods need true label information to update the classifier. In other words, these methods are
supervised.

However, as pointed out in [2, 6, 11], in a practical application scenario, the real intention of the
subject is not always known to the system. Considering this situation, some research groups have
paid attention to unsupervised adaptation algorithms. In [11] three types of unsupervised adaptation
procedures for linear discriminant analysis (LDA) classifier were proposed and analyzed. A limit
of these procedures is that they are based on an assumption that during the online sessions, the
vector connecting the two class means keeps nearly constant, which may not always be true in
real BCI. Without such assumptions, Gan [20] introduced an incremental adaptation procedure
for LDA and Bayesian classifiers, which used the estimated label to guide the updating of the
classifier. This is a ‘decision-directed’ approach, which may have some potential disadvantages.
If a trial is wrongly classified, the classifier will be misled by it.

To avoid such disadvantages, some non-incremental unsupervised clustering methods have also
been reported. In [21], Eren used Gaussian mixture model (GMM) for unsupervised clustering of
EEG patterns, but this work did not check the online adaptation performance of the method. In
[22], Blumberg proposed an adaptive linear discriminant analysis (ALDA) method for simulated
online clustering of EEG patterns, in which expectation maximization (EM) method was used
to estimate the means and a common covariance of the two classes. This method is actually a
GMM-based adaptation method, although not explicitly named. The initial data distributions were
estimated from a labelled training period. A limit of this strategy is that, if the feature distribution
shifts far away from the training session during long-term use, this initial parameter will not be
valid any more.

In this paper, the model parameters in GMM are estimated by the EM algorithm combined
with an initialization method. This improved GMM (iGMM) method is used to update the LDA
classifier for a simulated online BCI scenario. In order to investigate its performance in different
situations, the proposed method is applied to several types of constructed artificial data with
different properties, as well as real EEG data collected from 19 experiments. The performance
of our method is compared with a static LDA which is not updated, a supervised adaptive LDA,
an incrementally updated LDA, and a GMM-based adaptive LDA. Our method shows a better
performance than the other two unsupervised adaptation methods not only on the artificial data,
but also on the real EEG data. We also investigate how the data properties (separability and
nonstationarity) affect the performance of different adaptation methods. Analysis on artificial data
shows that our method is more adaptive to nonstationarity, and can more effectively discover
the class information from unlabelled data. Results of the real data show similar phenomenon to
the artificial data. Compared with other unsupervised methods, our method has some advantages.
First, the classifier is not updated incrementally, but recomputed from the recent unlabelled trials
every time, which makes the method robust to bad trials. In other words, if one trial is incorrectly
classified, it will not affect the classifier significantly, since the classifier is updated based on a
number of recent trials. Second, the initial parameter set (mean and covariance of the two classes)
used in the iGMM is not constant, but updated along time according to the historical estimations,
which makes it adaptive to significant changes in the data distribution during long-term use.

The paper is organized as follows: Section 2 describes the methods, including the feature
extractor and classifier, different adaptation algorithms, and the proposed iGMM-based method;
Section 3 describes the constructed artificial data, our experimental setup and the real EEG data;
Section 4 reports the results and does some discussion; Section 5 concludes the paper.
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2. METHODS

2.1. Feature extraction

Common spatial patterns (CSP) is used as a feature extractor in this paper. CSP is a supervised
spatial filtering method for two-class discrimination problems, which finds directions that maximize
variance for one class and at the same time minimize variance for the other class. Mathematically,
CSP is realized by simultaneous diagonalization of the covariance matrices for the two classes
[23]. The formulas for this algorithm can be seen in [24]. The normalized log-variances of six
most discriminative components were used as features. The transformation to logarithmic values
makes the distribution of the features approximately normal.

