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Common Spatial Patterns (CSP) has been proven to be a powerful and successful method in the detec-
tion of event-related desynchronization (ERD) and ERD based brain–computer interface (BCI). However,
frequency optimization combined with CSP has only been investigated by a few groups. In this paper,
a frequency-weighted method (FWM) is proposed to optimize the frequency spectrum of surface elec-
ccepted 23 February 2010
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troencephalogram (EEG) signals for a two-class mental task classification. This straightforward method
computes a weight value for each frequency component according to its importance for the discrimination
task and reforms the spectrum with the computed weights. The off-line analysis shows that the proposed
method achieves an improvement of about 4% (averaged over 24 datasets) in terms of cross-validation
accuracy over the basic CSP.
ommon Spatial Patterns (CSP)
requency-weighted method (FWM)

. Introduction

People with severe neuromuscular disorders or suffering from
locked-in syndrome need alternative methods for communica-

ion and control. Brain–computer interfaces (BCIs) are systems
hat allow their users to communicate with a computer program
r control a mechanical device directly by intent rather than by
euromuscular passway [1]. Existing literature suggests that both
ctual movements [2] and imaginary movements [3,4] of different
ody parts can cause circumscribed attenuation of mu and beta
hythms at corresponding cortex locations, and this attenuation
s called event-related desynchronization (ERD) [3]. Meanwhile,
n enhancement of mu and beta rhythm at other cortex locations
an be observed, which is termed as event-related synchroniza-
ion (ERS) [3]. Since different movement intents can be reflected
y different ERD/ERS patterns [5,6], ERD/ERS based BCIs are widely
tudied by many groups [7–9].

As mentioned above, different body parts are related to different
ocations in the motor and somatosensori cortex [5]. For example,

ovement or imagery movement of left hand will cause ERD in
ight motor cortex and ERS in left motor cortex, and vice versa.

herefore, spatial information in multi-channel EEG recordings is
mportant for discriminating different intent patterns. Since raw
EG recordings have a poor spatial resolution due to volume con-
uction, various spatial filters have been used to extract spatial
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E-mail address: mexyzhu@sjtu.edu.cn (X. Zhu).
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© 2010 Elsevier Ltd. All rights reserved.

information from raw EEG recordings, such as Common Average
Reference (CAR), bipolar reference, small Laplacian reference, large
Laplacian reference [10,11], Principal Components Analysis (PCA),
Independent Components Analysis (ICA) [12,13], and Common Spa-
tial Patterns (CSP) [10,11,14]. CSP, which is a supervised method
aiming at finding the most discriminative components for two-
class tasks, has been reported to be a powerful and successful
algorithm for ERD/ERS detection and ERD based BCIs [5].

Besides spatial information, frequency information is also
important for the discriminating task, since the effects of differ-
ent activations on EEG recordings are not reflected to the same
degree in all frequency bands. In general, the mu rhythm has a
frequency band of 8–12 Hz and beta rhythm 18–25 Hz, but these
frequency bands can vary with subjects and mental states of the
subject [15,16]. In CSP method, the criteria of separability is the
ratio of variance of the decomposed components, but the specific
frequency band of the decomposed components are not consid-
ered. In order to take full advantage of both frequency and spatial
information, frequency band selection work or other frequency
optimization work has to be done before CSP is applied. However,
most studies on CSP either used an unspecifically selected broad
band [11] or manually selected among several predefined narrow
bands [10].

Recently, some automatical and flexible frequency filtering

methods combined with CSP have been proposed [17–20]. In [17],
an extension of CSP named Common Spatio Spectral Pattern (CSSP)
was proposed to achieve a simultaneous spatial and spectral opti-
mization. This method automatically computes a suitable FIR filter
by feeding a time-delay embedded signal into a CSP procedure.

http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:mexyzhu@sjtu.edu.cn
dx.doi.org/10.1016/j.bspc.2010.02.004
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owever the flexibility of the frequency filter is very limited. In
18], a Common Sparse Spectral Spatial Pattern (CSSSP) was pro-
osed, which solves the problem of flexibility in CSSP by computing
T-length sparse FIR filter. However, the CSSSP needs extensive

arameter tuning, and the complexity of the optimization problem
eads to computational inefficiency. In [19,20] a spectrally weighted
SP (SPEC-CSP) was proposed, which uses an iterative procedure to
chieve optimization of both spatial and spectral filters. The need
f extensive parameter tuning and iterative computation limits the
eal application of this method.

