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Affective computing is an increasing interdisciplinary research field that provides great potential to rec-
ognize, understand and express human emotions. Recently, multimodal analysis starts to gain more pop-
ularity in affective studies, which could provide a more comprehensive view of emotion dynamics based
on the diverse and complementary information from different data modalities. However, the stability and
generalizability of current multimodal analysis methods have not been thoroughly developed yet. In this
paper, we propose a novel multimodal analysis method (EEG-AVE: EEG with audio-visual embedding) for
cross-individual affective detection, where EEG signals are exploited to identify the emotion-related in-
dividual preferences and audio-visual information is leveraged to estimate the intrinsic emotions
involved in the multimedia content. EEG-AVE is composed of two main modules. For EEG-based individ-
ual preferences prediction module, a multi-scale domain adversarial neural network is developed to
explore the shared dynamic, informative, and domain-invariant EEG features across individuals. For
video-based intrinsic emotions estimation module, a deep audio-visual feature-based hypergraph clus-
tering method is proposed to examine the latent relationship between semantic audio-visual features
and emotions. Through an embedding model, both estimated individual preferences and intrinsic emo-
tions are incorporated with shared weights and further contribute to affective detection across individ-
uals. Experiments on two well-known emotional databases indicate that the proposed EEG-AVE model
achieves a better performance under a leave-one-individual-out cross-validation individual-
independent evaluation protocol. The results demonstrate that EEG-AVE is an effective model with good
reliability and generalizability, which has practical significance in the development of multimodal anal-
ysis in affective computing.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Electroencephalography (EEG) provides a natural way to record
human brain activities and has been widely used in the affective
intelligence studies [1–5]. In recent years, deep neural network
learning methods have provided an effective and efficient
approach to characterize informative deep features from EEG data
and have achieved promising results in EEG-based affective detec-
tion applications. For example, a novel dynamic graph convolu-
tional neural network (DGCNN) was proposed in [1] to learn the
discriminant and hidden EEG characteristics in a non-linear
approach for solving the multi-channel EEG based emotion decod-
ing problem. Jirayucharoensak et al. [6] adopted a stack of several
autoencoder structures to perform EEG-based emotion decoding
and showed the deep learning network outperformed the tradi-
tional classification models such as support vector machine
(SVM) and naïve Bayes classifiers. The valid, useful and optimal
EEG information can be explored in a deep belief network (DBN)
structure, which was demonstrated to be beneficial to the decod-
ing performance [7]. Cui et al. [8] proposed an end-to-end
regional-asymmetric convolutional neural network (RACNN) to
capture the discriminant EEG features covering temporal, regional,
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and asymmetric information. Based on a series of pretrained state-
of-the-art CNN architectures, Cimtay and Ekmekcioglu [4]
improved the feature extraction performance and classification
capability based on raw EEG signals. Liu et al. [9] proposed a
three-dimension convolution attention neural network (3DCANN)
to learn the dynamic spatio-temporal joint features with the dual
attention weight learning strategy and achieved superior model
performance. The existing literature has shown deep learning is a
powerful tool in EEG processing, which captures the abstract rep-
resentations and disentangles the semantic gap between EEG sig-
nals and emotional states.

However, due to the problem of individual differences, the sta-
bility and generalizability of EEG-based affective detection models
are of great challenge. Especially, EEG data are very weak signals
and easily susceptible to interference from undesired noises, mak-
ing it different to distinguish individual-specific and meaningful
EEG patterns from noise. The key to solving the problem of individ-
ual differences is to minimize the discrepancy in feature distribu-
tions across individuals. To improve model generalization to the
variance of individual characteristics, transfer learning methods
have been introduced and a fruitful line of prior studies has been
explored [10–12,2]. Based on feature distribution and classifier
parameters learning, Zheng and Lu [11] developed two types of
subject-to-subject transfer learning approaches and showed a sig-
nificant increase in emotion recognition accuracy (conventional
generic classifier: 56.73%; the proposed model: 76.31%). Lin and
Jung [12] proposed a conditional transfer learning framework to
boost a positive transfer for each individual, where the individual
transferability was evaluated and effective data from other sub-
jects were leveraged. Li et al. [2] developed a multi-source transfer
learning method, where two sessions (calibration and subsequent)
were involved and the data differences were transformed by the
style transfer mapping and integrated classifier. Among various
transfer learning strategies, domain adaptation is a popular way
to learn common feature representations and make the feature
representations invariant across different domains (source and tar-
get domains). Ganin et al. [13] proposed an effective domain-
adversarial neural network (DANN) to align the feature distribu-
tions between the source domain and target domain and also
maintain the information of the aligned discriminant features
which are predictive of the labels of source samples. Instead of
the conventional domain adaptation methods that adapted a
well-trained model based on a specific domain to another domain,
DANN could well learn the shareable features from different
domains and maintain the common knowledge about the given
task. Inspired by this work, Li et al. [14] proposed a bi-
hemisphere domain adversarial neural network (BiDANN) model
for emotion recognition using EEG signals, in which a global and
two local domain discriminators worked adversarially with an
emotion classifier to improve the model generalizability. Li et al.
[3] proposed a domain adaptation method through simultaneously
adapting marginal and conditional distributions based on the
latent representations and demonstrated an improvement of the
model generalizability across subjects and sessions.

