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Using machine learning to predict the intensity of pain from fMRI has attracted rapidly increasing interests. 

However, due to remarkable inter- and intra-individual variabilities in pain responses, the performance of existing 

fMRI-based pain prediction models is far from satisfactory. The present study proposed a new approach which 

can design a prediction model specific to each individual or each experimental trial so that the specific model 

can achieve more accurate prediction of the intensity of nociceptive pain from single-trial fMRI responses. More 

precisely, the new approach uses a supervised k -means method on nociceptive-evoked fMRI responses to cluster 

individuals or trials into a set of subgroups, each of which has similar and consistent fMRI activation patterns. 

Then, for a new test individual/trial, the proposed approach chooses one subgroup of individuals/trials, which has 

the closest fMRI patterns to the test individual/trial, as training samples to train an individual-specific or a trial- 

specific pain prediction model. The new approach was tested on a nociceptive-evoked fMRI dataset and achieved 

significantly higher prediction accuracy than conventional non-specific models, which used all available training 

samples to train a model. The generalizability of the proposed approach is further validated by training specific 

models on one dataset and testing these models on an independent new dataset. This proposed individual-specific 

and trial-specific pain prediction approach has the potential to be used for the development of individualized and 

precise pain assessment tools in clinical practice. 
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. Introduction 

In basic and clinical studies of pain, the foremost question is how

o accurately measure the intensity of pain ( Lötsch and Ultsch, 2018 ;

rato et al., 2011 ; Lee et al., 2019 ). Because pain is a highly subjec-

ive experience and can hardly be perceived by others, self-report is the

olden standard for measuring the presence, absence and intensity of

ain in clinical diagnosis and treatment of pain ( Cruccu et al., 2010 ;

aanpää et al., 2011 ). However, self-report could be biased for people

ho deliberately exaggerate or conceal pain or could be unavailable

or people who are with unconsciousness or limited cognitive abilities

 Schnakers and Zasler, 2007 ; Herr et al., 2004 ; Buffum et al., 2007 ).

herefore, much effort has been devoted to developing objective pain

ssessment tools, and these researches have been focused on the uses of

arious types of physiological signals, such as electroencephalography

EEG), skin conductance, respiration rate and blood volume pulse, and
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ehaviors, such as facial expression ( Bai et al., 2016 ; Gholami et al.,

010 ; Gruss et al., 2015 ; Zautra et al., 2010 ; Schulz et al., 2012 ). 

Recently, functional magnetic resonance imaging (fMRI) has been in-

reasingly used to measure the intensity of pain perception ( Boly et al.,

007 ; Lindquist et al., 2017 ; Brown et al., 2011 ). Because blood-oxygen-

evel-dependent (BOLD) fMRI can record brain activity with high spa-

ial resolution, it is effective in identifying brain regions that are re-

ated to pain experience ( Wager et al., 2013 ; Woo et al., 2017 ). Fur-

hermore, various machine learning models have been developed to

earn the relationship between fMRI responses and the intensity of pain

rom a set of experimental pain-evoked trials of a cohort of individu-

ls ( Brodersen et al., 2012 ; Marquand et al., 2010 ; Cecchi et al., 2012 ).

hese machine learning models can then be used to predict the intensity

f pain from fMRI activities of new experimental trials or new individ-

als. 

However, because of large inter-individual difference (i.e., different

eople have remarkably different pain-related behavioral and fMRI re-
r, Shenzhen University, Shenzhen Guangdong 518060, China. 
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Fig. 1. Illustration of the proposed approach for designing pain prediction models specific to test samples. First, supervised clustering is used to categorize training 

samples into a set of subgroups. Second, a training subgroup is selected based on its similarity to the test samples. Third, a regression model (here, partial least 

squares regression) is trained from the selected training subgroup and this model is specific to the test samples. 
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ponses) ( Coghill et al., 2003 ; Coghill, 2011 ) and intra-individual dif-

erence (i.e., one individual has different pain-related behavioral and

MRI responses at different times) ( Tracey and Mantyh, 2007 ), a pain

rediction model trained from certain individuals or trials generally

as lower performance when being applied on new individuals or trials

 Huang et al., 2013 ; Hu and Iannetti, 2016 ; Mun et al., 2019 ). As sum-

arized in ( Vijayakumar et al., 2017 ), cross-individual pain prediction

n general has lower accuracy than within-individual pain prediction.

herefore, it is important to develop a general and effective approach

o address the problem of individual variability and to establish a pain

rediction model with high accuracy. 

To date, there are few studies concerning the development of an

MRI-based pain prediction model that can handle individual variability.

indquist et al. (2017) proposed to incorporate group-level priors into

ndividual prediction models, but its objective is to address the prob-

em of insufficient samples for each individual. In our previous EEG

tudy ( Li et al., 2018 ), an individual’s pain-evoked EEG was normal-

zed by his/her spontaneous EEG to reduce the inter-individual differ-

nce in EEG-based pain prediction models. As for the intra-individual

ariability, our previous work ( Tu et al., 2016a ) showed that including

re-stimulus brain activities in a pain prediction model could achieve

ignificantly better performance than conventional models, which only

sed post-stimulus pain-evoked brain activities as features, because pre-

timulus brain activities can largely explain intra-individual variability

f pain-evoked brain activities. Recently, our work ( Lin et al., 2018 )

howed that, inter-individual differences in the fMRI responses and pain

atings jointly determine the error of cross-individual pain prediction.

owever, because pain ratings of a test individual are unknown, it is not

easible to improve the accuracy of pain prediction by minimizing the in-

ividual difference of pain ratings. On the other hand, a new individual’s

MRI activities can be readily recorded, so it is possible to minimize the

ifference between fMRI activities of training samples and test samples

or a more accurate and individually tailored model. This study inspired

s to develop a more accurate model by selecting training sample with

imilar fMRI activities as test samples. 

In the present study, we developed a new pain prediction approach

o combat the adverse influence of both inter- and intra-individual dif-

erences in fMRI-based pain prediction models. The basic idea of the

roposed approach is to select a subset of training samples (instead of

ll available training samples) with the closest fMRI responses to test

amples so that the trained model has minimal difference in fMRI fea-

ures between training and test samples. The proposed approach is in-

pired by the dynamic selection technique ( Cruz et al., 2018 ), which is

n active research topic in the machine learning community. Dynamic

election techniques are capable of designing a classifier according to

ach new sample to be classified and one common method is to train

he classifier based on a local region of the feature space where the test

ample is located ( Cruz et al., 2018 ). 

o  
The proposed pain prediction approach has three major steps

 Fig. 1 ). First, a supervised clustering method is adopted to cluster train-

ng individuals/trials into a small number of subgroups, in which indi-

iduals/trials share similar and consistent pain-related fMRI activation

atterns. Second, for a new individual or trial under test, the new ap-

roach compares the fMRI patterns of the test individual/trial with the

MRI patterns of those subgroups, and then selects the subgroup with

he closest fMRI patterns to the test individual or trial for training of an

ndividual- or trial-specific model. Third, a continuous prediction model

partial least squares regression is used in this study) is trained from the

elected training subgroup so that this model is specific to the test sam-

les. 

We examined the performance of the proposed approach on a

ociceptive-pain-evoked fMRI dataset. To test the robustness of the su-

ervised clustering method, four different features sets (the whole brain,

he pain matrix, pain-activated regions, and pain-predictive regions)

ere independently adopted in the supervised clustering method to de-

ne subgroups. A partial least squares regression model was then es-

ablished from selected training samples and applied on test samples.

esults showed that the newly designed individual-specific or trial-

pecific models achieved significantly higher prediction accuracy than

onventional non-specific models using all available training samples.

articularly, the trial-specific model had superior performance over the

ndividual-specific model, though it used much fewer samples to train

he model. We also identified a set of brain regions exhibiting signif-

cantly different fMRI patterns among those clustered subgroups and

hese regions account for the inter- or intra-individual differences in the

MRI-based pain prediction models. Lastly, we demonstrated the strong

eneralizability of the proposed approach by training specific models on

ne dataset and testing these models on an independent new dataset. 

. Materials and methods 

.1. Participants and experiments 

This study has two independent pain-evoked fMRI datasets. Dataset

 is the primary data used in this study to develop and test the proposed

pecific models, and most results are based on this dataset. Dataset II

s only used to examine the generalizability of the proposed approach

y training models from Dataset I and testing models on this Dataset II.

ote that, Dataset I has been used in our previous publications ( Tu et al.,

016a , 2016b , 2018 ; Lin et al., 2018 ), but Dataset II has not been re-

orted before. 

.1.1. Dataset I 

Dataset I included a total of 32 healthy participants (age = 22.1 ± 2.0,

0 females). The initial inclusion and exclusion criteria were based

n the general health questionnaire, pain safety screening form, and
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MRI safety screening form. Participants reported no history of chronic

ain, psychiatric, or neurological disorders. The experimental proce-

ures were approved by the local ethics committee. All participants gave

ritten informed consent, and they were familiarized with the experi-

ent paradigm before the experiment. 