In this paper, we propose a straightforward frequency-weighted
ethod (FWM) to achieve automatic frequency optimization

efore CSP is applied. Our method is different from the above men-
ioned methods in the following ways: (a) this method does not
ry to achieve a simultaneous optimization of spectral and spa-
ial filters, but optimizes these two separately. By this tradeoff, the
omputational complexity is reduced. (b) This method weights the
requency spectrum directly in frequency domain rather than in
emporal domain. In this way, the complex optimization problem
f filter coefficients can be avoided. (c) This method does not need
n iterative computation, but just a straightforward computing pro-
edure. This property makes it easy to realize in the future online
pplication, although in this paper only an off-line analysis is done.

The paper is organized as follows: Section 2 describes the CSP
lgorithm, some existing frequency optimizing methods, and the
roposed method; Section 3 describes our experimental setup and
he datasets; Section 4 reports the analysis results and makes some
iscussion; Section 5 concludes the paper.

. Methods

.1. Common Spatial Pattern

CSP is a supervised spatial filtering method for two-class
iscrimination problems, which finds directions that maximize
ariance for one class and at the same time minimize variance for
he other class. Mathematically, CSP is realized by simultaneous
iagonalization of the covariance matrices for the two classes [21].

CSP algorithm is described as follows: Let Xi
d, d ∈ {1, 2} denote

he zero-mean EEG recordings of trial i, class d, and its dimension
s N × T , with N the number of channels and T the number of sam-
les in time. The normalized spatial covariance of this trial can be
ritten as

i
d = Xi

dXi†
d

trace(Xi
dXi†

d
)

(1)

here † means the conjugate transpose of a matrix (transpose for
eal matrix) and trace(·) means the sum of elements on the diagonal
f a matrix. For each class, the normalized covariance matrices are
veraged over trials,

d = 〈Ri
d〉, d ∈ {1, 2} (2)

The sum of the two averaged normalized covariances is

c = R1 + R2 (3)

c can be decomposed as

c = Uc�cU†
c (4)

here U is the matrix of eigenvectors and � is the diagonal matrix
c c

f eigenvalues. Then the whitening transformation matrix can be
ritten as

=
√

�−1
c U†

c (5)
g and Control 5 (2010) 174–180 175

Rc can be whitened by P as follows

I = PRcP† (6)

where I denotes the identity matrix. It can be easily seen that, if we
transform the R1 and R2 as

Sd = PRdP†, d ∈ {1, 2} (7)

then S1 and S2 share common eigenvectors, and the corresponding
eigenvalues for the two matrices sum up to 1, i.e., if

S1 = B�1B† (8)

then

S2 = B�2B† and �1 + �2 = I (9)

This means that the eigenvector with largest eigenvalue for S1
has the smallest eigenvalue for S2 and vice versa. In this way the
two groups are best discriminated. The projection matrix is

W = B†P (10)

The dimension of W is N × N. The rows of W are called spatial
filters, and the columns of W−1 are called spatial patterns. With W,
the EEG recordings of trial i can be decomposed as

Zi = WXi (11)

After the decomposition, the components most suitable for dis-
crimination are the first and last few rows of Z. We used the
normalized log-variances of these components as features. A Lin-
ear Discriminant Analysis (LDA) classifier was used to classify these
features.

2.2. Existing frequency optimizing methods

2.2.1. Manual selection
In [10], six different bands were studied, namely alpha

(8–12 Hz), lower alpha (8–10 Hz), upper alpha (10–12 Hz), beta
(19–26 Hz), gamma (38–42 Hz), and broad band (8–30 Hz). It was
reported that the broad band (8–30 Hz) showed the best result.