2.2. LDA classifier

Fisher’s LDA [25] is used as a classifier in this paper. If �1 and �2 are the means of the two
classes, and �1 and �2 are the corresponding covariance matrices, then an LDA classifier can be
determined by these parameters. The weight of the classifier is

w=(�1+�2)
−1 ·(�1−�2) (1)

and the bias is

b=−wT ·
(

�1+�2
2

)
(2)

where wT means transpose of vector w. For each feature vector x , the classifier output is

y=wT ·x+b (3)

If y>0, then x is classified into class 1, otherwise class 2.

2.3. Supervised adaptation of the classifier

We denote the parameter set as �={�1,�2,�1,�2}. Since the LDA classifier can be fully deter-
mined by �, in order to update the classifier, the main work we need to do is to update �.

In a supervised scenario, where all the trials before the current time are provided with a true
label, the adaptation work is relatively easier. If x(t) is the latest feature vector whose true label
is already known, we update � in the following way:

�i (t) = �i (t−1) ·(1−UC)+x(t) ·UC (4)

�i (t) = �i (t−1) ·(1−UC)+(x(t)−�i (t)) ·(x(t)−�i (t))
T ·UC (5)

where i is the true label of x(t), and UC is the update coefficient.

2.4. Unsupervised adaptation of the classifier

As mentioned in [4], ‘in a realistic BCI scenario, the labels of ongoing trials may not always
be available’. In such a case, the BCI system has to be updated in an unsupervised manner, if
adaptation is necessary. In this paper, we compare our iGMM-based method with two existing
unsupervised adaptation methods, namely, an incremental adaptation method, and a GMM-based
method. The adaptation of the feature extractor is another important topic, which is not considered
in this work.

2.4.1. Incremental adaptation. In [20], an incremental updating method is proposed to update the
mean and covariance of each class. This method consists of two steps:

Step 1: when a new feature vector x comes, its label is estimated by unsupervised clustering;
Step 2: the mean and covariance of the class into which the new x is classified are updated in

a way similar to equations (4) and (5).
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It can be seen that, this method is a ‘decision-directed’ approach [25], which may have some
disadvantages. If the prior classifier is not good enough or if several unfortunate trials are encoun-
tered, which often happens when the nonstationarity is severe, the updating will make the classifier
worse. In [20], this problem is described as ‘when to adapt’, and Gan mentioned that some safety
precautions should be taken, e.g. to check the confidence level, or to check whether there exists
an error potential. In this paper, we use the following way to check the confidence level of the
classification result: if the absolute value of the LDA classifier output y=wT ·x+b exceeds a
threshold yth, we say the classification is confident enough, and update the classifier (by updating
the parameter set �) using this new feature; otherwise make no change.

In this method, �new is got by modifying �old with an incremental value. We name this method
as incremental adaptation method, in contrast with the methods below.

2.4.2. GMM-based adaptation. Based on the assumption that the feature vectors of the two classes
are normally distributed in feature space, Eren proposed a GMM-based method for unsupervised
clustering of EEG patterns in [21], in which the parameter set � of the model was estimated by the
well-known EM algorithm. But this work did not check the online adaptation performance of the
proposed method. In [22], Blumberg proposed an ALDA method, which is actually a GMM-based
adaptation method, to update the LDA classifier in a simulated online manner. In this method,
�new at every step is estimated by the EM algorithm on the basis of an initial value �init and the
recent unlabelled trials, but not on �old.

The EM algorithm is an iterative algorithm for parameter estimation. Every iteration of EM
method consists of two steps, namely E-step and M-step.

E-step: Compute the expected classes for each feature vector:

P(�i |xk,�t ) = p(xk |�i ,�t ) ·P(�i |�t )

p(xk |�t )

= p(xk |�i ,�i (t),�i (t)) ·P(�i )∑2
j=1 p(xk |� j ,� j (t),� j (t)) ·P(� j )

(6)

where xk means the kth feature vector, �t ={�1(t),�2(t),�1(t),�2(t)} means the estimated � on
the t th iteration, and i ∈{1,2} means class label.