On the other hand, with the great development and application
of the internet and multimedia nowadays, there are many
approaches to characterize audio-visual content and embed the
conveying information with other feature modalities for emotion
detection[15–18]. For example, based on traditional handcrafted
audio and visual features, Wang et al. [15] investigated several
kernel-based methods to analyze and fuse audio-visual features
for bimodal emotion recognition. Mo et al. [16] proposed Hilbert-
Huang Transform (HHT) based visual and audio features for a
time–frequency-energy description of videos and introduced
cross-correlation features to indicate the dependencies between
the visual and audio signals. Furthermore, the recent success of
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deep learning methods in computer vision brings new insights into
the video-content-based affective study. Acar et al. [19] utilized
CNNs to learn mid-level audio-visual feature representations for
affective analysis of music video clips. Zhang et al. [17] proposed
a hybrid deep model to characterize a joint audio-visual feature
representation for emotion recognition, where CNN, 3D-CNN, and
DBN were integrated with a two-stage learning strategy.

In general, current affective computing models can be mainly
categorized into two streams. One stream is to predict individual
preferences through analyzing a user’s spontaneous physiological
responses (i.e. EEG signals) while watching the videos [20,21].
The individualized reactions to emotions are well-considered,
and an assumption is made here that different emotions could be
elicited for different viewers when watching the same video. How-
ever, spontaneous response-based individual preferences predic-
tion would be sensitive to individual differences and fail to
achieve reliable performance in affective detection across individ-
uals. Another stream is to estimate intrinsic emotions from video
content itself by integrating visual and audio features in either
feature-level fusion or decision fusion and building a classifier for
distinguishing emotions [17,22]. The video content-based intrinsic
emotions estimation could achieve a stable emotion detection per-
formance, but it fails to consider the deviations of individuals in
emotion perception. This motivates us to study the underlying
associations among emotions, video content, and brain responses,
where video content functions as a stimulation clue indicating
what kind of emotions would possibly be elicited and brain
responses reveal individual emotion perceiving processes showing
how we exactly feel the emotions. An appropriate embedding
strategy of individual preferences and intrinsic emotions in
cross-individual affection detection tasks could be helpful to learn
reliable affective features from video content and benefit in
enhancing the estimation stability of individual emotions.

Besides, compared to unimodal analysis, multimodal fusion
could provide more details, compensate for the incomplete infor-
mation from another modality, and develop advanced intelligent
affective systems [23]. Recently, Wang et al. [24] incorporated
video information and EEG signals to improve the video emotion
tagging performance. This study characterized a set of traditional
visual and audio features, including brightness, color energy, and
visual excitement for visual features, and average energy, average
loudness, spectrum flow, zero-crossing rate (ZCR), the standard
deviation of ZCR, 13 Mel-Frequency Cepstral Coefficients (MFCC)
and the corresponding standard deviations for audio features.
The proposed hybrid emotion tagging approach was realized on a
modified SVM classifier, and the corresponding performance was
improved from 54.80% to 75.20% for valence and from 65.10% to
85.00% for arousal after a fusion of multi-modality data. Inspired
by the success of the embedding protocol across different data
modalities, this study proposes a novel affective information detec-
tion model (termed EEG-AVE) to learn transferable features from
EEG signals individual preferences predictionwith an embedding
of affective-related multimedia characteristics (intrinsic emotions
estimation) to enhance cross-individual affective detection perfor-
mance. The proposed EEG-AVE model is illustrated in Fig. 1, which
is composed of three parts: EEG-based individual preferences pre-
diction, audio-visual based intrinsic emotions estimation, and mul-
timodal embedding.