2.2.2. Heuristic selection algorithm
In [5], a heuristic process of frequency band selection was pro-

vided. This algorithm gives each band a score for discrimination
and the band with the highest score is selected. The score used is
the correlation coefficient between band power and the class label.
As mentioned in [5], the algorithm works best if only few channels
are used.

2.2.3. CSSP
In [17], an extension of CSP named CSSP was proposed and

showed an improvement over CSP. This method delays the orig-
inal signal by a time delay �, and treats the delayed signal as a
new channel, resulting in a doubled number of channels. Then all
these channels are put into a CSP procedure. In this way, a simple
FIR filter is automatically computed as well as the spatial filters.
This method achieves simultaneous optimization of spatial and fre-
quency filters. However, with only one time delay, the flexibility
of the frequency filter is very limited. On the other hand, if more
than one time delays are used, the number of parameters will also

increase, and the optimization problem of the filter coefficients will
become more complex. In [17] it was concluded that the choice
of only one time delay is the most effective in most situations.
Another challenge of this method is to tune the value of time delay
�.
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.2.4. CSSSP
In [18], a method named CSSSP was presented, which allows

imultaneously optimizing of an arbitrary FIR filter within the CSP
nalysis. This method trains an FIR filter with a fixed length T, i.e.,
− 1 time delays are used. In order to restrict the complexity of the

requency filter, the solution for the filter coefficients is enforced to
e sparse, i.e., only a few non-zero entries. The sparsity of the filter
oefficients is controlled by a regularization constant C, which has
o be tuned by cross validation. The main difficulty in this work is
he computational inefficiency of the optimization problem.

.2.5. SPEC-CSP
In [19,20] a spectrally weighted CSP was proposed. This method

s a generalization of the CSP algorithm, incorporating non-
omogeneous weighting of the cross-spectrum matrices. This
ethod alternately updates the spectral weights and the spatial

rojection. The spectral filter optimized from the training data is
hen applied to the test data. It was reported that this method
chieves comparable performance to CSSP and CSSSP, but with far
ess computational cost. However, the need of extensive parameter
uning and iterative computation limits its real application.

.3. The proposed frequency-weighted method

The proposed FWM is an automatical frequency optimization
ethod, which does not need iterative computing and therefore

an be easily realized. In this method the weight vector is computed
irectly from the training data, but not tuned depending on the
lassification accuracy. The weight vector is computed in frequency
omain rather than in time domain. We will show that this method
an improve the classification performance of CSP.

Let x denote EEG signal in a time window of interest from one
hannel, and the Fourier transformation of x is

= fft(x) (12)

here fft(·) means the Fourier transformation. The basic idea

f FWM is to find a weight vector w, which weights different
requency components according to their importance for the dis-
rimination task:

w(k) = w(k) × y(k) (13)

ig. 1. Distribution of (a) the amplitude and (b) log-amplitude at 11 Hz, for one of the subj
istribution, k should be 3, and s should be 0. From the figure we can see that k and s fo

ogarithmic values makes the distribution approximately normal, which is an important
g and Control 5 (2010) 174–180

where k is the index of frequency. The weighted frequency spec-
trum yw is then transformed back to time domain as

xw = ifft(yw). (14)

where ifft(·) means the inverse Fourier transformation. Then the
new signals from different channels are put into CSP for feature
extraction. The main work here is to find a suitable weight vec-
tor w. In our work, the method used to compute w is based on
Fisher’s Linear Discriminative Analysis (LDA) [22], which finds the
projecting direction where the generalized Rayleigh quotient of the
between-class scatter matrix to the within-class scatter matrix is
maximized.