M-step: Given the data’s class membership distributions, compute new � that maximizes the
likelihood:

�i (t+1) =
∑

k P(�i |xk,�t ) ·xk∑
k P(�i |xk,�t )

�i (t+1) =
∑

k P(�i |xk,�t ) ·Ci,k∑
k P(�i |xk,�t )

(7)

where Ci,k =(xk−�i (t+1)) ·(xk−�i (t+1))T , and k is the index of trial. If Icu is the current
trial index, and Nut is the size of the unlabelled ‘training’ set used to update the classifier, then
k= Icu−Nut +1, . . . , Icu . Since EM algorithm is iterative, we need to determine the number of
iterations Tit . In our computational experiment, we let Tit =1 since we find one iteration is sufficient
for the adaptation, and more iterations cannot further improve the performance.

2.4.3. iGMM-based adaptation. A crucial issue in iterative parameter estimation is to determine
the initial parameter value �init for the first iteration. In [22] the �init is computed from the labelled
training data set. A limit of this strategy is that, if the feature distribution shifts far away from the
training session during long-term use, this �init will not be valid any more. In order to solve this
problem and improve the adaptability of the classifier, we propose the iGMM based approach.

In this iGMM-based approach, we treat �init as a variational parameter but not constant. The
current �init is estimated based on the historical estimations of �. Let �(0) denote the � computed
from the labelled training session, �(k)

init denote the �init used for estimation when the kth unlabelled
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trial come, and �(k) denote the estimated � after the kth unlabelled trial. Then we determine �(k)
init

in the following way:

�(k)
init=

⎧⎪⎨
⎪⎩

�(0) if k�Nhi

1

Nhi

k−1∑
j=k−Nhi

�( j) else
(8)

where Nhi is the size of the historical set of the estimations. Once�init is determined, the succeeding
calculations are the same as in GMM-based approach.

3. APPLICATION

3.1. Artificial data

In order to investigate the performance of the proposed method, and to investigate the factors
that influence the performance, besides the recorded real EEG data, we also construct groups of
artificial data. Since these data are artificially constructed, we can control their properties, e.g.
separability, type of the nonstationarity, and degree of the nonstationarity. In such a way, we can
investigate in detail how these properties affect the adaptation of a BCI.

As reported in [4], there are mainly two types of change in EEG data, namely, shift in the
transition from one session to another, and gradual change in the course of a single session. It was
reported that ‘the major detrimental influence on the classification performance is caused by the
initial shift from training to the test scenario’ [4]. In our work, we construct three types of artificial
data. The first type shifts between sessions but keeps stationary within one session (SHIFT). The
second type changes gradually in the course of a session without the initial shift (GRAD). The
third type contains these two types of change (BOTH).

Since the main focus of this work is the adaptation of the classifier, we directly construct
the feature vectors rather than EEG signals. The artificial features are constructed in such a
procedure: (1) Two classes of static feature vectors are constructed, with each class following a
multi-dimensional Gaussian distribution. The distance between the two class centers is controlled
to determine the separability of the data. (2) The features are divided into three sessions, with
the first one as labelled training session and the last two as unlabelled test sessions. (3) A bias is
added to the test features. The type of the bias can be SHIFT, GRAD, or BOTH. The magnitude
of the bias is controlled to determine the degree of nonstationarity of the data.

The separability of the data is indicated by a parameter rcls, which is defined as follows:

rcls= |�1−�2|√n1n2√∣∣∣∣(�1+�2) · (�1−�2)

|�1−�2|
∣∣∣∣(n1+n2)

(9)

where |·| means the norm of a vector and ni denotes the number of trials in class i ∈{1,2}. The
rcls measures how well the two classes are separated. A bigger rcls means that the two class means
are further away from each other relative to the variance in this direction. In this paper, we denote
it as rcls to indicate that it is about the separability of the two classes, which is different from the
following rchg.