Radiant-heat stimulus energies included four levels (E1: 2.5 J; E2:

.0 J; E3: 3.5 J; E4:4.0 J), and ten laser pulses at each of the four ener-

ies were delivered in a random order on the dorsum of the left hand,

ith a total of 40 pulses per individual. Participants experienced the

aser stimulus and then reported the intensity of pain, using a visual

nalog scale (VAS) ranging from 0 to 10 (0: no pain; 10: pain as bad it

ould be). Laser stimuli of the four energies elicited graded subjective

ain intensities (E1: 2.9 ± 1.5; E2: 3.8 ± 1.7, E3: 5.7 ± 1.6, and E4:

.9 ± 1.5) ( Tu et al., 2016b ). Because only using one level of stimulus

nergy cannot elicit pain ratings in the whole range from 0 to 10, which

annot result in a good prediction model, so we used four different lev-

ls of stimulus energies with the aim to produce samples which were

uitable for the establishment of a pain prediction model. In addition,

ccording to our previous studies ( Zhang et al., 2012 ; Huang et al., 2013 ;

u et al., 2016b , 2018 ) and literature ( Gross et al., 2007 ; Iannetti et al.,

008 ; Hu et al., 2014 ; Hu and Iannetti, 2019 ), such an experimental de-

ign (4 intensities of energy, each having 10 trials for each participant)

an generate sufficient samples for developing and validating pain pre-

iction models. It should also be noted that, we have elucidated the re-

ationship between stimulus intensities and pain experience (both pain

atings and pain-evoked fMRI responses were positively correlated with

he stimulus intensity) in our previous publication ( Tu et al., 2016b ).

e will not discuss the analysis of nociceptive input (including stimu-

us intensities) in this study because it is outside the scope of this study,

nd interested readers can refer to Tu et al. (2016b ) for details. 

MRI data were collected using a Siemens 3.0 Tesla Trio scanner with

 standard head coil. Functional images were acquired with echo planar

maging sequence with the following parameters: 255 mm thick slices

nd 0.5 mm inter-slice gaps, TR = 1500 ms, TE = 29 ms, filed of view

 192 × 192 mm, 64 × 64 matrix, 3 × 3 × 3 mm 

3 voxels, flip angle = 90°

t the end of the experiment, high-resolution T1-weighted structural

mages were collected. 

.1.2. Dataset II 

Dataset II included 49 healthy participants (aged = 22.8 ± 6.0, 32

emales). The initial inclusion and exclusion criteria were based on

he general health questionnaire, pain safety screening form, and fMRI

afety screening form. Participants reported no history of chronic pain,

sychiatric, or neurological disorders. The experimental procedures

ere approved by the local ethics committee. All participants gave writ-

en informed consent, and they were familiarized with the experiment

aradigm before the experiment. 

Participants received brief stimuli of three different sensory modali-

ies: nociceptive somatosensory (pain), auditory, and visual. Nociceptive

timuli were pulses of radiant heat. Auditory stimuli were loud 800 Hz

ones. Visual stimuli consisted of a bright white disk displayed on the

rojection screen. Note that we only used nociceptive laser-evoked fMRI

rials in the present study to examine the generalizability of the pro-

osed approach. Nociceptive stimuli included two intensity levels (E1:

 J; E2: 3.5 J). The experiment consisted of two runs, and within each

un, each type of stimulus was delivered 10 times in a pseudo-random

rder, 5 times for each intensity level. As a result, each participant had

0 pain-activated trials. Participants were asked to rate the intensity of

erception for each stimulus using a VAS rating from 0 to 10. 

MRI data were collected using a GE 3.0 T MRI scanner with a stan-

ard head coil. Functional images were collected using a standard gradi-

nt echo planar imaging sequence with following imaging parameters:

3 oblique slices, thickness/gap = 3/0 mm, acquisition matrix = 64 × 64,

R = 2000 ms, TE = 29 ms, flip angle = 90°, field of view = 192 × 192 mm 

2 ,

otal volume = 300. For multi-sensory stimulation task, two sessions with
54 functional volumes each were administered. At the end of the exper-

ment, high-resolution T1-weighted structural images were collected. 

.2. fMRI data preprocessing and feature extraction 

For each subject, structural T1-weighted images were co-registered

o the mean functional image and were then normalized to the Montreal

eurological Institute (MNI) space using SPM8 ( Penny et al., 2007 ).

MRI data were slice-timing corrected, head motion corrected, normal-

zed to the MNI space (voxel size = 3 × 3 × 3) by mapping T1-weighted

tructural images to the MNI template, and then smoothed with an

 mm FWHM Gaussian kernel. A high-pass filter was applied (cut-off fre-

uency = 1/128 Hz) to the BOLD time-series to remove low-frequency

rifts. Normalization of BOLD responses was performed by subtracting

nd then dividing the baseline BOLD signals (at the stimulus onset).

OLD responses at the 4th scan (for Dataset I with a TR = 1.5) or the 3rd

can (for Dataset II with a TR = 2) after stimulus onset were extracted

s features for pain prediction, because BOLD responses at these time

oints are normally strong (or even at peaks) and significantly corre-

ated with pain ratings. 

To identify nociceptive-evoked fMRI activations, single-subject fMRI

ata were analyzed on a voxel-by-voxel basis using the general linear

odel (GLM) ( Friston et al., 1994 ). BOLD fMRI responses were mod-

led as a series of events using a stick function and pain ratings were

ncluded as a parametric modulator of each stimulus, which were then

onvolved with a canonical hemodynamic response function. In order

o identify nociceptive-evoked fMRI activations at the group level, sta-

istical analyses were carried out using a random effects analysis with

ne-sample t -test as implemented in SPM8. Considering the problem of

ultiple comparisons, family-wise error (FWE) rate ( Hochberg, 1988 )

as used to correct the significance level (P FWE < 0.05). 

.3. Pain prediction model (partial least squares regression) 

The trial-by-trial relationship between normalized fMRI features and

ain ratings for each individual was modeled using partial least squares

egression (PLSR), which is a commonly used machine learning method

articularly suitable for multicollinear data ( McIntosh et al., 2004 ;

rishnan et al., 2011 ; Hu et al., 2014 ; Tu et al., 2016a ; O’Connell et al.,

018 ). For the j -th individual, the PLSR model is formulated as: 𝑌 
( 𝑗) 
𝑖 

=
 

( 𝑗) 
𝑖 
𝜷( 𝑗) , where 𝑌 

( 𝑗) 
𝑖 

is the pain rating of the i th trial, 𝑿 

( 𝑗) 
𝑖 

is the fMRI

eatures of the i th trial, and 𝜷( 𝑗) is the PLSR model coefficient vec-

or. Each coefficient in the PLSR coefficient vector 𝜷( 𝑗) represents the

redictive capability of the nociceptive-evoked fMRI feature at the

orresponding voxel. The SIMPLS algorithm was used to compute

he PLSR model coefficients ( De Jong, 1993 ). The Matlab function

plsregress ” ( https://www.mathworks.com/help/stats/plsregress.html )

as used for the implementation of PLSR in MatlabR2018a (MathWorks;

atick, MA, US). To identify pain-predictive brain regions at the group

evel, we used a one-sample t -test against zero to assess the significance

f PLSR coefficients across individuals. 

In the PLSR model, the number of latent components determines

hether the trained model is over-fitted or not. More latent components

ead to a better fitting of the model to the data. But, if too many latent

omponents are used, the PLSR model may be over-fitted because it

ould describe the noise components in the data. On the other hand, if

oo few latent components are used, the PLSR model could be under-

tted for it cannot explain sufficient information of the data. In the

resent study, the number of latent components in the PLSR analysis

as estimated using internal cross validation of the coefficient of deter-

ination. The coefficient of determination calculates the percentage of

he variance of the values fitted by the latent components and the total

ariance of the dependent variables, and it is a common metric to mea-

ure the fitting performance of a regression model. We used leave-one-

ndividual-out or leave-one-trial-out cross validation within the training

et for an individual-specific model or a trial-specific model to calculate

https://www.mathworks.com/help/stats/plsregress.html
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Fig. 2. Schematic representation of the proposed pain prediction approach (individual-specific model and trial-specific model). To build an individual-specific 

model, candidate training individuals were grouped into several individual-subgroups by using supervised k -means. The individual-subgroup having the closest fMRI 

features to the test individual (as measured by the Euclidean distance between fMRI patterns of the individual-subgroup and the test individual) was selected to 

train an individual-specific model. To build a trial-specific model, all trials of the selected individual-subgroups were further grouped into several trial-subgroups by 

using supervised k -means. The trial-subgroup having the closest fMRI features to the test trial (as measured by the Euclidean distance between fMRI patterns of the 

trial-subgroup and the test trial) was selected to train a trial-specific model. 
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he coefficients of determination with different numbers of latent com-

onents (ranging from 10 to 100) and selected the one with the maxi-

um coefficient of determination as the number of latent components

sed in the PLSR model for the test data. Such a method is popularly

sed in literature to avoid over-fitting of PLSR models ( Faber and Ra-

ko, 2007 ). 

.4. Proposed individual- and trial-specific model design approach 

The basic idea of the proposed individual- and trial-specific fMRI-

ased pain prediction approach is to only select a subset of training

amples with similar fMRI activation patterns as test samples. The pro-

edures of the proposed approach are illustrated in Fig. 2 and detailed

n the following. 

