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Recently, the synchronization issue in chaotic systems has become a hot topic in nonlinear
dynamics and has aroused great interest among researchers due to the theoretical significance
and potential applications. In this paper, complete periodic synchronization is considered for
the delayed neural networks with discontinuous activation functions. Under the framework of
Filippov solution, a novel control method is presented by using differential inclusions theory,
nonsmooth Lyapunov method and linear matrix inequality (LMI) approach. Based on a newly
obtained necessary and sufficient condition, several criteria are derived to ensure the global
asymptotical stability of the error system, and thus the response system synchronizes with
the drive system. Moreover, the estimation gains are obtained. With these new and effective
methods, complete synchronization is achieved. Simulation results are given to illustrate the
theoretical results.
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1. Introduction

In mathematics and control theory, due to the con-
ventional definition and simple existence conditions
of solutions for differential equations, most theo-
retical results in analysis and control of dynamical
systems are established under the assumptions of
smoothness (continuously differentiable) condition
of the given vector field. However, in various science
and engineering applications, the system dynam-
ics is discontinuous. Examples include dry friction,
impacting machines, systems oscillating under the
effect of an earthquake, power circuits, switching
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in electronic circuits and many others [Chen et al.,
2006; Cortés, 2008].

Recently, in the fields of signal process-
ing, pattern recognition, parallel computation,
complicated optimization problems, etc., neural
network plays an increasingly important role,
and its various properties have been systemati-
cally studied in [Cao, 2001; Huang et al., 2005;
Liang et al., 2008; Song et al., 2005]. However, there
is little literature focusing on neural networks with
discontinuous activation functions, though they fre-
quently arise in practice [Forti & Nistri, 2003].
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From the theoretical point of view, the basic
question is about the solution of the discontinuous
dynamical systems. Does the classical definition of
solutions still work for the discontinuous dynamical
systems? How to ensure the existence and unique-
ness of such solutions? It is well known that conti-
nuity of the vector field suffices to guarantee the
existence of classical (continuously differentiable)
solutions, as stated by Peanos theorem [Coddington
& Levinson, 1955]. That is to say that the classical
solutions might not exist, if the vector field is dis-
continuous. The existence of solutions for discon-
tinuous dynamical systems is a delicate problem, as
can be seen from the following example. Consider
the differential equation [Cortés, 2008]

&= f(x(t)), (1)
where f: R — R defined by
-1, = >0,

Fa(®) { N, )
which is discontinuous at zero. Suppose that there
exists a continuously differentiable function x :
[0,¢1] — R such that &(t) = f(z(¢t)) and z(0) = 0.
Then #(0) = f(2(0)) = f(0) = 1, which implies
that, for all positive ¢ sufficiently small, z(t) > 0
and hence @(t) = f(z(t)) = —1, which contradicts
the fact that ¢ — #(¢) is continuous. Hence, no clas-
sical solution starting from zero exists.

Actually, the discontinuous dynamical sys-
tem has been an old research topic for decades.
Several types of solutions have been available
such as Caratheodory solutions, Filippov solutions,
and sample-and-hold ones [Cortés, 2008]. Recently,
much research interest has been focused on the
notion of solutions with the Filippov framework
[Filippov, 1988]. Such a notion has been utilized
as a feasible approach in the field of mathematics
and control for discontinuous dynamical systems. In
2003 and 2005, under the Filippov framework, suffi-
cient conditions were obtained for the global asymp-
totical stability of the unique equilibrium point of
discontinuous neural networks [Forti & Nistri, 2003;
Forti et al., 2005], which motivated the latter stud-
ies on neural networks with discontinuous activa-
tions [Huang & Cao, 2008; Huang et al., 2009;
Liu & Cao, 2009; Lu & Chen, 2006, 2008; Papini
& Taddei, 2005].