The degree of nonstationarity of the data is indicated by rchg, which is defined as follows:

rchg= |�tr−�te|√ntrnte√∣∣∣∣(�tr+�te) · (�tr−�te)

|�tr−�te|
∣∣∣∣(ntr+nte)

(10)

where the subscripts tr and te indicate the labelled training data set and the unlabelled test data
set, respectively. This parameter can be interpreted as the difference between the training data and
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the test data. A bigger rchg means that the test data are more different from the training data, i.e.
the nonstationarity is severer.

We use these hyper-parameters to control the property of artificial data, so as to investigate how
well the methods in this paper can perform in different situations.

3.2. Experimental setup and real data

3.2.1. Subjects. Seven right-handed subjects (five male and two female, age 23–27 years) took
part in the experiment. None of them had an experience of BCI experiment before. The volunteers
were paid for their participation.

3.2.2. Procedure. The subjects were seated in a comfortable armchair about 2 m in front of a
computer monitor. They were instructed to keep still and avoid blinking during a trial. At the
beginning of each trial, the screen was black. One second later, a fixation cross appeared in the
center of the screen. Another second later, an arrow pointing to either left or right was added to
the cross indicating the imagination of left or right hand movement. The arrowed cross was shown
until the end of second 5. During this time period (from the beginning of second 3 to the end of
second 5), the subject had to imagine left or right (corresponding to the cue) hand movements.
The two kinds of movements were decided by the subject herself/himself, e.g. patting a ball or
pulling a brake. At the end of second 5, a feedback of this single trial was provided by moving
the arrowed cross to the left or right side of the screen, according to the classifier output. This
was the situation in a feedback session. If the session was a training session, then no feedback
was provided, i.e. the arrowed cross remained at the center of the screen until this trial was over.
After a random interval varying from 1.5 to 2.5 s, the next trial began. The sequence of left and
right trials was randomized and the chance for each class was flat. In each run, 10 left and 10
right trials were performed. There were five runs in each session and three sessions in each data
set, resulting in 300 trials in each data set. The first session was used as a training session, and the
last two sessions were online feedback sessions. There was a 1-min break between two successive
runs, and a 10-min break between two successive sessions. This was to alleviate fatigue and to
avoid the subject getting exhausted. Data in one data set were recorded on the same day. Each
subject took one to three experiments, resulting in a total of 19 data sets.

During the online experiments, the classifier actually used to give a feedback was an LDA
classifier that was updated in a supervised manner. All the data were saved for further analysis. The
unsupervised adaptation methods were investigated in a simulated online manner. In the simulation
scenario, every step was taken as it was done in the online scenario. Only the data before the
current time were used for computing and the data after the current time were treated as completely
unseen. In other words, the procedure was causal.

Figure 1. Placement of the 21 EEG electrodes. The three electrodes painted black are C3, Cz, and C4,
respectively. ‘GND’ means ground electrode and ‘Ref’ means reference electrodes.
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3.2.3. Recordings. EEG signals were recorded using a SynAmps system (Neuroscan, U.S.A.).
Signals from 21 channels over central and related motor areas were used for classification.
The grounding electrode was mounted on the forehead and reference electrodes on the left and
right mastoids. The electrodes were placed according to the extended 10/20-system [26, 27] (see
Figure 1). Horizontal and vertical EOGs were recorded for the purpose of artifact detection, and
were not used for classification. The EEGs were first filtered by the recording system in a 5–30Hz
frequency band, and the sampling rate was 1000Hz. Before feature extracting and classifying, the
signals were down-sampled to 200Hz and re-filtered in 8–30Hz by an FIR filter. By the high-pass
filtering, low-frequency EOG artifacts were also removed.

4. RESULTS AND DISCUSSION

For both artificial and real data, we check the performances of five methods, namely, a static
LDA classifier without adaptation (STAT), supervised adaptation (SUPER), incremental adaptation
(INCRE), GMM-based adaptation (GMM), and the proposed iGMM-based approach (iGMM).
Hyper-parameters in each methods are optimized based on the training data.