.4.1. Clustering of individuals and trials by supervised k-means 

The first step of our proposed fMRI-based pain prediction approach

as to cluster individuals/trials according to their fMRI patterns, so that

ne cluster could be selected for training a specific model. More pre-

isely, a “supervised k -means ” method ( Gan et al., 2018 ) was employed

n the proposed approach to cluster individuals/trials into a small num-

er of subgroups based on their fMRI features. Clustering is usually un-

upervised, which means no label information is used. However, if label

nformation is available, unsupervised clustering is not the optimal strat-

gy for correctly categorizing samples. Because the label information of

raining samples is readily for use in building a pain prediction model,

he proposed approach uses supervised clustering to group individuals

nd trials. Compared with unsupervised clustering and semi-supervised

lustering, supervised clustering can identify clusters with high proba-

ility density with respect to a single class while keeping the total num-

er of clusters small. Supervised clustering has attracted wide attention

n recent years and has been effectively used in many applications, such
s image segmentation ( Gan et al., 2018 ). Generally, supervised cluster-

ng evaluates a cluster based on two criteria: (1) class impurity (which

s measured by the percentage of minority samples in different clusters)

nd (2) the number of clusters 𝑀(which should be kept small). Sup-

ose 𝐶 𝑚 was the m -th cluster ( 𝑚 = 1 , 2 , … , 𝑀) obtained by unsupervised

lustering (i.e., k -means used in this study) and 𝑁( 𝐶 𝑚 ) was the number

f minority samples in the m -th cluster ( 𝐶 𝑚 ), the objective function of

upervised clustering is formulated as: 

 ( 𝑋, 𝑀, 𝛽) = 𝑃 ( 𝑋 ) + 𝛽𝐿 ( 𝑀 ) 

here 𝑃 ( 𝑋) = 

1 
𝑙 

∑𝑀 

𝑚 =1 𝑁( 𝐶 𝑚 ) is the class impurity and 𝐿 ( 𝑀) =
( 𝑀 − 𝑐 )∕ 𝑙 with 𝑙the size of sample and 𝑐the number of classes.

he value of 𝑃 ( 𝑋) is in the range between 0 and 1∕ 𝑐. If samples of one

luster all belong to the same class, then 𝑃 ( 𝑋) = 0 . In this study, the

umber of classes c was set to 2 (pain-sensitive or pain-insensitive for

ndividuals, and low pain or high pain for trials). An individual was

ssigned to a pain-sensitive class (mean VAS > 5) or a pain-insensitive

lass (mean VAS ≤ 5). A trial was assigned to a high-pain class (VAS > 5)

r a low-pain class (VAS ≤ 5). To obtain the optimal solution for above

bjective function, we can choose different values of 𝑀and calculate

he corresponding 𝐽 ( 𝑋, 𝑀, 𝛽) . When 𝐽 ( 𝑋, 𝑀, 𝛽) gets the smallest value,

he corresponding 𝑀is the optimal. 

In this study, we used the popular k -means in the framework of

upervised clustering. The supervised k -means method was applied on

ndividual-level fMRI features (averaged across all trials of one individ-

al) and single-trial fMRI features in order to divide individuals or trials

nto a small number of subgroups. In the following, we introduced two

pecifically-designed models, which are respectively established at the

ndividual level and at the trial level. The individual-specific model can

ailor make a pain prediction model specific to each individual while

he trial-specific model can tailor make a pain prediction model specific

o each trial. 
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.4.2. . Individual-specific pain prediction model 

In the individual-specific pain prediction model, we used supervised

 -means to group training individuals into several individual-subgroups

ccording to their fMRI features (averaged across trials for each individ-

al). By doing this, the difference of fMRI features of training individuals

ithin each individual-subgroup is minimized and individuals in one

ndividual-subgroup have similar and consistent fMRI features. Next,

hen predicting the pain intensity of a new individual, we compared the

est individual’s fMRI features with the fMRI features of each individual-

ubgroup to find out the most suitable individual-subgroup for training.

ore precisely, we determined the optimal training subgroup by com-

aring the Euclidean distance between fMRI features of the test individ-

al and the center of each individual-subgroup. The individual-subgroup

aving the smallest Euclidean distance with the test individual was se-

ected to train a model specific to this test individual. According to our

revious study ( Lin et al., 2018 ), smaller the distance between training

ata and test data, smaller the prediction error. 

.4.3. Trial-specific pain prediction model 

The individual-specific pain prediction model can effectively miti-

ate the inter-individual variability in pain prediction model. But, the

egative influence of intra-individual variability, or inter-trial variabil-

ty, has not been tackled. Therefore, based on the individual-specific

odel, we further developed a trial-specific pain prediction model. Sup-

ose one optimal individual-subgroup is selected to train a model for one

est individual. Next, for each trial of this test individual, we selected

 subgroup of trials (trial-subgroup) from all trials within the selected

ndividual-subgroup to train a pain prediction model specific to this test

rial. To achieve this, we used supervised k -means again to divide all tri-

ls within the selected individual-subgroup into a small number of trial-

ubgroups. Similarly, we then calculated the Euclidean distance of fMRI

eatures between the test trial and the center of each trial-subgroup,

nd the trial-subgroup with the smallest difference with the test trial

as selected to train a trial-specific model for this test trial. 

.4.4. Feature sets 

To perform a complete and rigorous examination of the proposed

pproach, we tested four different types of features (i.e., BOLD fMRI

eatures within the following four brain regions) separately in the pro-

osed approach. The details of these four feature sets are as follows. 

1) Whole Brain: fMRI features of all voxels within the whole brain were

used as features. 

2) Pain Matrix: The pain matrix included the primary somatosensory

cortex (SI), the secondary somatosensory cortex (SII), the supple-

mentary motor area (SMA), the prefrontal cortex (PFC), the ante-

rior cingulate cortex (ACC), insula, and thalamus. SI includes Brod-

mann areas 1, 2 and 3, SII includes Brodmann areas 40 and 43, and

other regions of interest (ROIs) are defined based on the AAL atlas

( Tzourio-Mazoyer et al., 2002 ). 

3) Pain-Activated: These pain-activated regions were defined based on

the GLM results during leave-one-individual-out cross validation.

That is, when building a prediction model for one test individual

using all other ( 𝑁 − 1 ) individuals’ data, we obtained the pain-

activated regions using GLM on ( 𝑁 − 1 ) individuals. Considering the

problem of multiple comparisons, FWE was used to correct the sig-

nificance level. 

4) Pain-Predictive: These pain-predictive regions were defined based

on the PLSR results during leave-one-individual-out cross valida-

tion. That is, when building a prediction model for one test individ-

ual using all other ( 𝑁 − 1 ) individuals’ data, we obtained the pain-

predictive regions using PLSR on data from each of ( 𝑁 − 1 ) training

individuals. We further used a one-sample t -test against zero to as-

sess the significance of these model coefficients at the group level,

i.e., ( 𝑁 − 1 ) training individuals. Considering the problem of multi-
ple comparisons, FWE was used to correct the significance level. i  
It is worth mentioning that, Pain-Activated and Pain-Predictive fea-

ure sets used in the new approach were specific for each test individ-

al in leave-one-individual-out cross validation (see Section 2.4.5 ): they

ere not obtained from all N individuals but obtained from ( 𝑁 − 1 )
raining individuals. On the other hand, the group-level pain-activated

egions (as revealed by GLM) and the group-level pain-predictive re-

ions (as revealed by PLSR) shown in Fig. 3 were obtained from all N

ndividuals. 

All these 4 feature sets have been popularly used in literature to de-

elop pain prediction models: the whole brain ( Brodersen et al., 2012 ;

u et al., 2018 ), the pain matrix ( Brodersen et al., 2012 ), the pain-

ctivated regions ( Duff et al., 2012 ), and the pain-predictive regions

 Tu et al., 2016a ). The main difference between “pain-activated ” re-

ions and “pain-predictive ” regions is whether these regions are identi-

ed based on subjective pain perception or not. Pain-activated regions

ere identified by using GLM, which aims to explain the observed fMRI

ime course of a voxel in terms of a linear combination of several refer-

nce functions (in this study, a function representing stimulus presenta-

ion convolved with the hemodynamic response function). On the other

and, pain-predictive regions were identified by using PLSR, which de-

cribes the perceived pain level (from 0 to 10) as a linear combination of

ain-evoked maximum fMRI responses (the 4th scan after the stimulus

nset) of the whole brain. We can see from above that the key differ-

nce between these two types of regions is that: whether the perceived

ain ratings are taken into consideration when identifying these regions.

nly the time of stimulus presentation was considered when identify-

ng pain-activated regions, so the identified regions were supposed to

e “activated ” by the stimulation. On the other hand, subjective pain

atings are needed to identify pain-predictive regions, so the identified

egions were “predictive ” of pain ratings. 

It is also important to note that, these four types of features have

wo different usages in the proposed model design approach. First, these

eatures can be used in the supervised clustering method to measure the

istances among samples so that several subgroups of samples can be

efined based on these distances. Second, these features can be used as

ndependent variables in PLSR models to predict pain intensity. 