On the other hand, the synchronization of two
or more dynamical systems is a basis to understand
an unknown dynamical system from one or more
well-known dynamical systems. In other words, the

response complexity of an unknown system to one
or more well-known systems can be measured and
compared through such synchronicity. Early studies
about synchronization focused on dynamical behav-
iors in various periodic systems [Kuramoto, 1984;
Winfree, 1980]. It is known that chaotic systems
exhibit sensitive dependence on initial conditions.
Just because of this property, it was long believed
that chaotic systems defy synchronization. Until
1990, chaotic synchronization was first realized by
Pecora and Carroll [1990]. Since then, chaotic syn-
chronization has become a hot topic in nonlinear
dynamics due to theoretical significance and poten-
tial applications. So far, many types of synchro-
nization have been presented, such as identical or
complete synchronization, generalized synchroniza-
tion, phase synchronization, anticipated and lag
synchronization (for details, see [Luo, 2009]). Syn-
chronously, several control approaches have been
developed to synchronize two or more dynamical
systems such as drive-response, coupling control,
adaptive control, feedback control, fuzzy control,
observer-based control, manifold-based method and
impulsive control, intermittent control, etc. It seems
that these theories and methods have completely
solved the problem of synchronization issue for any
oscillator. However, still not much is known for com-
plete synchronization of periodic oscillators. At a
first glance, one might intuitively believe that since
chaotic motion is more complicated than periodic
motion, the synchronization of chaotic oscillators
should also be more complicated than those of peri-
odic oscillators. Nevertheless, this is not always the
case and the synchronization patterns for periodic
cases can actually be more complicated than those
for chaotic cases, just as indicated in [Zou & Zhan,
2008a, 2008b|, where an opposite result was given.
Hence, it is our intention in this paper to tackle such
an important yet challenging problem.

Motivated by the above discussions, in this
paper, we will consider the complete periodic syn-
chronization of delayed neural networks with dis-
continuous activations based on nonsmooth analysis
and differential inclusions theory [Aubin & Cellina,
1984; Aubin & Frankowska, 1990]. Firstly, under
the framework of Filippov, the existence of peri-
odic solutions for such discontinuous neural systems
can be guaranteed. Then, a controller is designed
for the synchronization of periodic systems. Sev-
eral sufficient criteria are derived to guarantee the
global asymptotical stability of the error system.
We note that, when proving the error system’s



Int. J. Bifurcation Chaos 2010.20:2151-2164. Downloaded from www.worldscientific.com
by UNIVERSITY OF HONG KONG LIBRARIES - ACQUISITIONS SERVICES DEPARTMENT on 12/07/12. For persona use only.

Complete Periodic Synchronization of Delayed Neural Networks

global asymptotical stability, it is quite different
from the classical Lyapunov methods. The Lya-
punov functional is not smooth as usual any more
due to the discontinuity of activations. Compared
to previous literature, the main contributions of
this paper are to initially formulate the periodic
synchronization problem for discontinuous neural
networks and to develop a delay-independent and
LMlI-based approach to solve it.

The rest of the paper is organized as follows.
Section 2 gives some preliminaries. Section 3 dis-
cusses the existence of periodic solutions for the
discontinuous neural networks. Section 4 presents
some sufficient conditions for synchronization of the
delayed drive and response system. In Sec. 5, simu-
lation results aiming at substantiating the theoreti-
cal analysis are reported. The main conclusions are
presented in Sec. 6.

Notations. The notations are quite standard.
Throughout this paper, R™ and R"™*™ denote,
respectively, the n-dimensional Euclidean space and
the set of all n x m real matrices. The superscript
T denotes matrix transposition and the notation
X > Y (respectively X > Y) where X and Y are
symmetric matrices, means that X — Y is positive
semi-definite (respectively positive definite). I is the
identity matrix with appropriate dimension. || - || is
the Euclidean norm in R™. If A is a matrix, denote
by ||Al|2 its operator norm, i.e. ||All2 = sup{|Az| :
|zl = 1} = V/AmaxAT A, where A\pax(-) means the
largest eigenvalue of A. C([0,w],R™), L*(]0,w], R™)
and L>°([0,w],R™) are the spaces of continuous vec-
tor function, square integrable vector function and
essentially bounded function on [0, w], respectively.
The notation * always denotes the symmetric block
in a symmetric matrix. Sometimes, the arguments
of a function or a matrix will be omitted in the
analysis when no confusion can arise.

2. Model Formulation and
Preliminaries

In this paper, we consider the following neural net-
works described by the system

= —Dux(t) + Af(2(t))
+Bf(x(t—1))+ I(t), (3)

where z(t) = (w1(t),22(t),...,2,(t))T € R" is
the state vector associated with the neurons; D =
diag(dy,ds,...,dy,) is an n x n constant diagonal
matrix with d; > 0, ¢ = 1,2,...,n; A = (aij)nxn
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and B = (bij)nxn are the connection weight matrix
and the delayed connection weight matrix, respec-
tively; f(a:) = (fl(xl)a f2(~772>7 s 7fn(xn)>T (R —
R™ is a diagonal mapping where f;,i = 1,2,...,n,
represents the neuron input—output activation; 7 is
a constant delay and I(t) = (I1(t), I(t),..., L,(t))"
a continuous w-periodic function.