� EEG-based individual preferences prediction. In this part, we
propose a multi-scale domain adversarial neural network (ter-
med as MsDANN hereinafter) based on DANN [13] to enhance
the generalization ability of EEG feature representation across
individuals and boost the model performance on individual
preferences prediction. Specifically, EEG data from different
individuals are treated as domains, where the source domain



Fig. 1. The proposed EEG-AVE model.
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refers to the existing individuals and the target domain refers to
the new coming individual(s). Based on the input multi-scale
feature representation, the feature extractor network, task clas-
sification network, and discriminator network are designed to
make the source and target domains share similar and close
latent distribution to work with the same prediction model.
As the mining of emotional informative and sensitive features
from EEG signals is still a great challenge, this study introduces
a multi-scale feature representation to improve feature efficacy
and model adaptability to complex and dynamic emotion cases.
Compared to single-scale feature representation, pioneer stud-
ies have shown EEG signals analysis with such a coarse-grain
procedure could be beneficial to emotion studies [25–27].

� Audio-visual based intrinsic emotions estimation. To
enhance the model stability in cross-individual affective detec-
tion tasks, audio-visual content analysis is conducted to digest
the intrinsic emotion information involved in the videos which
could be used as supplementary information for individual
affective detection. Due to the well-known ‘‘semantic gap” or
‘‘emotional gap” that the traditional handcrafted features may
fail to sufficiently discriminate emotions, we develop a deep
audio-visual feature-based hypergraph clustering method (ter-
med as DAVFHC) for characterizing semantic and high-level
audio-visual features. Here, two pretrained CNN architectures
(VGGNet [28] and VGGish [29], whose performance have been
widely recognized in audio-visual information analysis
[30,31]) are adopted to explore the emotion-related audio-
visual characteristics and the most optimal features are fused
through a hypergraph theory.

� Multimodal embedding. The final affective detection result is
determined by an embedding model where the predicted indi-
vidual preferences from EEG signals and the estimated intrinsic
emotions from audio-visual content are fused at a decision
level. The compensation information from different modalities
contributes together to tackling the individual differences prob-
lems in affective detection.

The major contributions of this work are summarized as fol-
lows. (1) We propose a novel cross-individual affective detection
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model (EEG-AVE) to incorporate spontaneous brain responses
and stimulation clues in a hybrid embedding strategy. Both EEG
and audio-visual information are exploited to digest different
dimensions of emotions, and the compensation relationships
among different data modalities in the affective detection study
are examined. (2) We introduce an effective individual preferences
prediction method (MsDANN) to estimate individual emotions
from EEG signals, where the impact of individual differences is
diminished through a transfer learning approach. (3) We present
an efficient intrinsic emotions estimation method (DAVFHC) to
characterize the emotion-related in audio-visual materials as the
supplementary information for the cross-individual affective
study. Here, the semantic audio-visual features are extracted by
using deep learning methods, and the complex and latent relation-
ships of deep audio-visual features with emotion labels are mea-
sured with hypergraph theory.
2. Methodology

2.1. Individual preferences prediction

In this section, we propose a new transfer learning based neural
network, MsDANN, to address the problem of the individual differ-
ences in EEG-based emotion detection. In this network, a multi-
scale feature representation is incorporated to capture a series of
rich feature characteristics of EEG signals and maximize the infor-
mative context for predicting a diverse set of individual prefer-
ences in emotions. Specifically, we extract the differential
entropy (DE) features [32] from the defined frequency sub-bands
(refer to Table 1) at different frequency/scale resolutions (1 Hz,
0.5 Hz, and 0.25 Hz), and build respective domain adaptation mod-
els with domain adversarial training methods. In the proposed
MsDANN, the common features from different individuals are
learned; at the same time, the relationships between the learned
common features and the related emotional information are pre-
served. The network structure of MsDANN is shown in Fig. 2, which
is composed of three parts: the generator (feature extractor net-
work) for deep feature extraction, the classifier (task classification



Fig. 2. The proposed MsDANN model.