.4.5. Cross validation and performance evaluation 

The performance of the proposed individual-specific and trial-

pecific models was validated on the nociceptive-evoked fMRI dataset

 𝑁 = 32 ) using leave-one-individual-out cross validation. More pre-

isely, a three-step process was used to select the test and the training

ndividuals. 

tep 1. A leave-one-individual-out cross validation strategy was used to

ake one individual as the test individual and ( 𝑁 − 1 ) individuals as the

andidate training individuals (but only a subgroup of these candidate

raining individuals was eventually used for training a model). Such a

ross validation was repeated N times so that each participant acts as the

est individual for once. 

tep 2. A supervised k -means method was used to divide the ( 𝑁 −
 ) candidate training individuals into a small number of individual-

ubgroups, each having a certain number of candidate training individ-

als, based on these individuals’ fMRI patterns. 

tep 3. We compared the fMRI patterns of individual-subgroups with

he fMRI patterns of the test individual. The individual-subgroup having

he closest fMRI feature patterns to the test individual was selected as

he training individuals to train an individual-specific model for the test

ndividual in this round of cross validation. 

Furthermore, a trial-specific model was designed for each trial of the

est individual. That is, all trials in the selected individual-subgroups

ere used as candidate training data (but only a subgroup of which

ere eventually used for training a trial-specific model). The supervised

 -means method was used to divide all these candidate training trials

nto several trial-subgroups, and the trial-subgroup with the closest fMRI
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Fig. 3. (A) Pain-activated brain regions defined by GLM at 

the group level. Activated and deactivated regions are shown 

in red and blue, respectively ( P FWE < 0.05). (B) Pain-predictive 

regions defined by PLSR at the group level. Positively and neg- 

atively predictive regions are shown in red and blue, respec- 

tively ( P FWE < 0.05). (C) The pain matrix includes SI, SII, SMA, 

PFC, ACC, MCC, insula, and thalamus. 
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eatures patterns to the test trial was selected to train a trial-specific

odel. Because one individual had 40 trials, the above procedure for

rial-specific prediction was performed 40 times for each test individ-

al. It is also worth noting that subgroup formation was independent of

he test samples. Although test samples were indeed used to select one

ubgroup for training, but only the samples from the training subgroup

ere used for training and the test samples were not involved in the

raining. 

The conventional cross-individual prediction model, which is not

pecific to any individual or any trial, was used as control for the com-

arison with the proposed individual- and trial-specific models. The

onventional non-specific pain prediction model was trained and tested

ased on leave-one-individual-out cross validation. That is, 32 individ-

als were into 31 training individuals and 1 test individual. The same

rocedure was repeatedly performed 32 times to make sure that each

ndividual was used as the test individual once. All trials from training

ndividuals were used as training trials to build the model, while all tri-

ls from the remaining test individual were used as test trials to validate

he model. We can clearly see the main difference between the conven-

ional non-specific model and the proposed specific models is whether

raining samples are selected to build a model. 

The performance of a pain prediction model was evaluated by us-

ng mean absolute error (MAE), which is the across-trial average of the

bsolute values of the estimation error between actual pain ratings and

heir estimates. We used one-way repeated measures ANOVA and post-

oc paired t -test to examine whether there was significant difference

n MAE among different models under comparison (the conventional

on-specific model, the individual-specific model, and the trial-specific

odel) for each type of fMRI features (Whole Brain, Pain Matrix, Pain-

ctivated, and Pain-Predictive). As mentioned earlier, these four types

f features can be used in supervised k -means as well as in the PLSR

odel. Because the main novelty in the proposed approach is the su-

ervised clustering method to define subgroups of training samples, we

sed four different types of fMRI features separately in supervised k -

eans to examine whether the supervised clustering method is robust

o features used. On the other hand, we consistently used the Whole

rain features to build the PLSR model for pain prediction in the main

 

esults, because we wanted to make the prediction results comparable

the number of features varied largely among four feature sets and had

 significant influence on the results). We also did an additional analy-

is (Additional Analysis 4, as shown below) to examine the prediction

erformance of proposed approach by using each type of feature in both

upervised clustering and PLSR modeling. 

.4.6. Additional analyses 

We further performed seven additional analyses to examine the per-

ormance of the proposed specific models in a more rigorous and com-

lete manner. 

• Additional Analysis 1 (selection of number of classes in supervised k-

means): We aimed to check how the number of classes influence the

proposed model design approach. Thus, we tested the performance

of the proposed approach using different number of classes ( c = 2,

3 or 5) in supervised clustering. When c = 2, the cutoff value was 5;

when c = 3, the cutoff values were 4 and 6; when c = 5, the cutoff

values were 2, 4, 6 and 8. 
• Additional Analysis 2 (selection of cutoff values in supervised k-means):

We further examined the performance of the proposed approach un-

der different cutoff values when c = 2. Five different cutoff values

(2, 4, 5, 6, and 8) were under comparison. 
• Additional Analysis 3 (performance of using other regression models):

We tested the performance of the proposed approach by using other

regression methods rather than the PLSR model. Two popular regres-

sion models, support vector regression (SVR) and LASSO-principal

component regression (LASSO-PCR), were used in the proposed ap-

proach. 
• Additional Analysis 4 (performance comparison among different features

used for both supervised k-means and PLSR): We compared the predic-

tion results when each type of feature is used for both clustering

and prediction. More precisely, each type of feature was (1) used in

supervised clustering to measure distances among samples for selec-

tion of samples and (2) used in PLSR models as features to predict

pain ratings. 
• Additional Analysis 5 (comparison of fitting performance on training

samples): We examined the model performance on selected train-
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ing samples when these selected samples were used to generate a

model for specific test samples. More precisely, for each test indi-

vidual/trial, we used the proposed approach to select a cluster of

training samples to train an individual- or trial-specific model. We

then checked the specific model’s fitting performance on these se-

lected training samples. 
• Additional Analysis 6 (correlation between actual and predicted pain rat-

ings): Correlation between actual and predicted values is often used

to evaluate the performance of a prediction model. Thus, we checked

the correlation between actual and predicted values for the proposed

specific models, which used the features Whole Brain for both clus-

tering and prediction. Note that, as pointed out in a recent review

paper ( Poldrack et al., 2020 ), correlation is not an appropriate metric

and should be avoided when evaluating the predictive performance,

because correlation is not sensitive to scaling of the data and could

be biased in the case of leave-one-out cross validation. So, we just

used correlation as an additional metric to evaluate the proposed

approach. 
• Additional Analysis 7 (binary classification of high-pain and low-pain):

The proposed approach can also be used to make binary classifica-

tion by categorizing samples into high-pain (VAS > 5, positive) and

low-pain (VAS ≤ 5, negative). For the binary classification problem,

we used SVM as the classifier, and other procedures were exactly the

same as those in continuous prediction. We also examined and com-

pared the performances of non-specific models, individual-specific

models and trial-specific models. 

.4.7. Inter-individual/trial-subgroup variability of fMRI features 

We further explored inter-subgroup difference of whole-brain fMRI

esponses at the individual level as well as at the trial level in a

oxel-wise manner, with the aim to identify brain regions showing

ignificant inter- or intra -individual differences. When training the

ndividual-specific prediction model, candidate training trials were

ivided into several individual-subgroups. Exploring the differences

n fMRI features among these individual-subgroups (called as inter-

ndividual-subgroup variability) would be useful in understanding the

nter-individual variability in pain-related brain responses. Because of

he leave-one-individual-out cross validation used, different rounds of

ross validation had different individual-subgroups and different num-

er of subgroups (2, 3, or 4). If there were two individual-subgroups,

wo-sample t -test was used to compare the difference of whole-brain

MRI features between two individual-subgroups in a voxel-wise man-

er; if the number of individual-subgroups is greater than two, fMRI

eatures of different individual-subgroups were compared using one-

ay ANOVA, followed by post-hoc pairwise comparisons between each

air of individual-subgroups. The multiple comparison problem was

orrected by using FWE rate. Then, we calculated the probability of

ignificant inter-individual-subgroup difference for each voxel (i.e.,

he percentage of individuals who have significant inter-individual-

ubgroup difference at this voxel). Similarly, we also calculated inter-

rial-subgroup variability to explore differences in fMRI features among

rial-subgroups. To achieve this, we compared the difference of features

etween trial-subgroups using two-sample t -test (if there were only two

rial-subgroups) or one-way ANOVA (if there were only more than two

rial-subgroups) for each individual. Subsequently, we calculated the

robability of significant inter-trial-subgroup difference for each voxel

i.e., the percentage of trials which have significant inter-trial-subgroup

ifference at this voxel). Note that, because there were 32 individuals

nd each individual had 40 trials, we had in total 1280 trials to calculate

he percentage of trials having significant inter-trial-subgroup differ-

nce. The histograms of the probabilities of significant inter-individual-

ubgroup and inter-trial-subgroup differences of all voxels were esti-

ated, and the brain regions exhibiting large inter-individual-subgroup

r inter-trial-subgroup differences were illustrated. 
.4.8. Validation of the proposed approach on an independent dataset 

To check the generalizability of the specific models, we tested the

roposed approach on a new independent dataset. More precisely, train-

ng samples and test samples were from two independent pain-evoked

MRI datasets, which were acquired at two sites. We evaluated the gen-

ralizability of the proposed approach by training the models using

ataset I and testing the models using Dataset II. More precisely, for

ach individual and each trial in Dataset II, we used the proposed model

esign approach to select training samples from Dataset I. 