Throughout the paper, for each i = 1,2,... n,
it will be assumed that f; is continuous in R except
a finite number of points of discontinuity, pg, where
there exist finite right and left limits, fz(pz) and
fi(py,), respectively, with f;(p;) > fi(py ). Let F
be the class of these functions.

In the following, we apply the framework of Fil-
ippov in discussing the solution of delayed neural
networks (3).

Definition 1. Suppose E C R"™. Then z — F(x)
is called as a set-valued map from E — R", if
for each point x of a set F C R", there corre-
sponds a nonempty set F(x) C R". A set-valued
map F' with nonempty values is said to be upper-
semi-continuous at xg € F if, for any open set N
containing F'(x(), there exists a neighborhood M
of xy such that F(M) C N. F(x) is said to have a
closed (convex, compact) image if for each =z € E,
F(z) is closed (convex, compact).

Now we introduce the concept of Filippov solu-
tion. Consider the following system

X, (4)

where f(-) is not continuous.

Definition 2. A set-valued map is defined as

= () KU (B@)N)], ()

5>0 pu(N)=0

where K(FE) is the closure of the convex hull of
set B, B(r,6) = {y ¢ ly — a|| < 6}, and u(N) is
Lebesgue measure of set N. A solution in the sense
of Filippov [1988] of the Cauchy problem for Eq. (4)
with initial condition x(0) = zo is an absolutely
continuous function z(t),¢t € [0,7], which satisfies
x(0) = xo and differential inclusion:

dx
EGF(x), a.e. t € [0,T]. (6)
Denoting
F(z) 2 K[f(2)] = (K[fu(@1)],-.. K[fa(2a)),
where K[fi(x;)] = [fi(z]), fi(z)], i=1,...,n, we

extend the concept of the Flhppov solution to the
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differential Eq. (3) as follows:

Definition 3. A function z : [-7,7) — R", T €
(0, +0o0], is a solution (in the sense of Filippov) of
the discontinuous system (3) on [—7,T), if:

(I) « is continuous on [—7,7T") and absolutely con-
tinuous on [0, T);
(IT) x(t) satisfies

#(t) € —Dx(t) + AK[f(z(t))]

+BK[f(x(t—71))] + I(t)
for a.e. t € [0, 7). (7)

Or equivalently,

(II') there exists a measurable function a =
(a1,9,...,0a,)" : [-7,T) — R™, such that
a(t) € K[f(x(t))] for a.e. t € [-7,T) and

#(t) = —Dx(t) + Aa(t) + Ba(t — ) + 1(1),
for a.e. t € [0,7), (8)

where the single-valued function « is the so-
called measurable selection of the function I, which
approximates F in some neighborhood of Gragh(F).

It is obvious that the set-valued map z(t) —
—Dz(t)+ AK|[f(x(t))]+ BK[f(x(t — 7))+ I(t) has
nonempty compact convex values. Furthermore, it
is upper-semi-continuous [Aubin & Cellina, 1984]
and hence it is measurable. Here, we remark that all
the set-valued functions obtained by Filippov reg-
ularization applied to functions f € F verify the
above several properties. Hence, by the measurable
selection theorem [Aubin & Frankowska, 1990], if
x(t) is a solution of (3), then there exists a mea-
surable function a(t) € K[f(x(t))] such that for
a.e. t € [0,+00), the Eq. (8) is true.

Definition 4. For any continuous function ¢
[-7,0] — R™ and any measurable function v :
[—7,0] — R™, such that ¥(s) € K[f(¢(s))] for
a.e. s € [—7,0], an absolute continuous function
x(t) = z(t, ¢, 1) associated with a measurable func-
tion a(t) is said to be a solution of the Cauchy prob-
lem for system (3) on [0,7") (7" might be co) with
initial value (¢(s),(s)), s € [—7,0], if

#(t) = —Dx(t) + Aa(t) + Ba(t — ) + 1(1),
for a.e. t € [0, 7)),

z(s) = ¢(s), Vse[-7,0]

a(s) =1(s), fora.e.se[—,0].

