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Abstract—The ability of recognizing driving actions could help
building a more advanced driving assitance system, and could
even be applied in automated driving to improve the driving
safety. In this paper, we investigate the offline recognition of three
classes of driving actions (turning left, turning right and braking),
based on electroencephalography (EEG) signals. A simulated
experiment was conducted to collect EEG data of participants.
The proposed algorithm includes Wavelet Analysis and Common
Spatial Patterns (CSP), to extract the discriminative features. The
classification results were obtained using the Linear Discriminant
Analysis (LDA). The results yielded an average single trial
classification accuracy of 70.25% for all subjects, showing the
discrimination of different actions and the correlation between
driving actions and EEG signals.

Index Terms—Driving action recognition; Electroencephalog-
raphy (EEG); Braincomputer interface (BCI); Common Spatial
Patterns (CSP); Wavelet analysis; Linear Discriminant Analysis
(LDA)

I. INTRODUCTION

Automated driving is widely regarded as one of the main
technical means to solve traffic safety problems. However,
many obstacles still remain on the road to fully automated
driving. On March 19th, a self-driving Uber vehicle struck
a pedestrian in an accident in the US [1]. The safety driver
inside the vehicle was supposed to brake, but he didn’t respond.
This accident warns us that the safety of automated driving
is still a major concern. In the case of non-fully automated
driving, such as level 3 or level 4 automated vehicles graded
according to the SAE J3016 standard [2], drivers should take
over driving in emergency. Drivers may brake, turn left or
turn right to avoid accidents. Recognizing these driving actions
would enhance the safety of automated driving. Moreover, it
could help building a more advanced driver assistance system.

Typically, objective driving data (steering angle, acceleration,
etc.) constitutes the main source of driving behavior recognition.
Most existing research collect data from in-vehicle sensors to
identify various driving behaviors or styles [3], [4]. In [5],
In-Vehicle CAN-Bus information was used for classification
of driving actions. In prevailing studies, just a few utilize
physiological signal to recognize driving behavior. Among var-
ious physiological signals, electroencephalography (EEG) can
directly reflect the driver’s nervous state, with the advantages of
non-invasive and high temporal resolution. A two-layer learning
method was proposed to recognize driving behavior [6], using
EEG data collected in simulated driving experiment. Moreover,

we can even predict driving intention by the utilization
of slow anticipatory related potentials in EEG. Compared
with other methods of driving behavior recognition, it is an
incomparable advantage. In [7], the authors researched two
types of driving actions (braking and accelerating). By decoding
slow cortical potentials, they demonstrated the discrimination
between actions, and showed the feasibility of predicting the
driver’s intension.

Similar to the brain-computer interface (BCI) system based
on motor imagery, the physiological basis of driving action
recognition is the event-related synchronization (ERS) and
desynchronization (ERD) [8], [9]. In the course of performing
a driving action, the energy of µ (8-12 Hz) and β (18-30 Hz)
rhythms will increase or decrease in the corresponding motor
cortex. Therefore, we can distinguish different actions according
to the spatial distribution of EEG signals around 8 Hz and
30 Hz.

In order to classify three classes of driving actions, the
features of EEG signals should be extracted. But the low signal-
to-noise ratio, nonstationarity and randomicity of EEG makes
it challenging to develop an efficient algorithm. Currently, the
Common Spatial Patterns (CSP) algorithm is widely used for
the feature extraction of two-class EEG and the effectiveness of
it has been proven [10]. For multi-class problems, One-Versus-
One (OVO) and One-Versus-the-Rest (OVR) [11] strategies
are often used. CSP has good spatial resolution, but a single
CSP algorithm lacks frequency domain information. According
to ERD/ERS, by detecting the differences in the µ and β
frequency band, different actions could be classified. The
Wavelet Analysis [12], as a fast algorithm for time-frequency
analysis, effectively compensates for frequency domain defects
of CSP.

In this work, we investigate the recognition of driver’s actions
(turning left, turning right and braking) offline, based on the
analysis of EEG signal. We collected subjects’ EEG data during
the driving action tasks in a simulated experiment. Then we
combined the method of Wavelet Analysis and CSP, to extract
the features of EEG signals. Finally, the Linear Discriminant
Analysis (LDA) [13] was used to classify the three classes of
driving actions.

II. EXPERIMENT

We performed a simulated experiment to collect EEG signals
while the subjects performed three classes of driving actions.
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Three images were displayed in different trials to instruct
subjects to turn left, turn right or brake.

A. Equipments and Subjects

We performed the experiment in the School of Data and
Computer Science at Sun Yat-sen University. EEG signal was
recorded using 64 Ag/AgCl electrodes arranged in the 10-20
standard, using a Brain Products GmbH BrainAmp Amplifier
and an EasyCAP EEG cap. The sampling rate was 1000 Hz.
And we used Logitech G27 racing steering wheel and pedal
to perform driving actions.