A brief description of the LDA algorithm is given as follows: If
zd, d ∈ {1, 2} is a vector representing one trial from class d, and zd

follows a normal distribution, then let z̄d denote the averaged value
of zd over trials. The scatter matrix of class d is

Sd =
∑

(zd − z̄d)(zd − z̄d)† (15)

Then the within-class scatter matrix is defined as

SW = S1 + S2 (16)

and the between-class scatter matrix as

SB = (z̄1 − z̄2)(z̄1 − z̄2)† (17)

In terms of SW and SB, the criterion function J(·) of separability
is defined as

J(w) = w†SBw
w†SW w

(18)

The w which maximizes J(·) is the most discriminative direction
for the two classes. It can be proven that the w that maximizes J(·)
is

w = S−1
W (z̄1 − z̄2) (19)

In order to find the most discriminative frequency components,
we use the logarithm of amplitude of each frequency component
as vector z, i.e.,
z = log |y| (20)

where | · | means absolute value and y has the same meaning as
in Eq. (12). The transformation to logarithmic values makes the
distribution approximately normal. As an example, Fig. 1 shows the

ects in our experiment, where k means kurtosis, and s means skewness. For normal
r (b) are nearer to 3 and 0 than those of (a). In other words, the transformation to
hypothesis in LDA algorithm. (a) k = 4.16, s = 1.14 and (b) k = 2.67, s = −0.25.
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istribution of the original amplitude and log-amplitude at 11 Hz
or one of the subjects in our experiment.

There are some remarks that should be stated: (a) the w we
nd is just a weight vector indicating the importance of different

requency components, but not a projecting direction. This means,
nly its absolute value is meaningful to us. (b) Theoretically, the
orrelation coefficient between different frequency components
hould be zero. Therefore, the scatter matrix Sd is supposed to be
iagonal. However empirical evidence shows that the estimation
f Sd is not diagonal. In computation, we only consider its diagonal
lements. (c) Since the frequency spectrum of a real time series is
onjugately symmetric around the Nyquist frequency, only the first
alf of the spectrum is used to calculate the weight vector w. (d)
ince the frequency spectrum estimated by Fourier transformation
ppears oscillatory, a smoothing action is taken after the weight
ector is computed. The weight values in a 1-Hz window centered at
particular frequency are averaged to get the new weight value for

his frequency. For example, the weight values from 9.5 to 10.5 Hz
re averaged to get the new weight value for 10 Hz.

. Experiment and dataset

.1. Our experimental setup and the SJTU data

.1.1. Subjects
Five right-handed subjects (four male and one female, age 23–27

ears) took part in the experiment. None of them had an experi-
nce of BCI experiment before. The volunteers were paid for their
articipation.

.1.2. Procedure
The subjects were seated in a comfortable armchair about 2 m in

ront of a computer monitor. They were instructed to keep still and
void blinking during a trial. At the beginning of each trial, i.e., sec-
nd 0, the screen was blank. At second 1, a fixation cross appeared
n the center of the screen. At second 2, an arrow pointing to either
eft or right was added to the cross indicating the imagination of
eft or right hand movement. The arrowed cross was shown until
econd 5. During the time period from second 2 to second 5, the
ubject had to imagine left or right hand movement according to
he cue. The two kinds of movements were decided by the subject
erself/himself, e.g., patting a ball or pulling a brake. At second 5,
feedback of this single trial was provided by moving the arrowed
ross to the left or right side of the screen, according to the classifier
utput. After a random interval varying from 1.5 to 2.5 s, the next
rial began. The sequence of left and right trials was randomized
nd the chance for each class was flat. In each run, 10 left and 10
ight trials were performed. There were five runs in each session
nd three sessions for each subject. Runs in one session were per-
ormed on the same day. Data in one session were termed as one
ataset, including 100 trials (50 left and 50 right). All data were
aved for later analysis.