3. Existence of Periodic Solutions

In this section, we prove that under some condi-
tions, system (9) has w-periodic solutions. The fol-
lowing two lemmas should be recalled:

Lemma 1 [Douglas, 1972]. Let X* be dual space of
Banach space X and S be closed unit ball of X*.
Then S is weakly-* compact.

Note that the weak-* convergence is defined as:
Let X be a Banach space and X* its normed dual
space, {fn} C X* and f € X*, f, is said to weakly-*
converge to f in X* (denote w* —lim, o0 fr, = f),
if for all x € X, limy, .o fn(z) = f(x).

Lemma 2 [Dugundji & Granas, 1982]. If X is a
Banach space,

2% = {C:C c X, C is nonempty,

compact and convex},

and G : X — 2% is an upper-semi-continuous set-
valued map which maps bounded sets into relatively
compact sets, then one of the following statements
18 true:

(a) the set T ={z € X : z € A\G(z),\ € (0,1)} is
unbounded,

(b) the G(-) has a fized point, i.e. there exists v € X
such that x € G(z).

Theorem 1. Suppose that F satisfies a growth con-
dition (g.c.): there exist constants K1, Ko > 0 with

[F(z)|l = sup ]} < Kiflzf| + K2.  (10)
EeF(z

Then, there exists at least one periodic solution of
system (3) in the sense of Eqs. (9).

Proof. Based on the detailed discussions in Sec. 2,
the set-valued map x(t) — —Dx(t)+ AK|[f(z(t))]+
Bf(x(t — 7)) + I(t) is upper-semi-continuous with
nonempty compact convex values, the local exis-
tence of a solution z(t) of (9) can be guaranteed
[Filippov, 1988]. In [Forti et al., 2005], the solution’s
local existence was considered by step-by-step con-
struction.

Denote § = max)<j<, max_,<;<o{0;(t)}, [ =
maxi<;<n maX_TStSOO{Ii(t)}. By (10), for a.e. t €
[0,4+00), one has

|=Dx(t) + AK[f(x(t))] + BK[f(z(t — 7))] + I(t)]|
< IDll2llz@I + [|All2 (K1 [lz(®)]| + K2)
+ | Bllo( K1 ||x(t — 7)|| + K2) + T
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< I Dllzllz@®)] + [All2 (K1l (t)]| + K2)
+ HBH2(K1§+ Killz(t)|| + Ka2) + I
< (IDll2 + K1 ||All2 + K1||Bl]2) ||z (t)]|
+ K3 ||All2 + K| Bllz + K10 B2 + 1
2 A|lz(t)|| + B, (11)

where A = |Dlls + Ki(|All2 + IBl2), B =
Ko ([|Allz + | Bll2) + 0K B2 + 1.
It follows that

lz@I < lz(0)]] + II/0 a(s)ds||

t
< ||z(0)|| + Bt +/ Allz(s)||ds.
0
By the Gronwall inequality, one has
lz(®)[| < (lz(0)|| + Bt)e™.

Hence, since z(t) remains bounded for positive
times, it is defined on [0, +00).

Next, we will show that the following differen-
tial inclusion with periodic boundary value condi-
tions has a periodic solution

#(t) € —Dx(t) + AK[f(z(t))]

+BE[f(x(t = 7)) +1(t),
for a.e. t € [0,7),

Vse[-,0],

(12)

For all z € C([0,w],R™), we denote F(t,z(t)) =
—Dz(t)+ AK|[f(x(t))]+ BK|[f(z(t—7))]+ I(t) and
x(s) = 6(s), for s € [—7,0].

Define a set-valued map 4§, for all x € C([0,w],

oz : = {y € C[0,w] [ y(0) = 6(0),
y(t) € —Dx(t) + AK[f (x(t))]
+BE[f(x(t = 7)) + 1(2),
a.e. t € [0,w] and y(t) is measurable}.

By the measurable selection theorem [Aubin &
Frankowska, 1990], there exists a measurable func-
tion v(t) € L'[0,w] such that v(t) € F(t,x(t)) for
a.e. t € [0,w].

Let

Y()|_ro) = 0(5), w(t) = 0(0) + /0 o(s)ds.
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then y € dx. Therefore, for all x € C[0,w], oz
is nonempty and ¢ € L'[0,w]. So y is absolutely
continuous.