. Results 

.1. Group-level pain-related fMRI patterns 

Fig. 3 A shows the brain regions activated (or de-activated) by no-

iceptive pain stimuli, as revealed by GLM at the group level. Posi-

ively activated regions include SI, SMA, ACC, MCC, thalamus, insula,

hile negatively activated region is the ventromedial prefrontal cortex

vmPFC). Fig. 3 B shows the brain regions which are predictive of pain

ntensity, as revealed by PLSR at the group level. Positively predictive

egions include S1, SMA and insula, while a negatively predictive re-

ion is vmPFC. Supplementary Table 1 lists the peak coordinates and

luster sizes of “Pain-activated ” and “Pain-predictive ” regions. Fig. 3 C

hows the “pain matrix ”, including SI, SII, PFC, ACC, insula, SMA and

halamus, which are segmented using the Brodmann and AAL templates.

.2. Performance of the proposed approach 

By using four different sets of fMRI features (Whole Brain, Pain Ma-

rix, Pain-Activated, and Pain-Predictive) for supervised clustering to

elect training samples, we compared the prediction accuracy of three

odels: the proposed individual-specific model, the proposed trial-

pecific model, and the conventional non-specific model, which was

rained on ( 𝑁 − 1 ) individuals and tested on the remaining one indi-

idual. Note that, these four different feature sets were only separately

sed and compared in the supervised clustering, while the same fea-

ure set, Whole Brain, was used in the PLSR model for pain prediction.

e did this analysis because we aimed to check the robustness of su-

ervised clustering (the core algorithm of the proposed method) by us-

ng different feature sets. Actually, when these features were used for

upervised clustering only and the Whole Brain features were used in

LSR, there was no significant difference among different feature sets for

ndividual-specific models ( P = 0.309, ANOVA) or trial-specific models

 P = 0.284, ANOVA). Prediction errors (MAE) of the conventional non-

pecific model, individual-specific model and trial-specific model were

rovided in Table 1 and results of ANOVA and post-hoc paired-sample

 -test are listed in Table 2 . Fig. 4 provides the prediction performance

n terms of MAE by the three models for each individual. These results

how that, almost all the pair-wise comparisons, except the comparison

etween the individual-specific model and the non-specific model by

sing Pain Matrix as features ( P = 0.077), have significant differences.

pecifically, the trial-specific model has significantly higher accuracy

lower MAE) than the individual-specific model. Fig. 4 also suggests

hat the proposed specific models can improve prediction accuracy con-

istently for most participants. 

The results of seven additional analyses (as introduced in

ection 2.4.6 ) are mainly shown in the supplementary materials, and

ome key results are summarized as below. 

• Additional Analysis 1 (selection of number of classes in supervised k-

means): The results in Supplementary Fig. S1 show that the pro-

posed specific models had better performance than conventional

non-specific models. However, we can see from Supplementary Fig.

S1 that individual-specific model and trial-specific model had lower

prediction performance with the increase of c , which is explained in

Section 4.5 . 
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Table 1 

Prediction errors (MAE, mean ± std) of the conventional non-specific model, individual-specific model and 

trial-specific model. Four types of fMRI features were separately used for supervised clustering and the 

Whole Brain features were used for prediction. 

fMRI feature used for supervised k-means Whole brain Pain matrix Pain-activated Pain-predictive 

Non-specific model a 2.718 ± 0.592 a 

Individual-specific model 2.571 ± 0.525 2.586 ± 0.700 2.542 ± 0.623 2.487 ± 0.609 

Trial-specific model 2.445 ± 0.568 2.346 ± 0.567 2.394 ± 0.592 2.357 ± 0.506 

#a Note: For the non-specific model, there was no any selection of training samples, and the supervised 

clustering was not used. So, the four feature sets listed were not used and there was only one value for the 

non-specific model. 

Table 2 

Comparison among different pain prediction models based on four different fMRI feature sets used for supervised 

k -means. 

fMRI feature used for supervised k-means Whole brain Pain matrix Pain-activated Pain-predictive 

ANOVA P < 0.001 P < 0.001 P < 0.001 P < 0.001 

Post-hoc test (individual-specific vs. non-specific) P = 0.011 P = 0.077 P = 0.003 P < 0.001 

Post-hoc test (trial-specific vs. non-specific) P < 0.001 P < 0.001 P < 0.001 P < 0.001 

Post-hoc test (individual-specific vs. trial-specific) P = 0.014 P = 0.009 P = 0.010 P = 0.005 

Fig. 4. Comparisons of prediction accuracy 

(in terms of MAE) among the conventional 

non-specific model, individual-specific model 

and trial-specific model. Four types of fMRI 

features (Whole Brain, Pain Matrix, Pain- 

Activated, and Pain-Predictive) were used for 

supervised clustering and the Whole Brain fea- 

tures were separately used for prediction. Each 

red dot denotes the averaged MAE value of one 

participant, and the MAE values of the same 

participants are connected with thin lines. 

White and gray box shadows indicate 95% con- 

fidence intervals (upper and lower boundaries 

of these box shadows are mean ± 1.96 ∗ std, and 

the red lines are mean values). Significant dif- 

ferences obtained by post-hoc paired t -test are 

indicated by asterisks ( P < 0.05/3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Additional Analysis 2 (selection of cutoff values in supervised k-means):

The results in Supplementary Fig. S2 show that different cutoff val-

ues did not significantly change our observation: the proposed spe-

cific models are more accurate than conventional non-specific mod-

els. Of course, some extreme cutoff values (such as 2 and 8) should

not be used because they make samples highly unbalanced (i.e., the

number of samples in two classes is largely different), which de-

creases the performance of machine learning models (especially for

trial-specific models, as shown in Supplementary Fig. S2-B). 
• Additional Analysis 3 (performance of using other regression models):

Supplementary Fig. S3 shows that LASSO-PCR, SVR and PLSR can

achieve similar conclusion that the individual-specific model and

the trial-specific model significantly improved prediction accuracy

compared with the performance of the non-specific model, and trial-

specific model had superior performance over the individual-specific

model. However, there is no difference between the results of differ-

ent ML models (PLSR, SVR, LASSO-PCR) ( P = 0.48, ANOVA). 
• Additional Analysis 4 (performance comparison among different features

used for both supervised k-means and PLSR): Supplementary Fig. S4

shows that, there was significant difference in prediction accuracy

among non-specific, individual-specific, and trial-specific models for

Whole Brain ( P = 3.95 × 10 − 4 ), Pain Matrix ( P = 1.97 × 10 − 5 ), and

Pain-activated ( P = 3.03 × 10 − 5 ) features, but there was no signifi-
cant difference among non-specific and specific models for features

Pain-predictive ( P = 0.842). The possible reason for the lower per-

formance of Pain-predictive features is that, the number of Pain-

Predictive features is much smaller than others (the average number

of features for each feature set is, Whole Brain: 55,017, Pain Matrix:

12,453, Pain-Activated: 17,588, Pain-Predictive: 385). Of course,

more features do not guarantee higher accuracy. But in this case,

it is more likely that the number of Pain-Predictive features is too

small so that this feature set contains less predictive information than

other feature sets. In addition, we also compared the prediction accu-

racies of models with different feature sets using ANOVA, and found

no significant difference among four features for non-specific models

( P = 0.117) and for individual-specific models ( P = 0.475). There was

significant difference among different feature sets for trial-specific

models ( P = 0.031, ANOVA). Post-hoc paired t -test showed that, the

prediction errors of using Pain-predictive features were marginally

higher than those of using Whole Brain ( P = 0.049), Pain Matrix

( P = 0.035), and Pain-activated ( P = 0.019) for trial-specific models.
• Additional Analysis 5 (comparison of fitting performance on training

samples): Supplementary Fig. S5 shows that, there is significant

difference in prediction accuracy among non-specific, individual-

specific, and trial-specific models ( P = 2.17 × 10 − 9 ). Post-hoc paired

t -test show that, the prediction errors of non-specific model were
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Fig. 5. Comparisons of prediction accuracy (in terms of MAE) among the con- 

ventional non-specific model, individual-specific model and trial-specific model, 

which are trained using Dataset I and tested on an independent Dataset II. The 

Whole Brain features were used for both clustering and prediction. Each red dot 

denotes the MAE value of one participant, and the MAE values of the same par- 

ticipants are connected with thin lines. White and gray box shadows indicate 

95% confidence intervals (upper and lower boundaries of these box shadows 

are mean ± 1.96 ∗ std, and the red lines are mean values). Significant differences 

obtained by post-hoc paired t -test are indicated by asterisks ( ∗ P < 0.05/3). 
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higher than those of individual-specific model ( P = 9.54 × 10 − 7 ),

and trial-specific model ( P = 1.14 × 10 − 18 ), while trial-specific

models were marginally better than individual-specific models and

( P = 0.027 > 0.05/3). Apparently, the fitting errors on training data

(selected samples) were much smaller than prediction errors on test

data, but they shared a similar pattern (i.e., trial-specific model <

individual-specific model < non-specific model). The possible rea-

son is that, individual- and trial-specific models used training sam-

ples with similar feature distributions, so that these samples may also

share similar model parameters. As a result, the fitting performance

on selected training samples is better for specific models. 
• Additional Analysis 6 (correlation between actual and predicted pain

ratings): The correlation results between actual and predicted values

for the proposed specific models were shown in Supplementary Fig.