Ten healthy subjects (four female, aged between 20-25 years)
participated in our experiment. The average driving experience
of all subjects was more than two years. They all signed
informed consent and were paid for the experiment.

B. Experimental Design

Each subject participated in one session recorded on a single
day. Each session consisted of 5 runs with 60 trials for each
one, recorded consecutively with short breaks between two
runs. There are 300 trials taken together, and 100 trials for
each class of actions. The first 3 runs of each subject’s data
were used for training and the last 2 runs for testing.

The course of a single trial is shown in Fig. 1. Each trial
started with 2 s of white screen. At t = 2 s, a black cross
appeared in the middle of screen for 0.5 s. An image (turn
left sign, turn right sign or stop sign, shown in Fig. 2) was
displayed from t = 3-10 s. The subjects were asked to perform
corresponding driving actions according to the type of the
image, as soon as they saw it. At t = 10 s, a break with 1 s
was followed. The experiment scene is shown in Fig. 3.

Figure 1: The course of a single trial

(a) Turn left sign. (b) Stop sign. (c) Turn right sign.

Figure 2: Images displayed on the screen.

III. METHODOLOGY

The framework of the proposed algorithm is shown in Fig. 4.
We preprocessed the raw data with a 50 Hz notch filter and a 0.5-
100 Hz 4th-order bandpass Butterworth filter. Then a Wavelet-
CSP (W-CSP) algorithm, using Discrete Wavelet Transform

Figure 3: Driving action experiment scene

Figure 4: Proposed algorithm for recognition of driving actions

(DWT) before applying CSP with OVO strategy, was used to
extract the discriminative features. In the three binary-class
subproblems, three CSP projection matrices were calculated.
Three binary-class LDA classifiers were trained to classify
these features, and the final classification results were obtained
by voting.

A. Discrete Wavelet Transform

In Discrete Wavelet Transform, wavelets are prototype
functions, similar to bandpass filters. By using DWT, low
frequency component shows fine frequency resolution, while
fine temporal resolution obtained at high frequency component.
The sampled signal x[n] can be decomposed by DWT as
follows [14]:

x[n] =

L∑
i=1

Di +AL = D1 +D2 + · · ·+DL +AL (1)
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where L is the maximum number of decomposition levels, Di is
the detail component, and AL is the approximation component.
If Fs denotes the sampling rate, according to the Sampling
theorem, the maxinum effective frequency is Fs/2. The sub-
frequency bands of x[n] are: D1(Fs/2

2, Fs/2), D2(Fs/2
3,

Fs/2
2), . . . , DL(Fs/2

L+1, Fs/2
L), AL(0, Fs/2

L+1).
The raw signals were downsampled to 500 Hz, and a five-

layer wavelet decomposition for Daubechies wavelet of order 4
(db4) followed. The sub-frequency bands after DWT are: D1

(125-250 Hz), D2 (62.5-125 Hz), D3 (31.25-62.5 Hz), D4

(15.625-31.25 Hz), D5 (7.8125-15.625 Hz), A5 (0-7.8125 Hz).
The frequency bands of D4 and D5 contains 8-30 Hz, therefore,
the signals were reconstructed using wavelet reconstruction
with the coefficients cD4 and cD5.

B. Common Spatial Pattern

The CSP algorithm is based on the simultaneous diagonal-
ization of two covariance matrices [15], and can maximize the
differences between the two classes of signals. Suppose that
the single trial EEG data is X of size N ∗S, where N denotes
the number of channels, and S denotes the number of samples
for each channel. The normalized spatial covariance of the trial
is:

C =
XXT

trace(XXT )
(2)

where XT represents the the transpose of matrix X , and
trace(·) denotes the sum of diagonal elements. Then the sum
of covariance matrices for the two classes is calculated:

C1 =
∑
i∈I1

Ci, C2 =
∑
i∈I2

Ci (3)

where i ∈ I1,2 denotes that the i-th trial belongs to class 1 or
2. Perform the eigenvalue decomposition on the sum of C1

and C2, we get:

Cc = C1 + C2 = UcλU
T
c (4)

where Uc denotes the matrix of eigenvectors, and λ denotes the
diagonal matrix of eigenvalues. Then construct the whitening
matrix:

P =
√
λ−1UT

c (5)

And whiten the two covariance matrices:

S1 = PC1P
T , S2 = PC2P

T (6)

Because the two covariance matrices are simultaneously
diagonalized, S1 and S2 have the same eigenvectors:

S1 = Uλ1U
T , S2 = Uλ2U

T (7)

and corresponding eigenvalues satisfy:

λ1 + λ2 = I (8)

where I denotes the identity matrix. Therefore, the eigenvalue
of one class of signals is the largest, while that of the other
class is the smallest. Then we obtain the CSP projection matrix:

W = UTP (9)

And the spatially filtered EEG signal is:

Z =WX (10)

In order to extract the features, consider the signals Zp(p =
1, 2, . . . , 2k) with the largest k eigenvalues in S1 and S2. Thus
by selecting the first and last k rows of Z, we get the feature
vectors [10]:

fp = log(
var(Zp)∑2k
i=1 var(Zi)

) (11)

where var(·) represents the variance of signal.