Corresponding to Lemma 2, the remaining
proof will be divided into three steps.

Step 1. 0 maps bounded sets into relatively com-
pact sets. In fact, let D C C[0,w] be bounded set.
ie. 3L > 0,Vz € D, |lz|| < L. Then, by (11), for
y € ox,y € F(t,x(t)), a.e. t € [0,w], one has

lyl| < AL+ B
and
lyll < 10(0)]| + w(AL + B).

Hence, §(D) = {z|z = dx, Vo € D} is uni-
formly bounded and is obviously equi-continuous.
By Arzela-Ascoli Theorem, §(ID) is relatively com-
pact in C[0, w].

Step 2. The set-valued map J§ is upper-semi-
continuous. From Step 1, we only need to prove that
J is closed. i.e. VT ,x, € Cl0,w] , z, = T ; yp €
0Ty » Yn — Y, we want to prove y € 0z . Choosing
e=1,dN > 0, when n > N, one has

lzn @] < 7@ + 1.
Let uy,(t) = §n(t), for a.e. ¢t € [0,w], one gets
lun ()] < B+ Allzn ()] < B+ A(|Z]| + 1)

From Lemma 1, there exists a subsequence of u,,
(still denotes u,) weakly-* converging to @. Spe-
cially, for all ¢ € L*°[0,w], one has

w w
/ Uppdt — / updt
0 0

i.e. {u,} weakly converges to @ in L'[0,w].
On the other hand,

un(t) = 0(0) + /0 n(5)ds

So,

By the convergence theorem [Aubin & Cellina,
1984], one has

y(t) =a(t) € F(t,3),
This implies that 3 € 7.

for a.e. t € [0,w].
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Step 3. Now, we will prove that the set
{x € Cl0,w] | z € Moz, A € (0,1)}

is bounded.
For all 0 < A < 1, x € Adx, there exists y € dx
such that z = Ay. Then for a.e. t € [0,w], one has

lg@®)1 < B + Alj]].
Thus, for a.e. t € [0,w],

ly (@)1 < [16(0)]] +/0 (B + Allz(s)]))ds

t
< [160ll +wB + A/ l2(s) | ds.
0
Denote
t
0(t) = 10O)] +wB+ 4 [ fals)]ds.
Then,
b(t) = Allz(t)|| = My@)]| < Ally(t)] < Ap(t),
and
(t) < $(0)et < ([0(0)]| +wB)e .
Hence,
lz(®)]] < ly@)] < () < ([00)]| + wB)e* .
By Lemma 2, § has a fixed point x*, which obvi-
ously shows that x* is a solution of system (12), i.e.

the neural network (3) has an w-periodic solution
in the sense of Eq. (9). W

In this paper, we consider model (3) as the mas-
ter system. The response system is

g =—Dy(t) + Af(y(t)) + Bf(y(t — 7))
+1(t) + u(t), (13)
where D, A, B are matrices which are the same as in
(3), u(t) is the controller. It has the same structure
as the drive system.
Let error state be e(t) = y(t) — z(t), subtract-
ing (3) from (13), yields the synchronization error
dynamical system as follows:

é(t) = —De(t) + Ag(t) + Bg(t — 7) + u(t), (14)
where g(t) = f(y(t))— f(x(t)) satistying g(t) = 0 &
e(t) = 0.

In many real applications, we are interested in
designing a memoryless feedback controller

u(t) = Ge(t), (15)

where G € R™ " is a constant gain matrix. For a
special case where the information on the size of

delay 7 is available, we also consider a delayed feed-
back controller of the following form:

u(t) = Gre(t) + Goe(t — 1), (16)

Although a memoryless controller (15) has an
advantage of easy implementation, its performance
cannot be better than a delayed feedback controller
(16) which utilizes the available information of the
size of delay.

Let u(t) = Gre(t)+Gae(t—7), and substituting
it into (13), one obtains

¢ = (=D + Gy)e(t) + Goe(t — 7)

+ Ag(t) + Bg(t — 7). (17)

4. Synchronization Criteria

In this section, we will prove that the response sys-
tem (13) synchronizes with the drive system (3).
Obviously, we can solve the problem by proving the
global asymptotical stability of error system defined
by (17).