Table 1
The defined frequency sub-bands for DE feature characterization.

h a1 a2 b1 b2 b3 c1 c2 c3

frequency band (Hz) 4–8 8–10 10–13 13–16 16–20 20–28 28–34 34–39 39–45
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network) for emotion label prediction, and the discriminator (dis-
criminator network) for real or fake data distinguishing. The corre-
sponding network configurations about the designed MsDANN are
reported in Table 2. Here, the generator and classifier could be con-
sidered as a standard feed-forward architecture, while the genera-
tor and discriminator are trained based on a gradient reversal layer
to ensure the feature distributions of two domains as indistin-
guishable as possible. In this study, the EEG data with emotion
labels are treated as the source domain to train the generator, clas-
sifier, and discriminator; while the EEG data without emotion
labels are utilized to train the generator and discriminator.
Through this multi-scale deep framework, a set of transferable fea-
tures involving affective information could be characterized, the
cross-domain discrepancy could be bridged, and the classification
Table 2
The network configurations of MsDANN.

Name Input Size Output Size

Generator Full Connection 32�50 32�4
ELU Activation Function 32�4 32�4
Flatten 32�4 128�1
Full Connection 128�1 64�1
ELU Activation Function 64�1 64�1
Full Connection 64�1 64�1
ELU Activation Function 64�1 64�1

Classifier Full Connection 64�1 2�1
Dropout 2�1 2�1
Softmax Activation Function 2�1 2�1

Discriminator Full Connection 64�1 128�1
ReLU Activation Function 128�1 128�1
Full Connection 128�1 1�1
Sigmoid Activation Function 1�1 1�1
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performance could be effectively improved in both source and tar-
get domains.

To learn a shared common feature space between the source
and target domains and also guarantee the learned feature repre-
sentation involving enough information for revealing the emotion
states, the loss objective function is designed below. Suppose that
the source and target domains are denoted as S and T. In the
domain learning, the EEG data with emotion labels in S are given

as xl ¼ xl1; . . . ; x
l
NS

n o
and y ¼ y1; . . . ; yNS

n o
, where xli is the input

EEG data at lth scale feature representation and yi is the corre-
sponding emotion label of xli. NS is the sample size of xl. On the
other hand, the unlabeled EEG data in T is denoted as

zl ¼ zl1; . . . ; z
l
NT

n o
, where zli is the input EEG data at lth scale feature

representation and NT is the corresponding sample size of zl. We
denote the generator, classifier, and discriminator as rh; cr; dl with
the parameters of h;r and l. To ensure the learned features by rh
from the source domain or target domain are indistinguishable,
the domain adversarial training objective function is given as

min
h

max
l

E xl ;zlð Þ� S;Tð ÞLD l; h; xl
� �þLD l; h; zl

� �
; ð1Þ

where LD is a binary cross-entropy loss for the discriminator to be
trained to distinguish S and T, defined as

LD l; h; xl
� � ¼ �I xl � S

� �
log dl � rh xl

� �� �� I xl � T
� �

� log 1� dl � rh xl
� �� �

: ð2Þ
Here, I is an indicator function, and � refers to the composite map-
ping from the generator to the discriminator. Based on Eq. (1), we
add another loss function LT for the classifier part as
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min
r;h

max
l

Exl�S LT r; h; xl
� �� �

þ kE xl ;zlð Þ� S;Tð Þ LD l; h; xl
� �þLD l; h; zl

� �� �
; ð3Þ

where LT r; h; xl
� �

is the classification loss in the source domain,
determined by

P
Loss cr � rh xl

� �
; y

� �
. k is a balance parameter during

the learning process, given as

k ¼ 2
1� exp �cpð Þ � 1; ð4Þ

where c is a constant value and p is a factor of an epoch. Eq. (3) is
the final objective function for MsDANN model training. The pro-
posed MsDANN model is an end-to-end framework for cross-
individual emotion prediction based on EEG signals, combining
the feature learning adaptation and emotion classification into a
unified deep model. Based on the input data with multi-scale DE
feature representation, the domain adaptation and classification
loss are exploited to guide the generator to learn effective feature
representations across individuals via the gradient reversal layer
and efficiently tackle the problem of the individual differences in
EEG data processing.