The artificial data have the same framework as the real data, i.e. three sessions for each data
set, with the first one as training session and the other two as testing sessions. During the hyper-
parameter tuning phase, the training session is further divided into two even parts: training part and
validation part. During the simulated online application, every trial in the test sessions is provided
with an estimated label by each method. The error rate of each method is calculated as the ratio
of incorrectly classified trials to the total test trials.

4.1. Artificial data

By varying rcls and rchg each among 11 degrees, we get 121 groups of data sets, each group with
fixed rcls and rchg level. In each group 10 data sets are constructed; therefore, we have 1210 data
sets for each data type (SHIFT, GRAD, and BOTH).

Figure 2 shows the averaged error rates of all the methods on the three types of artificial data.
We also present the result for real data (indicated as REAL) for the purpose of comparison. The
error rates in this figure are averaged over all data sets with the same data type. From this figure we
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Figure 2. Error rates of the methods on different types of artificial data, as well as on the real data. The
results are averaged over all data sets with the same data type.
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Figure 3. Effect of data properties on the performance of each method. The horizontal
axis is rchg or rcls, and the vertical axis is error rate. Data type BOTH. We do not show
the plots for SHIFT and GRAD, since a similar phenomenon can be found. (a) Effect

of nonstationarity and (b) effect of separability.

can see that, for all data types including REAL, our method shows a significant better performance
than STATIC and INCRE, a considerable improvement over GMM. However, iGMM does not
achieve a perfect performance comparable to SUPER. One possible reason that impedes iGMM
from further improving may be that there are too many parameters (class means and covariances)
to estimate with a limited number of trials. Simpler models with fewer model parameters may
have some advantages, such as the Fuzzy C-Means (FCM) method in which only the class means
and a predefined fuzziness exponent m are used to describe the model, but no covariance is used.

Figure 3 shows how the separability and nonstationarity of the data affect the adaptation perfor-
mance of different methods. For each fixed rcls level, the error rates were averaged over all rchg
levels, and vice versa. From Figure 3(a) we can see that, when rchg is big (or the nonstationary
is severe), iGMM shows a much lower error rate than other unsupervised methods, which means
that iGMM is more adaptive to changes. However, when rchg is very small (or the data are quite
stationary), all the unsupervised methods show a higher error rate than STATIC, especially iGMM.
This is because in this situation, a static classifier is good enough, while a complex unsupervised
algorithm that needs parameter estimation will introduce computing error and result in a worse
performance. From Figure 3(b) we can see that, when rcls is big enough (or the two classes are
well separated), iGMM achieves an error rate close to SUPER, which is much lower than other
unsupervised methods. This means that our method can effectively discover the class information
from unlabelled data, as long as the two classes are well separated. However, when rcls is small
(or the two classes are badly separated), all the unsupervised methods including our iGMM do
not show evident improvement over STATIC. This means if the data are essentially difficult to
separate, then an advanced adaptation method will not help a lot. In such a case, more powerful
feature extraction methods or even other BCI paradigms should be considered in order to achieve
a satisfying result. Figure 3 only gives the plot of data type BOTH, but not the plots of SHIFT
and GRAD, since those plots show a similar phenomenon.

4.2. Real data

Figure 4 shows the error rates of iGMM versus the other four methods, when applied to real EEG
data. Each point in the plot represents a data set, with the vertical axis meaning the error rate
of iGMM, and the horizontal axis meaning the error rate of other methods. A point below the
diagonal means a data set where iGMM outperforms the other method. Points plotted as circles
are the four data sets in Table I, which will be discussed later. From Figure 4 we can see a similar
phenomenon as in Figure 2. This means our method is effective for practical BCI applications.
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Figure 4. Error rates of iGMM versus other methods for real data. (a) iGMM versus STATIC; (b) iGMM
versus SUPER; (c) iGMM versus INCRE; and (d) iGMM versus GMM. Each point in the plot represents
a data set. A point below the diagonal means a data set where iGMM outperforms the other method.