Due to the discontinuity of f and then g, by
Definition 3, there exists v(t) € K[g(t)] such that
0 € Klg(0)] and

¢ = (—D + Gi)e(t) + Gae(t —7)

+Ay(t) + By(t = 7). (18)

The following two definitions and one lemma
should be recalled which will be utilized in our main
results.

Definition 5 [Clarke, 1983]. Given f : R" — R, the
right directional derivative of f at x in the direction
v € R™ is defined as
flz+ o) — f(x)

h Y
when this limit exists. The generalized directional

derivative of f at z in the direction v € R" is
defined as

! . — 1
flzsv) = lim

fly+hv) — f(y)

fO(z;v) = limsup

y—x h
h—0t
h _
~ lm o sup fly+ho) — fly)
§—0F ye B(x,0) h

e=0" "pe0,e)

A function f : R™ — R is regular at x € R"™ if, for
all v € R", the right directional derivative of f at x
in the direction of v exists, and f/(z;v) = fO(z;v).

Note that regular functions admit the direc-
tional derivative for all directions v € R", although
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the derivative may be different for different direc-
tions. A function that is continuously differentiable
at x is regular at x. A useful property is that a
locally Lipschitz and convex function is regular.

Definition 6. Function V(z) : R" — R is C-
regular, if V' (z) is:

(i) regular in R";
(ii) positive definite, i.e. V(z) > 0 for = # 0, and
V(0) = 0;
(iii) radially unbounded, i.e.

V(x)

— 400 as

Note that a C-regular Lyapunov function V is
not necessarily differentiable. Suppose that x(t) :
[0,400) — R™ is absolutely continuous on any com-
pact interval of [0,+00). The next lemma gives a
chain rule for computing the time derivative of the
composed function V(z(t)) : [0, +00) — R.

Lemma 3 [Clarke, 1983]. If V(z) : R® — R is C-
regular and x(t) : [0,4+00) — R™ is absolutely con-
tinuous on any compact interval of [0,+00), then
x(t) and V(z(t)) : [0, +00) — R are differential for
a.e. t € [0,+00), and one has

%V(x(t}) = <§, fl—f> , VeedV(x(t)).

Now, a new necessary and sufficient condition
will be given, which is essential for establishing the

synchronization criterion for (13) and (3).
|

P Q
QT R
7T 0

XT o VTRleT o LTNflTT VT

But the above is clearly satisfied for
X =QR W+ TN"'L

if (20) and (21) are satisfied in view of the famous
Shur’s complement.

Before proceeding to the main results, we fur-
ther assume the set-valued map F satisfy:

(L.) For each i € 1,2,...,n, there exists a constant
L; such that for any p # v € R, for all §; € K[fi(1)],

ni € K[fi(v)],

G—mni - L.

w—v
where the constant L; € R may be positive, nega-
tive or zero.

(22)
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Lemma 4. There exists a matriz X such that

P Q T X

Q" R 0 V
<0, 19
7" 0 N L (19)
xTr yr v s
if and only if
P QT
QT R 0| <o, (20)
7" 0 N
and
R 0 V
0 N L|<o. (21)
vr ™ s

Proof. Necessity is obvious since the left-hand side
of both (20) and (21) are submatrices in the prin-
cipal diagonal of the left-hand side of (19). For
sufficiency, left-multiply (19) by

I 0 0 0
0 I 0 0
0 0 I 0
0 —VIR=t —LIN-' T

and right-multiply its transpose, it is seen that (19)
is equivalent to

T X-QR'W-TN'L
0 0
N 0
LT S—VIR™'W - LTN-'L

< 0.

I
Theorem 2. Let F satisfy (g.c.) and (L.), for

given estimate gain matrices G1, Ga, the response
system (18) globally synchronizes with the drive
system (8) if there exist two diagonal matrices P =
diag(ﬁlaﬁ% s apn)a P = diag(ﬁlaﬁ% s 7]371) with
pi > 0,0 = 1,2,...,n, two positive definite matri-
ces Q@ = (¢ij)nxn and R = (7ij)nxn such that the
following LMIs hold:

—2PD + PG, +GTP+ R PGy, PB
* —R 0 <0,
* * —Q
(23)
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~-R 0 GYP
«  —Q BTP <0. (24
* x  PA+ATP+Q

Proof. By (22) and the density of real numbers,
there exist two arrays of constants p;, and p;
such that
Gi =i b 7
H=v pi
where p; > 0,1 =1,2,...,n.
Consider the following Lyapunov functional