S6. The Z-transformed correlation coefficients of three models were

0.46 ± 0.075 (mean ± std) for non-specific models, 0.49 ± 0.054 for

individual-specific models, and 0.53 ± 0.061 for trial-specific mod-

els, respectively. One-sample t -test showed that correlation values of

non-specific models and specific models are all significantly larger

than zero ( P = 1.15 × 10 − 10 , 4.57 × 10 − 13 , 3.14 × 10 − 13 , for non-

specific, individual-specific, and trial-specific models, respectively).

Although the correlation coefficients of different models showed a

similar pattern as the prediction accuracy (i.e., trial-specific model >

individual-specific model > non-specific model), there is no signifi-

cant difference in Z-transformed correlation coefficients among non-

specific, individual-specific, and trial-specific models ( p = 0.248,

ANOVA). 
• Additional Analysis 7 (binary classification of high-pain and low-pain):

The results of binary classification are illustrated in Supplementary

Fig. S7. We have three major observations from this figure. First, the

proposed individual- and trial-specific models were still better than

conventional non-specific models in terms of accuracy, specificity,

and AUC, while trial-specific models had the best results. Second, in

terms of sensitivity, there was no significant difference among three

types of models. Third, the sensitivity of all these models is low,

which means high-pain trials are difficult to be correctly detected. 

In the cross-site study, the results in Fig. 5 demonstrate that the

roposed approach has strong cross-site generalizability. The predic-

ion errors (MAE, mean ± std) of non-specific, individual-specific, and

rial-specific models were respectively 2.907 ± 0.716, 2.696 ± 0.734, and

.449 ± 0.844. There was significant difference in prediction accu-

acy among non-specific, individual-specific, and trial-specific models

 P = 8.16 × 10 − 5 ). Post-hoc paired t -test show that, the prediction

rrors of non-specific models were higher than those of individual-

pecific models ( P = 0.0027) and trial-specific models ( P = 1.32 × 10 − 4 ),

hile individual-specific models had higher prediction errors than trial-

pecific models ( P = 0.0087). We can see that the proposed approach can

chieve better prediction accuracy for most of individuals. In addition,

y comparing the results on two datasets ( Figs. 4 and 5 ), we can see

hat the test performance on Dataset II was relatively lower (as com-

ared with the corresponding results obtained using the Whole Brain

eatures in Dataset I), which was reasonable because these two datasets

ad different feature distributions. However, when we used two-sample

 -test to compare the MAE values of non-specific and specific models

all of which used the Whole Brain features for supervised clustering

nd prediction) between Dataset I and Dataset II, but did not find any

ignificant difference ( P = 0.218 for non-specific models, P = 0.407 for

ndividual-specific models, P = 0.985 for trial-specific models). 

Collectively, all above results validated that the proposed model de-

ign approach is effective, robust, and generalizable. 

.3. Brain regions exhibiting inter-subgroup variability 

Fig. 6 shows the histograms of the probabilities of significant inter-

ndividual-subgroup or inter-trial-subgroup differences of all voxels.
t can be seen from Fig. 6 that, there are a large number of voxels

howing significant difference between individual- or trial-subgroups.

 great number of voxels had significant difference between individual-

ubgroups with a probability around 50%, while many voxels have sig-

ificant difference between trial-subgroups with a probability ranging

rom 10% to 60%. Fig. 7 shows the brain regions with large inter-

ndividual-subgroup differences and inter-trial-subgroup difference in

he fMRI activation patterns, respectively. It can be seen from Fig. 7 that,

he brain regions exhibiting large inter-individual-subgroup differences

nclude the pain matrix and the visual cortex, while the brain regions

xhibiting large inter-trial-subgroup differences include S1, MCC, tha-

amus, precuneus, and visual cortex. More details of brain regions with

ignificant inter-individual-subgroup difference and inter-trial-subgroup

ifference can be found in Supplementary Tables S2 and S3. 

. Discussion 

In the present study, we proposed a novel individual-specific and

rial-specific fMRI-based pain prediction approach which can effectively

estrain the adverse influence of inter-individual and intra-individual

ifferences on pain prediction. The proposed new approach showed

ignificantly higher prediction accuracy than the conventional method

hich used a non-specific model for all individuals or trials under test. In

he following, we will first summarize the relevance and novelty of this

tudy, and then elucidate why and how the new approach can success-

ully improve the accuracy of pain prediction. The limitation and future

linical implications of the proposed approach will be also discussed. 

.1. General relevance and methodological novelty 

This study is aimed to develop an approach which can produce a

ain prediction model specific to each test individual and even each

est trial, so it is an important step towards solving the problem of in-

ividual variability. Further, because other modalities of data used for
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Fig. 6. Histograms of the probabilities (with respect to all individuals or all trials) of significant inter-individual-subgroup or inter-trial-subgroup differences of all 

voxels in the whole brain. A voxel was counted if it had significantly different values between individual-subgroups or trial-subgroups ( P FWE < 1 × 10 − 70 ; two-sample 

t -test if the number of subgroups is 2, or one-way ANOVA if the number of subgroups is greater than 2). 

Fig. 7. Brain regions with significant inter-individual-subgroup difference and inter-trial-subgroup difference in their fMRI activation patterns. Colors indicate the 

probabilities (with respect to all individuals or all trials) of significant inter-individual-subgroup or inter-trial-subgroup differences of each voxel. 
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ain assessment (such as electrocardiogram, electrodermal activity, sur-

ace electromyography, facial expression, etc.) also have large individ-

al variability, this study has a general relevance to the development of

utomatic pain assessment techniques. From a broader perspective, ma-

hine learning has been very popularly used in the neuroimaging com-

unity with aims to discover neural signatures and to diagnose brain

iseases, but individual difference is a major source of data heterogene-

ty, which has an adverse effect on the performance of machine learning

odels. So, the present study is also relevant to other similar applica-

ions where neuroimaging-based machine learning models are used. 

The novelty of the proposed approach is two-fold. First, there are few

tudies concerning the development of an fMRI-based pain prediction

odel that can handle individual variability. The proposed approach

an design a specific model for each individual and each trial, and thus

t can address both inter-individual variability and intra-individual vari-

bility. Second, to the best of our knowledge, this study is the first at-

empt to use the dynamic selection technique ( Cruz et al., 2018 ), which

s an active research topic in the machine learning community, for the
esign of pain prediction models. The basic idea of dynamic selection

s to design a classifier according to each new sample to be classified

nd one common method is to train the classifier based on a local re-

ion of the feature space where the test sample is located ( Cruz et al.,

018 ). The present study adopted the idea of dynamic selection to train

n individual-specific or trial-specific model for each new test individ-

al or trial based on their fMRI responses (the feature space). To con-

lude, the novelty of proposed approach includes, (1) it can well address

he problems of two types of individual variability in fMRI-based pain

rediction, (2) it uses the idea of dynamic selection to design a model

pecific to each test sample and can achieve better performance. 

It is worth mentioning that, the “specific models ” are indeed not gen-

ralizable, but the “approach ” is generalizable. “Generalizability ” means

 well-trained machine learning model can be well used for new samples

ithout any updating. But, in this study, the generalizability is realized

n a different manner: the model is trained for each new sample. In

nother word, the proposed approach (not a model) is generalizable by

esigning a new model specific to each new sample. For a new sample in
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 new test dataset, we can use the proposed approach to select training

amples from the training dataset. If there are sufficient training sam-

les having similar patterns as the test sample in the feature space, the

esultant specific model can achieve good performance on the test sam-

le. In the present study, we used a cross-site study to demonstrate the

trong generalizability of the proposed approach. Even if the prediction

odels are trained from one dataset and applied on another indepen-

ent dataset, the proposed individual- and trial-specific models can still

chieve better performance than conventional non-specific models. 

.2. Principle and interpretability of specific models 

From a machine learning point of view, an fMRI-based prediction

odel elucidates the relationship between fMRI activation patterns (fea-

ures) and subjective pain intensities (labels), so the model is defined by

he probability distributions of fMRI activation patterns and pain inten-

ities. The rationale behind the proposed specific models is, if training

amples and test samples have similar feature distributions, then the

rained model has good results on test samples. This rationale is based

n our previous work ( Lin et al., 2018 ), which has shown that, the dif-

erence between two individuals’ pain prediction models is determined

y the differences between the probability distributions of their fMRI

eatures and pain intensities. Hence, if one wants to develop a more ac-

urate pain prediction model, it is of key importance to minimize the

ifferences in the probability distributions of fMRI activation patterns

nd pain intensities between training samples and test samples. Because

t is not possible to know the pain intensities (i.e., class labels) of test

amples in advance, we can only rely on the minimization of the dif-

erence in fMRI activation features between training and test samples.

his inspires us to only use part of training samples, which have similar

MRI features as the test samples, to design a model. 