It should be noted that although a feedback was provided in
he experiments, the online feedback was computed by a basic CSP
n an 8–30 Hz broad band without FWM, and an LDA classifier. In
ther words, in this paper, we only do an off-line analysis of the
roposed method, but do not check its online performance. The
asic CSP and the LDA classifier were calibrated before the online
xperiment on a very short session containing 15 left and 15 right
rials. These 30 trials were not provided with feedback, and are not
sed for analysis in this paper.
.1.3. Recordings
EEG signals were recorded using a SynAmps system (Neuroscan,

SA). Signals from 21 channels over central and related motor areas
ere used for classification. The grounding electrode was mounted
Fig. 2. Placement of the 21 EEG electrodes. The three electrodes painted black are C3,
Cz, and C4, respectively. ‘GND’ means ground electrode, and ‘Ref’ means reference
electrodes.

on the forehead and reference electrodes on the left and right
mastoids. The electrodes were placed according to the extended
10/20-system [23,24] (see Fig. 2). Horizontal and vertical EOGs
were recorded for the purpose of artifact detection, and were not
used for classification. The EEG were first filtered by the recording
system in a 5–30 Hz frequency band, and the sampling rate was
1000 Hz. Before feature extracting and classifying, the signals were
down-sampled to 200 Hz and re-filtered by a 50-order FIR filter in
8–30 Hz frequency band. By the high-pass filtering, low-frequency
components of EOG artifacts were also removed [25].

In the remaining part of this paper, we will refer to these data
as the SJTU data.

3.2. The Graz data

For the purpose of validation, we also applied the proposed
method to data set IIa of BCI competition IV, which was provided
by Graz University of Technology, Austria. It consists of EEG data
from nine subjects, or nine datasets. The task of the experiment is
four-class motor imagery, namely, left hand, right hand, both feet,
and tongue. Considering that our method is for two-class discrim-
ination, we only use the data of left and right hand.

Details of the data description and experimental setup can be
found in [12,13]. In the remaining part of this paper, we will refer
to these data as the Graz data.

4. Results and discussion

The performance of three methods are compared: (1) FWM com-
bined with CSP (FWM-CSP); (2) CSP in a broad band of 8–30 Hz,
without FWM (basic-CSP); (3) CSP in the best frequency band
among 49 narrow bands, without FWM (Best-band).

The 49 narrow bands in the Best-band method are: 11 narrow
bands between 8 and 30 Hz (width 2 Hz, no overlapping), 10 over-
lapping bands between 8 and 29 Hz (width 3 Hz, overlapping 1 Hz),
10 overlapping bands between 8 and 30 Hz (width 4 Hz, overlap-
ping 2 Hz), 9 overlapping bands between 8 and 29 Hz (width 5 Hz,
overlapping 3 Hz), 9 overlapping bands between 8 and 30 Hz (width
6 Hz, overlapping 4 Hz).

In this work we only do an off-line analysis, and the perfor-
mances are measured in terms of a 10-fold cross-validation error
rate. In each fold of the cross-validation, the weight vector w in
FWM, the decomposition matrix W in CSP, and the linear classifier,
are all calculated from the calibration data, and the validation data
are treated as unlabelled.
The signals used for calculation were recorded from the time
point when the arrow on the cross appeared to the current time.
For each trial, a classification output is given at every time point.
The lowest cross-validation error rate along the time axis, as well
as the integrated error rate along the time axis are reported.
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Fig. 3. Cross-validation error rates of FWM-CSP versus CSP and best band. (a) FWM-CSP versus basic CSP, lowest error rate; (b) FWM-CSP versus basic CSP, integrated
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For Best-band, the selected band gets a weight of non-zero while
components beyond the band get a weight of zero. For FWM-CSP,
different frequency components get a flexible weight according to
their separability. Note that for this dataset, the best band selected

Table 1
Best frequency band (in Hz) for each dataset (SJTU data). ‘subi–j’ means dataset of
session j, subject i.

Data sub1–1 sub1–2 sub1–3 sub2–1 sub2–2 sub2–3
rror rate; (c) FWM-CSP versus best band, lowest error rate; (d) FWM-CSP versu
bove the diagonal means a dataset where FWM-CSP outperforms the other met
ates.

.1. Results

The error rates of FWM-CSP versus the other two methods are
hown in Fig. 3. Each point in the plot represents a dataset, with
he horizontal axis representing the error rate of FWM-CSP, and
he vertical axis representing the error rate of basic-CSP (the first
ow) or Best-band (the second row). Plots in the left column are the
owest error rates and those in the right column are the integrated
rror rates. All the error rates are averaged over the 10-fold cross-
alidation. The mean and standard deviation of error rates over all
he datasets, including SJTU data and Graz data, are indicated as a
ircle and cross in the plot.