(25)

ei(t)
g
0

V(t) = el (t)Pe(t) + 2 Zﬁi/ i(s)ds
=1

[ e+ [ S rets)as

-7 t—7
(26)
From (25), there exists a small constant € > 0 such
that
Gi — i 5 Thite
H—=Vv Di
It follows that

ei(t)
pie2(t) + 2p; / gi(s)ds > e€l(t),
0

(27)

By Lemma 3, one obtains

d‘g_it) — T (1)2P(=D + G1) + Rle(t)

+ 2T () PGye(t — 7) + 2¢T(t)[PA — DP

+GTPly(t) + 2T (t)PBA(t — )

— el (t—T)Re(t — 7) + 2T (t — 7)GT Pr(t)

+~T(1)[2PA + Qv (¢)

+297 () PBy(t — ) — 7" (t = T)Q(t — 7)
<[e"(t),e"(t = 7), 7" (t = 7), 7" ()]0

(t)
e(t—1)
Yt —7)

(1)

X , (28)

where

—2PD + PG, +GTP+ R PGy PB PA—DP+GIP

*
*

*

By Lemma 4, (23) and (24) are equivalent to £ < 0.
Therefore, the solution e(t) = 0 of (18) is glob-
ally asymptotically stable, so the response system
(13) globally synchronizes with the drive system (3).
This completes the proof. W

Remark 1. Due to the discontinuity of activation f,
so does the function g, the Lyapunov—Krasovskii
functional V'(¢) is not differential in [0, +00). But
V(t) is a locally Lipschitz and convex function on
R™, hence it is regular in R™ and then is C-regular
(according to Definition 6). Hence, we can utilize
Lemma 3 to calculate the derivative of V (), among
which, (18) is utilized repeatedly (see [Clarke, 1983],
for details).

Remark 2. Previously, most theoretical results
about the stability or synchronization for neural

-R 0 GoP
x  —Q BTP
% x  PA+ATP+Q

|
networks are always established under the assump-

tion of smoothness or global Lipshitzian [Cao, 2001;
Huang et al., 2005; Liang et al., 2008], where the
Lipshitzian constant plays a very important role in
magnifying the derivative of Lyapunov functional,
and then can make the obtained LMI more solv-
able. Here, in this paper, we could not depend on
the Lipshitzian constant due to the discontinuity of
activations, so it seems more difficult when solving
the LMIs (23) and (24).

In order to show the design of estimate gain
matrix G; and Ga, a proper transformation is made
to obtain the following theorem:

Let F satisfy (g.c.) and (L.), for
the given constants mi1 and mso, the response

Theorem 3.
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system (13) globally synchronizes with the drive system (3) if there exist one diagonal matric P =

diag(p1,p2,...,pn) with map; > 0,i = 1,2,...,n, two positive definite matrices Q = (¢ij)nxn and
R = (74j)nxn, two arbitrary matrices G| and G4 such that the following LMIs hold:
—2m1 PD + mlGi + mlG'lT + R mlGé mi1PB
s -R 0 <0, (29)
* * —Q
—R 0 mQGéT
x  —Q moBTP <0. (30)
* x  moPA+meATP 4+ Q

Moreover, the estimation gain G; = P~'G/ and
Gy = P_lGé.

Proof. Let P = myP, P = myP and G} = PGy,
G!, = PG5 in Theorem 2, it is obvious to see. W

Remark 3. It is well known that the asymptotical
or exponential stability of delayed neural networks
[Cao, 2001; Huang et al., 2005] has been a focal sub-
ject for research due to their great practical value
and wide applications. And some stability issues
for discontinuous neural networks are also being
researched [Cortés, 2008; Forti & Nistri, 2003; Forti
et al., 2005; Huang & Cao, 2008; Huang et al., 2009;
Liu & Cao, 2009; Lu & Chen, 2006, 2008; Papini
& Taddei, 2005]. However, there are few works on
the synchronization of discontinuous delayed neu-
ral networks. In this paper, based on the concept of
Filippov solution, the periodic synchronization con-
trol problem has been considered for delayed neural
networks with discontinuous activations.