IV. RESULTS AND DISCUSSIONS

20 channels around C3, Cz and C4 (FC5, FC3, FC1, FC2,
FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1,
CPz, CP2, CP4, CP6) were selected from all datasets for the
analysis. We firstly dowmsampled the raw signals to 500 Hz.
After preprocessing the raw data with notch and bandpass
filters, we decomposed all the signals with DWT. Then the
detail components D4 and D5 were used to reconstruct the
EEG signals. The topographical maps of three classes of signals
after DWT from subject 4 are shown in Fig. 5. It shows that
ERD/ERS appears in the corresponding area of the motor
cortex. Taking braking as an example, ERD appears in the
area around electrode Cz. This reflects the correlation between
driving actions and EEG signals.

Before CSP spatial filtering, 20 channels and 2 sub-frequency
components were utilized to create 40 new channels. Therefore,
the size of single trial became 40∗Samples. By applying CSP
algorithm, the spatially filtered EEG signals were obtained.
We selected the first three and the last three rows to form the
discriminative features. Fig. 6 depicts the distributions of the
first and last dimension of features in the three binary-class
subproblems. Finally, we got the classification accuracy using
LDA.

For comparison, we used the conventional CSP algorithm
to extract the features and calculated the performance. The
downsampled signals were preprocessed with a 8-30 Hz 4th-
order bandpass filter before CSP. And LDA was also utilized
to get the classification results.

(a) Turning left (b) Braking (c) Turing right

Figure 5: The topographical maps of ERD/ERS. Signals of
three classes of actions were averaged over the corresponding
trials, and the segment of 3.5-4 s was selected to draw the
maps.
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(a) Features of turning left and turning right
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(b) Features of turning left and braking
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(c) Features of turning right and braking

Figure 6: Distributions of the first and last dimension of features obtained by W-CSP.

A. The Best Time Segment Selection

To get the best classification results, different time segments
for analysis were selected to apply CSP. We applied a 3 s
sliding window in the segment of 2-10 s, with a 0.5 s step.
Fig. 7 shows the classification accuracy of subject 4. The
accuracy is relatively low at the begining, and reaches the
highest (77.50%) in the segment of 4.5-7.5 s. Then the accuracy
gradually decreases. The best time segment varies with the
subject, thus we selected the most suitable one for each dataset.

Figure 7: The classification accuracy of different time segments
(subject 4).

B. Classification Results

The best time segment of each train set was selected for the
calculation of the CSP projection matrix and the LDA training.
Then the classification accuracy was obtained on the test set.

In Table I, the classification accuracy of W-CSP and CSP
are concluded. The average accuracy is 70.25% for W-CSP,
and 68.08% for CSP. It shows that our algorithm outperforms
the conventional CSP method. And the standard deviation of
W-CSP (5.82) is less than that of CSP (6.34), showing that
the stability of our algorithm is better. In addition, the results
indicate significant individual differences in driving action
recognition, which is inevitable in EEG-based BCI systems.

Table I: Performance of Driving Action Recognition

Subject
Accuracy(%)

W-CSP CSP

1 70.00 74.17
2 70.83 67.50
3 60.00 60.83
4 77.50 73.33
5 77.50 77.50
6 60.00 56.67
7 73.33 72.50
8 72.50 63.33
9 68.33 70.83

10 72.50 64.17

Average 70.25 68.08
Std 5.82 6.34

V. CONCLUSION AND FUTURE WORKS

The purpose of this study was to recognize three classes of
driving actions in an offline analysis. The proposed Wavelet-
CSP algorithm combined DWT and CSP method, providing
discriminative features to classify driving actions. And LDA
was used to classify the features. The average classification
accuracy was 70.25% for 10 subjects, at the best time segment
for each subject. The results indicated that our algorithm had
a higher classification accuracy than the conventional CSP
algorithm.

In future works, we plan to combine this study with the
detection of anticipatory brain potentials, to predict which
action the driver is to perform. Online algorithm should be
researched to assess the real-time performance of driving action
detection and classification. The technology of predicting the
driver’s action can be use in driving assistance system or
automated cars, to improve driving safety.
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