Points plotted as circles are the four data sets in Table I.

Table I. The data properties and the error rates of several typical real data sets,
which are plotted as circles in Figure 4.

Data rcls rchg STAT SUPER INCRE GMM iGMM

1 0.66 0.52 0.255 0.210 0.240 0.255 0.230
2 0.38 0.11 0.313 0.304 0.370 0.356 0.378
3 0.20 0.64 0.467 0.377 0.449 0.428 0.407
4 0.22 0.18 0.415 0.335 0.380 0.390 0.370

Bold font indicates the lowest error rate achieved by the three unsupervised methods.

In Table I, the error rates of four typical real data sets with different property configures are
shown. Here we can check whether the relationship between data properties and error rates shown
in Figure 3 still holds for real data or not. Data set 1 has a big rcls and a big rchg, which means the
two classes are well separated and at the same time the nonstationarity is severe. As we expected,
the error rates are low for all methods, and iGMM shows a better performance than other methods
except SUPER. Data set 2 has a very small rchg, which means the data are quite stationary. As
we can see, all the three unsupervised methods show worse performance than STATIC, especially
iGMM. Data set 3 has a small rcls and a big rchg, which means that the data are badly separated
and are very nonstationary. Therefore, the whole performances are relatively poor, but iGMM still
shows a better performance than the other unsupervised methods. Data set 4 has a small rcls and
a relatively small rchg. As expected, the whole performances are poor. But surprisingly, iGMM
still outperforms other unsupervised methods, may be because the rchg is not so small as in data
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Figure 5. Time course of the class means estimated by different methods, projected on a 2-dimensional
feature subspace. Time is indicated by darkness (from light to dark). Starting points of the trajectories

are the class means used by STATIC. The data set is data 1 in Table I.

set 2. As a whole, these data sets agree with the phenomenon shown in Figure 3, which not only
confirms the effectiveness of our proposed method, but also indirectly confirms the validity of the
constructed artificial data.

In order to visually show how each method adapts to the change of the features, time course of
the class means estimated by different methods is shown in Figure 5, in which time is indicated by
darkness (from light to dark). The plot is got from data 1 in Table I. Since the exact distribution of
the features is unavailable, we consider the estimation by SUPER as the best approximation. From
Figure 5 it can be seen that, at the late stage of the time course, iGMM gives a closer estimation
to SUPER than GMM does. At the early stage, iGMM and GMM give superposed trajectories,
because when k�Nhi (see Equation (8)), the �init used in iGMM is the same as in GMM. It also
should be noted that, although the trajectory of class right estimated by INCRE is close to that
by SUPER, the trajectory of class left is poorly estimated by INCRE, because many left trials are
misclassified into the right class.

5. CONCLUSION

The nonstationarity of EEG signals is an important issue in the research of BCI. Various supervised
adaptation methods have been reported to overcome this problem. However, in practical application,
the real intention of the subject is not always known to the system, and unsupervised adaptation
methods are needed. So far unsupervised adaptation methods for BCI have been reported by
only a few research groups. In this paper, we proposed an iGMM based unsupervised adaptation
approach for online BCI application, in which the GMM parameters were estimated by the EM
algorithm combined with an initialization method. We checked the performance of this method
on both constructed artificial data and real EEG data, and investigated how the separability and
nonstationarity of the data influence the adaptation performance. The proposed method achieves a
better performance than other two existing unsupervised methods on both the artificial data and real
data. This confirms the effectiveness of our method. In addition, results of the real data agree with the
analysis based on the artificial data, which also confirms the validity of the constructed artificial data.

As we pointed out previously, in this paper, we only studied the unsupervised adaptation of the
classifier, but not the feature extractor. Our future work will focus on the unsupervised adaptation
of the feature extractor and finally the whole BCI system.
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