The new individual-specific and trial-specific prediction models

ere proposed based on the idea of the dynamic selection technique

 Cruz et al., 2018 ). That is, only a subset of training samples, which

ave similar fMRI activation patterns as the test sample, should be used

o train a model for one individual or one experimental trial. To achieve

his, we clustered training samples into several subgroups based on their

MRI activation patterns and then selected one subgroup with the clos-

st fMRI patterns to that of the test sample. The clustering method we

sed is a new supervised k -means method. As compared with the con-

entional clustering methods, such as k -means, the new supervised k -

eans method is able to identify clusters with high probability density

ith respect to one single class (pain-sensitive vs. pain-insensitive at

he individual level, or high-pain vs. low-pain at the trial level), be-

ause class information is used in clustering. According to our previous

tudy ( Lin et al., 2018 ), the distance of fMRI features between training

amples and test samples is positively correlated with the prediction ac-

uracy. That is, if training samples and test samples are similar in their

eature patterns, the model should have a higher accuracy, which was

alidated in this study. 

It is necessary to note that, “individual-specific ” and “trial-specific ”

odels do not simply mean the models are different for each indi-

idual or trial. Even in the conventional design of models using cross

alidation, the models are different for individuals/trials because dif-

erent training samples are assigned by cross validation. Here in the

roposed approach, “individual/trial-specific ” means these models are

pecifically designed for each individual/trial by selecting training sam-

les in an individual/trial-specific manner. 

Because the prediction model is specific to each sample, it is hard to

llustrate and interpret all specific models for all individuals and trials

32 individual-specific models and 1280 trial-specific models for Dataset

) in a straightforward way. However, the designed specific model itself

s still simple and has good interpretability because of the following

easons. 

First, the PLSR model (no matter whether it is specific or non-

pecific) itself is not difficult to interpret: the magnitude of the model
oefficient indicates the predictability of the BOLD signal at the corre-

ponding voxel. For example, we can rank the PLSR coefficients to find

he most predictive regions. PLSR is widely used for fMRI decoding and

t has very good interpretability ( McIntosh et al., 2004 ; Krishnan et al.,

011 ; O’Connell et al., 2018 ). In Fig. 3 , we have shown that, by using

he PLSR model, we can find pain-predictive regions. Because the iden-

ified pain-predictive regions (including S1, SMA, insula and vmPFC,

tc.) are highly consistent with literature, we did not discuss these pain-

elated regions in this manuscript. Of course, each individual and even

ach trial may have some specific fMRI response patterns, but it is hard

o interpret each specific model. However, we still take a deep look at

hese models and find brain regions that contribute to the inter-subgroup

ariability (see Section 4.4 ). 

Second, the flexibility and researchers’ degrees-of-freedom in model

election are not high. Subgroups are not arbitrary defined, and they

re defined based on similarity of training samples in the feature space

i.e., fMRI responses). Subgroups cannot be defined based on arbitrary

ariables (such as some demographical and behavioral parameters), es-

ecially if they are not related to pain and are not included in the model

s features to predict pain. In the present study, fMRI responses are well

nown to be related to subjective pain intensity and are used as fea-

ures for pain prediction, so we use fMRI responses to define subgroups.

hus, the specific models are not arbitrarily defined and they are defined

ased on similarity of pain-related features. 

To conclude, the proposed model design approach is not complicated

nd the designed specific model is not difficult to interpret. The PLSR

odel is neither nonlinear not complex, and it is just a multivariate lin-

ar model with fMRI signals as features. We have a strong rationale be-

ind the proposed model design approach: the approach is based on our

bservation that prediction performance is positively correlated with the

imilarity between training samples and test samples and is also based

n the common dynamic selection technique. To understand why the

ain prediction models have large inter-subject or inter-trial variability,

e identified and discussed the brain regions contributing to the indi-

idual difference in the prediction models (as discussed in Section 4.4 ).

.3. “Less is more ”: quality of training samples matters 

This basic idea of the proposed approach is different from the com-

on viewpoint that more samples should be used to produce a more gen-

ral and accurate prediction model. In general, it is true that a model

rained from more data has better desired properties, which explains

hy the number of samples in neuroimaging study has gradually in-

reased in recent years ( Lindquist et al., 2017 ). However, the quality of

ata is as important as the amount of data (if not more so). To build a

achine learning model, data should be clean, complete and correctly

abeled, so data cleansing is a crucial step. More importantly, training

ata and test data should be homogeneous so that the trained model

an be well applied on test samples. However, in the study of fMRI-

ased pain prediction, training data and test data may be largely differ-

nt in their distributions of features and labels, because of the remark-

ble inter- and intra-individual differences in pain. As a result, we have

o carefully screen the training data by only keeping a subset of training

ata that are similar to test data in their fMRI feature patterns. 

Our results clearly showed that, the model trained from a subset of

elected samples had better performance than the model trained from

ll samples. In this study, the number of samples used for training a

ain prediction model was ordered as: non-specific model > individual-

pecific model > trial-specific model, while the prediction accuracy

as ordered as: non-specific model < individual-specific model < trial-

pecific model. These results convincingly proved that a large number

f training samples do not guarantee good performance of a machine

earning model. Training samples should be carefully selected to match

he properties of test samples so that the trained model can obtain sat-

sfactory performance on test samples. 
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It must be emphasized that, this study did not imply that we should

ot collect more data when building a machine learning model. Actually,

arge amount of data is crucial for any machine learning application.

e only argue that, the amount of data used to train a model for any

pecific test individual could be small if the properties of data match the

est individual well. Even in our study, the performance of our proposed

pproach also greatly depends on the amount of candidate training data.

nly if the amount of candidate training data is large, we can have

ore accurately-clustered individual/trial-subgroups and enough data

amples from selected individual/trial-subgroups to train a more precise

odel. 

.4. Brain regions exhibiting inter-subgroup variability 

In the study, we identified a set of brain regions showing large differ-

nce among individual-subgroups or trial-subgroups. Inter-individual-

ubgroup difference of fMRI patterns is mainly located in the pain matrix

nd visual cortex, while inter-trial-subgroup difference of fMRI patterns

s mainly located in S1, MCC, precuneus, thalamus and visual cortex. 

As for the brain regions showing inter-individual-subgroup differ-

nce, it is not surprising to identify that the pain matrix has significantly

ifferent fMRI activation patterns among individual subgroups. But, it is

nteresting to observe the visual cortex showing large inter-individual-

ubgroup difference, though the visual cortex was not a pain-activated

r pain-predicative region (as seen from Fig. 3 ). This observation sug-

ests that the visual cortex also plays a functional role in pain percep-

ion. Conventionally, visual cortex is not considered as a core region of

ain perception, but a series of studies have shown that it may also be

irectly or indirectly involved in the processing of nociceptive stimuli

 Sava et al., 2014 ). For example, visual regions might modulate network

f inhibitory interneurons in early somatosensory regions, which is an

mportant region perceiving the pain ( Cardini et al., 2011 ). 

As for the brain regions showing inter-trial-subgroup difference, the

bserved brain regions within the pain matrix include S1, MCC, and

halamus. Similarly to the observations in the inter-individual-subgroup

ifference, the visual cortex also showed inter-trial-subgroup differ-

nce. It is reasonable because visual perception has considerable within-

ndividual moment-to-moment variability. Besides, the precuneus is

lso identified to exhibit large inter-trial-subgroup difference. Some

tudies have shown that precuneus is predictive of pain perception

 Mouraux et al., 2011 ; Wager et al., 2013 ), but, as discussed in ( Lin et al.,

018 ; Goffaux et al., 2014 ), the modulation effect of the precuneus ac-

ivity on pain may not be specific to pain, because precuneus plays an

mportant role in salience processing. 

.5. Methodological considerations and alternatives 

The proposed approach is based on the idea of dynamic selection,

hich is a widely-used machine learning technique to design more spe-

ific models for test samples. As shown in Fig. 1 , two crucial steps in the

roposed approach are supervised clustering and the machine learning

odel. In the following, we will discuss and examine how different pa-

ameters in supervised clustering and different machine learning models

nfluence the performance of the proposed approach. 

In the operation of supervised clustering, the subgroups (clusters)

ere primarily determined based on fMRI patterns, while class labels

pain perception) helped make subgroups more homogeneous (i.e., the

amples in one cluster belong to the same class). In this work, we set the

umber of classes c in the objective function of supervised clustering to 2

pain-sensitive or pain-insensitive for individuals, and low pain or high

ain for trials), and 𝑀(the number of subgroups) was calculated as 2, 3,

r 4, depending on the data. Suppose the number of classes c is larger,

he number of clusters 𝑀will also be larger, leading to a smaller number

f samples per one cluster (subgroup). As a result, the number of sam-

les in the subgroup used to train a model becomes smaller, which could

ecrease the performance of the model. We tested the performance of
he proposed approach using other values of c (3 and 5). The results (see

upplementary Fig. S2) also showed that the proposed specific models

ad better performance than conventional non-specific models. How-

ver, we can see from Supplementary Fig. S2 that individual-specific

odel and trial-specific model had lower prediction performance with

he increase of c , which agreed with our inference. We further found

hat the performance of the proposed approach was not significantly in-

uenced by different cutoff values (as shown Supplementary Fig. S3).

ince it is impossible to exhaust all possible combinations of these pa-

ameters to find the optimal settings, we adopted the current setting

 c = 2, cutoff value = 5) in this study. The proposed approach can also

se other regression methods rather than the PLSR model, but, as shown

n Supplementary Fig. S4, different regression methods did not have sig-

ificantly performance, while they can all approve that the individual-

pecific model and the trial-specific model are more accurate than the

on-specific model. 