2.2. Intrinsic Emotions Estimation

At present, a number of well trained deep CNN models have
been successfully applied to multimedia processing, such as Alex-
Net [33], GoogLeNet [34] and VGG [28] for visual content, and
VGGish [29] for audio content. The deep features could bridge
the semantic gap and improve semantic interpretation perfor-
mance. In this section, we develop a DAVFHC method to learn
and decode the semantic features from audio-visual content for
intrinsic emotions estimation.

At the visual level, a pretrained VGGNet network [28] is utilized
to process frame-based visual information and characterize effec-
tive visual features. The training and testing data sets were based
on ILSVRC-2012, with 1.3 M training pictures, 50 K test pictures,
and 100 K validation pictures. The network was trained by opti-
mizing a polynomial logistic regression objective function with
the smallest batch-based gradient descent momentum. Consider-
ing the balance of layer depth and performance, VGG16 is utilized
Fig. 3. The visual feature
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in this paper to characterize the frame-based visual features. It
consists of 13 convolutional layers and 3 fully connected layers.
The corresponding number of convolution kernels at each layer
are 64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, and
512, and the kernel size is 3� 3. As illustrated in Fig. 3, the visual
feature extraction procedure includes three steps.

1. 1. Frame-based visual feature extraction. The video frames
are input to the pretrained VGG16 and the corresponding fea-
ture maps are characterized at each convolutional layer. For
each layer, an average feature map is then calculated and con-
verted into a feature vector.

2. 2. Segment-based visual feature extraction. Instead of direct
averaging all the frame-based features in one segment, we
introduce an adaptive keyframe detection step to detect a key-
frame from every segment based on the feature distribution.
Suppose that one segment is composed of k frames with the
corresponding extracted features, denoted as Bi ¼ bi1; . . . ; b

i
k

� �
,

where i ¼ 1; . . . ;Ni refers to the convolutional layer. The key-
frame detection is illustrated as follows. (1) All frames are
grouped into one cluster in terms of Bi; (2) The cluster center
ci is computed; (3) The distance between each frame bii
i 2 1; k½ �ð Þ and the cluster center ci is calculated, denoted as
di1; . . . ; d

i
k

� �
; (4) the frame which is the closest to ci is selected

as the keyframe of the segment, termed as
k� ¼ argmin di1; . . . ; d

i
k

� �
. Then, the corresponding feature of

the keyframe bik� is treated as the segment-based feature
representation.

3. 3. Segment-based visual feature fusion. The characterized
segment-based features at each single convolutional layer
(bik� ; i 2 1;Ni½ �) are then fused by concatenation. Empirically,
the segment length is set to 1s. To get the semantic features,
only the characterized features at the last two convolutional
layers (i ¼ 12and13) are used as visual features (WV ) in the pro-
posed DAVFHC method.

At the audio level, a pretrained CNN network, VGGish [29], is
adopted to characterize effective audio features. VGGish is a deep
network model trained on a Youtube-8 M database (training/vali-
extraction procedure.
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dation/test: 70 M/20 M/10 M), which has been proved to be cap-
able of extracting effective and efficient deep auditory features in
various applications [35,36,31]. The network contains 6 convolu-
tional layers, and the corresponding numbers of convolution ker-
nels are 64, 128, 256, 256, 512, and 512, respectively. The kernel
size is 3� 3. Same as the visual feature extraction process, the
audio features are also characterized at the segment level. The
audio feature extraction procedure totally includes four steps
below.

1. Data preparation. The audio signals are detected from the
emotional clips and then partitioned into a number of segments
with a fixed length.

2. Data preprocessing. The segment-based audio data is prepro-
cessed following the procedures presented in [29].

3. Deep audio feature characterization. For each segment, the
logarithmic Mel spectrum is characterized and input to the
VGGish. The deep feature maps are extracted at each convolu-
tional layer and averaged into one feature map.

4. Deep audio feature fusion. For each segment, the feature map
at every single convolutional layer is converted into a feature
vector. The converted feature vectors across different convolu-
tional layers are then fused by concatenation. Empirically, the
segment length is set to 1s (same as the visual data. To get
the semantic features, only the feature vectors extracted from
the last two layers (5th and 6th) are used as audio features
(WA) in the proposed DAVFHC method.