From Fig. 3 we can see that, for most datasets, FWM-CSP shows
significant improvement when compared to basic-CSP. The error

ate averaged over 24 datasets for FWM-CSP is about 4% lower than
hose for basic-CSP. However, when compared to the best band
ound by an enumeration approach, FWM-CSP shows a higher error

ate for more than half of the datasets. This means that, the pro-
osed FWM can actually improve the performance of CSP but it
till can not achieve the global best level.

Table 1 shows the best frequency bands for each dataset in the
JTU data. As we can see, the best band for most subjects shows
band, integrated error rate. Each point in the plot represents a dataset. A point
he circle and cross in the plot indicate the mean and standard deviation of error

a variability between sessions. In other words, the best band opti-
mized from the previous session may be not the best selection for
the later session. This makes the band selection work quite difficult
in real application.

As an example, Fig. 4 shows the shape of the weight vector
between 8 and 30 Hz for each method, data from session 2, sub-
ject 4, SJTU data. The curves were averaged over all trials in the
session. For basic-CSP, all frequency components get a flat weight.
Best band 18–24 12–15 8–12 26–28 8–12 14–18
Data sub3–1 sub3–2 sub3–3 sub4–1 sub4–2 sub4–3
Best band 10–15 10–16 24–27 12–16 10–14 12–17
Data sub5–1 sub5–2 sub5–3
Best band 8–13 10–15 10–16
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ig. 4. Weight vector got by each method, averaged over 10-fold cross validation,
ata from C4 channel, session 2, subject 4, SJTU data. For this dataset, the best band

s 10–14 Hz, where the weights got by FWM also have a higher value.

s 10–14 Hz (see Table 1), and the weight vector estimated by FWM
lso has a higher value in this band. In Fig. 4 the vertical axis does
ot have a scale because for a weight vector the only thing that
akes sense is its shape.

.2. Discussion

As mentioned before, the proposed method does not achieve the
lobal best level. There may be several reasons for this: (a) the esti-
ation of frequency spectrum based on Fourier transformation is

ather oscillatory, which influences the estimation precision of the
eight vector w. (b) Although the logarithm transformation makes

he distribution of amplitude approximately normal, with limited
rial samples, the real distribution is actually not normal, which
an make the LDA algorithm not optimal. (c) With this FWM, the
ptimization of frequency is independent from the optimization of
patial projection, i.e., it is not a simultaneous optimization. This is
tradeoff we made between classification accuracy and computa-

ional cost.
As shown in Fig. 3, the best narrow band achieves better

esult than the 8–30 Hz broad band, which disagrees with the
esult reported in [10]. The reason for this disagreement may
e that, in [10] the five narrow bands were selected empirically
nd kept unchanged, whereas in this paper the narrow band
as selected among 49 narrow bands for each subject and each
ataset.

. Conclusion

Optimization of EEG in spatial and frequency domain is impor-
ant for ERD/ERS based BCI systems. CSP is a powerful and
uccessful algorithm for the optimization in spatial domain. How-
ver, existing literature on the optimization of frequency combined
ith CSP is limited. In this paper, we proposed a frequency opti-
ization method named FWM which automatically and flexibly

ptimizes the frequency components before CSP is applied to the
EG signals. We investigated the performance of this method on

oth EEG data recorded in our laboratory and data set IIa from
CI competition IV. The results show that the proposed method
chieves a considerable improvement over the basic CSP applied
n a broad band. On the other hand, the proposed method does
ot achieve the global optimal level when compared with the best

[

g and Control 5 (2010) 174–180 179

narrow band found by an enumeration approach. However, the
best band for one subject is not constant, therefore the selection
work is very difficult. In this work only off-line analysis is done, our
future work will focus on the online application of the proposed
method.
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