It is necessary to discuss the fMRI features we extracted for pain

rediction. We used the fourth scan after the stimulus onset as fea-

ures, because the fourth scan is normally the peak activation of BOLD

ignals and its magnitude is strongly correlated with the intensity of

ain. BOLD responses at discrete time points (especially at the activation

eaks) are often used as features for pain prediction, such as ( Marquand

t al., 2010 ; Brown et al., 2011 ). Our previous papers ( Tu et al., 2016a ,

016b , 2018 ; Lin et al., 2018 ; Anter et al., 2020 ) also extracted the

eak BOLD responses as features to predict the intensity of pain and

chieved satisfactory results. On the other hand, beta-series coefficients

 Rissman et al., 2004 ; Mumford et al., 2012 ) are also widely used as

eatures in pain prediction ( Wager et al., 2013 ; Lindquist et al., 2017 ).

e checked the correlation between the BOLD magnitudes at the fourth

can and beta-series coefficients at the single-trial level for the pain-

ctivated regions, and found they are very strongly correlated ( R = 0.95,

 = 2 × 10 − 5 ). Hence, we believe both types of features could result in

easonable prediction performance. 

Further, although the main results in this study are based on continu-

us prediction, the proposed approach can be used to make binary clas-

ification as well. As shown in Supplementary Fig. S5, the specific mod-

ls still can achieve better results than conventional classifiers in terms

f accuracy, specificity, and AUC when classifying high-pain and low-

ain trials. However, there was no significant difference among three

ypes of models in terms of sensitivity. It can be seen from confusion

atrices that, the major improvement of the proposed specific mod-

ls stemmed from the increased number of correctly classified low-pain

amples. Because the number of low-pain samples was much larger than

igh-pain samples (665 vs. 535), so the classification performance in

lassifying true low-pain samples had a larger influence on the over-

ll performance. Also, the sensitivity of all these models is low, which

eans high-pain trials are difficult to be correctly detected. One pos-

ible reason is that, high-pain trials have relatively large variability in

heir pain-evoked BOLD responses, and some of them are overlapped

ith low-pain trials in the feature space. As shown in Supplementary

ig. S5-D, features of high-pain trials have fewer samples but larger dis-

ersion. Hence, some high-pain samples are overlapped with low-pain

rials in the feature space and it is not easy to achieve high sensitivity

n such a circumstance. 

In addition, we used the pain ratings and fMRI responses of the

rst two energy levels (E1 and E2) as baseline to normalize the pain

atings and fMRI responses of the other two energy levels (E3 and

4), and then predict the changes in pain perception observed in E3

nd E4 energy levels. Still, we used the PLSR model and the proposed

ndividual-specific and trial-specific models to make prediction. The

rediction accuracies (mean ± SEM) for non-specific model, individual-

pecific model, and trial-specific model were respectively 2.05 ± 1.3,

.04 ± 1.4, and 1.79 ± 1.1. The results showed that, the proposed trial-

pecific models had significantly better performance than non-specific

odels ( P = 7.5050 × 10 − 4 , paired t -test) and individual-specific mod-

ls ( P = 0.0033, paired t -test), but individual-specific modes were only
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lightly (not significantly) better than non-specific models ( P = 0.74,

aired t -test). Overall, the results suggest that the proposed approach

an still achieve better performance in this scenario (to predict the

hanges in perception observed in E3 and E4 energy levels using E1

nd E2 as baselines). 

In summary, the proposed approach has robust and consistent perfor-

ance. Although different parameters in supervised clustering and dif-

erent machine learning models could influence the performance of the

roposed approach, the resultant individual-specific and trial-specific

odels normally have higher accuracy than non-specific models in dif-

erent testing scenarios. 

.6. Limitations and future work 

The advantages of the proposed approach have been demonstrated

nd discussed in previous sections, but the present study still has some

imitations to overcome before it can be applied in practice. First, the

pproach was proposed for and validated on a nociceptive pain dataset,

nd it could be extended to be used on other sensory (visual, auditory,

omatosensory, etc.) event-related fMRI data and resting-state fMRI,

hich is more popularly used especially in translational study of pain.

t is not difficult to apply the basic idea of the proposed approach on

esting-state fMRI data for an individual-specific prediction model. We

an cluster individuals into a small number of subgroups based on their

esting-state fMRI features, such as the amplitude of low frequency fluc-

uations ( Zang et al., 2007 ) and resting-state networks ( Greicius et al.,

003 ), and then select a training subgroup with the closest fMRI pat-

erns with the test individual to train an individual-specific model. Note

hat, the trial-specific model is not applicable for resting-state fMRI data,

hich does not contain any event-related trials. 

Second, the number of participants used in this study was still small

nd only one dataset was tested. It is always necessary to rigorously val-

date a machine learning model on multiple datasets and large-sample

atasets. Also, if more information about the participants (such as de-

ographic variables, behavioral parameters, co-morbidities, and con-

itions affecting perception) could be recorded and used as indepen-

ent variables in the pain prediction model, the model’s prediction per-

ormance could be improved, because such information could also be

elated to participants’ perceived levels of pain. However, we did not

ecord much information during subject recruitment and experiments,

nd hence could not do further analyses. It will be definitely useful to

ecord this information in future. If more information (such as some

emographic and behavioral variables) of participants is available, we

an check whether such information is predictive of pain ratings and

ow such information is related to fMRI responses. Some variables that

an provide more predictive capability than fMRI could be considered

s new features, and a new type of pain prediction model based on the

eature space defined by both fMRI activities and these predictive vari-

bles can be established. For example, participants having different co-

orbidities may be clustered into different subgroups for the training

f individual-specific models. 

Third, although the proposed pain prediction model only uses fMRI

esponses as features, it does not mean the prediction model is only

ased on pain-related neural signals. fMRI signals generally contain

any confounding factors, which may have an important influence on

he prediction model. To make clear whether a confounding factor, such

s head motion, contributes to a machine learning model, we can exam-

ne whether this confounding factor alone (if it can be estimated or mea-

ured) is correlated with the variables to be predicted and has any pre-

ictive power in the model. For example, to check the potential effects

f head motion on the pain prediction results, we computed the frame-

ise displacement (FD) of head motion per trial (at the same time as

he fMRI features were extracted, i.e., the 4th scan after stimulus onset).

hen, we calculated the correlation coefficient between FD values and

ain ratings per participant and found that the correlation coefficients

after Fisher Z-transformation) of all participants were not significantly
ifferent from zero (correlation coefficients = 0.03 ± 0.20, P = 0.47, one-

ample t -test). This result implied that head motion was not correlated

ith pain ratings and thus was not predictive of pain ratings. In a recent

aper ( Tu et al., 2020 ) which classified migraine patients and healthy

ontrols based on fMRI functional connectivity, we used a similar way to

heck possible influence of two confounding factors: head motion and

rowsiness. We found that, neither head motion nor drowsiness was

ignificantly different between migraine patients and healthy controls

nd they did not provide significant predictive power for the classifier.

hus, the influence of head motion or drowsiness on the migraine clas-

ification model was excluded ( Tu et al., 2020 ). However, because fMRI

ignals may contain many confounding factors, some of which cannot be

easured or estimated, it is almost impossible to examine whether all

ossible confounding factors have an influence on the fMRI-based pre-

iction model. Therefore, the proposed specific pain prediction model

ay not depend on neural signals only, even the features used are fMRI

ignals only. Future studies should investigate the possible influence of

ther confounding factors on pain prediction, which will be helpful in

esigning a more accurate and reliable pain prediction model. 

Fourth, the computational complexity of the proposed approach

ould be high because it needs to train a new model for each test indi-

idual and even for each trial. However, on the other hand, because the

roposed approach selectively used training samples to train a model,

t can effectively reduce the sample size of the training set and shorten

he training time of the model. 

Last but not the least, we still need to explore the applicability of

he proposed approach on pain datasets recorded from clinical prac-

ices. The proposed individual-specific and trial-specific pain prediction

pproach could be executed reliably and automatically and could po-

entially address existing problems of cross-individual pain prediction,

o it has the potential to meet the requirements of clinical applications.

uccessful validation of the proposed method on clinical pain data is a

ey step towards a precise and individualized pain assessment tool. 

. Conclusions 

Remarkable inter- and intra-individual differences in pain experi-

nce and pain-related brain greatly decrease the accuracy of fMRI-based

ain prediction models. It is desired to design more accurate and indi-

idualized pain prediction models, which are not sensitive to individual

ifference in pain, based on advanced machine learning techniques. To

his end, we developed new individual-specific and trial-specific mod-

ls to estimate the intensity of pain from single-trial fMRI data. Different

rom the common belief that more data samples should be used to train

 more accurate model, the proposed models only selected a small sub-

et of training samples, which have similar features to test samples, to

rain a specific model for test individuals or even trials. The superior

erformance of the proposed new models over the conventional non-

pecific models was validated on a nociceptive-evoked fMRI dataset.

he proposed new individual-specific and trial-specific fMRI-based pain

rediction models could be potentially used to develop more a precise

nd objective pain assessment tool. 
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