5. Illustrative Examples

Example 1. Consider the second-order drive sys-
tem of a discontinuous delayed neural network as
follows:

&= —Dux(t)+ Af(z(t)) + Bf (z(t — 7)) + I(1),

(31)
and the response system is given as follows:
g=—Dy(t) + Af(y(t)) + Bf (y(t — 7))
+ I(t) + u(t), (32)

with

-1 09
B= ,
o

1) = [—25005(%)} ol

25 sin(2t)

where the activation function is defined as f(s) =
s + sign(s); 2(t) = [z1(t),22(8)]", y(t) = [n1(t),
y2(t)]" are the state vectors. Let m; = mgy = 2, from
Theorem 3 and employing LMI toolbox in Matlab,
we can obtain the following feasible solutions:

~ [3.8493 0 0= 35.1632 0
N 0 3.8493 |7 ¢ 0 35.1632 |
~ [39.5322 0
N 0 39.5322 |’
) ~8.2182 0 . 0 0
p— G p—
1 ) 2 .
0 —8.2182 0 0

We can see that the estimation gain Gy = P~1G) =
0, which means the delayed feedback controller (16)
degenerates to the memoryless feedback controller
(15). Certainly, the memoryless feedback controller
(15) could be used to stabilize system (3). How-
ever, there has been extensive interest in studying
the effect of time delay on the feedback systems
because time delay is ubiquitous in most physical,
chemical, biological, neural and other natural sys-
tems due to finite propagation speeds of signals,
finite processing times in synapses and finite reac-
tion times. Therefore, we need to consider delay-
dependent feedback controller (16). Although both
the memoryless feedback controller (15) and the
delay-dependent feedback controller (16) could be
used to stabilize system (3), delay is ubiquitous in
the real system and (16) is a more general controller.
Thus in this example, without loss of generality, we
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Fig. 1. Phase trajectories of drive (left) and response (right) systems for Example 1.

0 1 2 3 4 5 6 7 8 9 10

—

Fig. 2. Time evolution of each variable of coupled neural networks for Example 1.
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Fig. 3.

can further assume that G’ in Theorem 3 is a pos-
itive definite matrix. Using LMI toolbox again, we
can reobtain the following feasible solutions:

[3.8347 0 }
P = ,

0  3.8347
0= 35.4376 0
Lo 35.4376 |’
[39.7899 0
R= ,
0 39.7899
. [—8.3910 0
Gl — )
0 —8.3910

w

Fig. 4.

The synchronization error of the state variables e(t) = y(t) — «(¢) for Example 1.

. [08161 0
G2 = ;
0 0.8161

and then get the estimation gains:

1 —2.1882 0
Gl =P Gl = )
0 —2.1882
0.2128 0
Gy = PGl = [ } .

0 0.2128

The drive system (31) is a periodic oscillation
as shown in the left of Fig. 1. From Theorem 3,
the delayed feedback controller can be designed
as u(t) = Gre(t) + Goe(t — 1), and the response

Phase trajectories of drive (left) and response (right) systems for Example 2.
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Fig. 5.

system (32) is shown to the right of Fig. 1. Figure 2
shows the temporal evolution of each variable of the
coupled neural networks x1(t), za2(t), y1(t), ya(t).
Figure 3 depicts the synchronization error of the

Fig. 6.

Time evolution of each variable of coupled neural networks for Example 2.

state variables between the drive system and the
response system. It is clearly seen in Figs. 2 and 3
that the response system (32) synchronizes with the
drive system (31).

0.6

0.4

0.2

- == = =

,,e1

The synchronization error of the state variables e(t) = y(t) — x(¢) for Example 2.
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Example 2. We still consider the two-order neu-
ral network (31) as the drive system and (32) as
the corresponding response system but the acti-
vation functions are changed to be discontinuous
bounded ones defined as f(s) = sign(s) and the
input (t) = [~16cos(2t), 16 sin(2t)]7.

Similar to Example 1, by Theorem 3 the
response system (32) can synchronize with the drive
system (31). Simulation results are depicted in
Figs. 4-6.

6. Conclusions

In recent years, the theory about the discontinu-
ous neural networks and its application in practice
is building up. In this paper, based on the concept
of Filippov solution, we have considered complete
periodic synchronization of discontinuous delayed
neural networks. By using the differential inclusions
theory and LMI method, several new sufficient con-
ditions ensuring the global asymptotical stability
for the error system have been derived. Meanwhile,
the estimation gains can be obtained. The obtained
results are novel since there are few works on the
periodic complete synchronization of delayed dis-
continuous system. Finally, two numerical examples
have been provided to illustrate the usefulness of
our results.
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