The characterized segment-based visual and audio features are
concatenated and formed into a segment-based audio-visual fea-
ture vector termed WM ¼ WV ;WA½ �. The complex relationships
among all the segments from the emotional clips are constructed
with a hypergraph which has been widely recognized as an effec-
tive approach for complex hidden data structure description. For
the traditional graph, only pairwise relationships between any
two vertices are considered, which would lead to the information
loss [37]. In the hypergraph, one edge (termed as hyperedge in
the hypergraph) could connect more than two vertices and the
complex relationship among a group of vertices could be well
described. In the paper, the segments are the vertices denoted as
V, and the connections among the segments are the hyperedges
denoted as E. One hypergraph could be represented as G ¼ V ; Eð Þ,
where the vertices and hyperedges are denoted as
V ¼ v1; v2; . . . ;v jV j

� �
and E ¼ e1; e2; . . . ; ejEj

� �
, respectively. jV j and

jEj are the corresponding vertex size and hyperedge size. Here,
the vertices belong to one hyperedge ek 2 E is termed as

vek
1 ;v

ek
2 ; . . . ;v

ek
jek j

n o
. To define the vertices and hyperedges

relationships, the similarity between any two vertices (v i and v j)
are measured in terms of the segment-based audio-visual

feature representation (Wv i
M ¼ wv i

M;1; . . . ;w
v i
M;NM

n o
and W

v j
M ¼

w
v j
M;1; . . . ;w

v j
M;NM

n o
), as

a Wv i
M ;W

v j
M

� 	
¼ 1

1þ n
W
vi
M ;W

vj
M

; ð5Þ

where NM is the feature dimensionality, and n
W
vi
M ;W

vj
M

is the calculated

distance, given as

n
W
vi
M
;W

vj
M

¼
X

t¼1;...;NM

wv i
M;t � w

v j
M;t

� 	2
wv i

M;t þ w
v j
M;t

: ð6Þ

Based on the measured similarity matrix A ¼ a Wv i
M ;W

v j
M

� 	n oN

i;j¼1

(N is the sample size), an incidence matrix H ¼ h v i; ekð Þf gjV j;jEji;k is
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formed, in which the connection relationships between the ver-
tices V and the hyperedges E is described as

h v i; ekð Þ ¼ 1 if v i 2 ek
0 if v i R ek



: ð7Þ

The hyperedge weight matrix, W ¼ diag w e1ð Þ; . . . ;ð w ekð Þ; . . . ;
w ejEj
� �Þ, is a diagonal matrix indicating the weights of all the hyper-

edges E in the hypergraph G. The weight w ekð Þ of one hyperedge
ek 2 E is computed based on the calculated similarities among the
vertices that belong to ek, given as

w ekð Þ ¼

X
v i ;v j2ek ;v i–v j

a Wv i
M ;W

v j
M

� 	
s

; ð8Þ

where a Wv i
M ;W

v j
M

� 	
is the similarity value between the vertices of v i

and v j, given in Eq. (5). s is the total number of vertices connected
to the hyperedge ek. As w ekð Þ is a measurement of all the similarity
relationships among the vertices that belong to one hyperedge, a
higher w ekð Þ value indicates a strong connection of homogeneous
vertices of the hyperedge and a lower w ekð Þ refers to a weak
connection of the hyperedge in which the connected vertices share
little similar properties. In other words, the hypergraph structure
could well describe the relationships of the audio-visual segments
in terms of properties. The vertex degree matrix,
Dv ¼ diag d v1ð Þ; . . . ;d v ið Þ; . . . ; d v jV j

� �� �
, is a diagonal matrix present-

ing the degree of all the vertices in the hypergraph G. The degree of
one vertex v i 2 V is calculated as the summation of all the hyper-
edge weights of the hyperedges (e) that the vertex belongs to,
defined as

d v ið Þ ¼
X

e2Ejv i2e
h v i; eð Þw eð Þ: ð9Þ

The hyperedge degree matrix, De ¼ diag d e1ð Þ; . . . ;d ekð Þ; . . . ;d ejEj
� �� �

,
is also a diagonal matrix showing the degree of all the hyperedges in
the hypergraph G. The degree of one hyperedge ek 2 E is calculated
as the summation of all the vertices (v) that connect to the hyper-
edge, given as

d ekð Þ ¼
X

ek2Ejv2ek
h v ; ekð Þ: ð10Þ

In this study, we introduce a spectral hypergraph partitioning
method [38] to partition the constructed hypergraph into a num-
ber of clusters corresponding to the emotion states (high or low).
Thus, it is a two-way hypergraph partitioning problem that could
be described as

Hcut S; S
� 	

¼
X
e2@S

w eð Þ je \ Sjje \ Sj
d eð Þ ; ð11Þ

where S and S are the partitions of the vertices V. For two-way par-
titioning, S is the complement of S. @S is the partition boundary,

given as @S ¼ e 2 Eje \ S –£ ande \ S–£
n o

. w eð Þ is the hyper-

edge weight calculated in Eq. (8), and d eð Þ is the hyperedge degree

defined in Eq. (10). To avoid unbalanced partitioning, Hcut S; S
� 	

is

further normalized by

NHcut S; S
� 	

¼ Hcut S; S
� 	 1

vol Sð Þ þ
1

vol S
� 	

0
@

1
A; ð12Þ

where vol Sð Þ and vol S
� 	

are the volumes of S and S, given as

vol Sð Þ ¼Pv2Sd vð Þ and vol S
� 	

¼Pv2Sd vð Þ. Here, d vð Þ is the vertex

degree given in Eq. (9). The partitioning rule is to look for the weak-
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est hyperedge e between S and S, where the vertices in the same
cluster should be tightly connected (high hyperedge weights) and
the vertices in the different clusters should be weakly connected
(low hyperedge weights). An optimal partitioning is given in Eq.
(13) to find the weakest connection between two partitions, which
is an NP-complete problem solved by a real-valued optimization
method. f is a label vector to be learned, which contains the affec-
tive clustering information.

argmin
f

1
2

X
e2E

X
v i ;v j2V

w eð Þh v i ;eð Þh v j ;eð Þ
d eð Þ

� f v ið Þffiffiffiffiffiffiffiffi
d v ið Þ

p � f v jð Þffiffiffiffiffiffiffiffiffi
d v jð Þp

 !2

¼ argmin
f

X
e2E

X
v i ;v j2V

w eð Þh v i ;eð Þh v j ;eð Þ
d eð Þ

� f 2 v ið Þffiffiffiffiffiffiffiffi
d v ið Þ

p � f v ið Þf v jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d v ið Þd v jð Þp

 !

¼ argmin
f

X
v i2V

f 2 v ið Þ
X
e2E

w eð Þh v i ;eð Þ
d v ið Þ

X
v j2V

h v j ;eð Þ
d eð Þ

�
X
e2E

X
v i ;v j2V

f v ið Þh v i ;eð Þw eð Þh v j ;eð Þf v jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d v ið Þd v jð Þp

d eð Þ

¼ argmin
f

f T I �Hð Þf

ð13Þ

where H is given as

H ¼ D� 1=2ð Þ
v HWD�1

e HTD� 1=2ð Þ
v ; ð14Þ

and I is an identity matrix with the same size as W. Here,
Dv ;H;W;De are the vertex degree matrix (Eq. (9)), the incidence
matrix (Eq. (7)). the weight matrix (Eq. (8)), and the hyperedge
degree matrix (Eq. (10)) defined above. The hypergraph Laplacian
is denoted as

D ¼ I �H: ð15Þ
The optimal solution is transformed to find the eigenvectors of

D whose eigenvalues are the smallest. In other words, the optimal
hypergraph partitioning results find the top eigenvectors with the
smallest non-zeros eigenvalues in D and form an eigenspace for the
subsequent vertex clustering with the K-means method. Through
this approach, all the vertices are grouped into two clusters. The
corresponding emotional state of each cluster is determined by
the majority distribution of the involved vertices. If most vertices
belong to the high level, the cluster’s emotion state is assigned as
high; on the other hand, it is assigned as low. In practice, to avoid
information leaking, the clusters’ emotional states are only deter-
mined based on the training samples.

2.3. Embedding Model

Based on the aforementioned work, we incorporate the esti-
mated intrinsic emotions based on deep audio-visual features
and the predicted individual preferences from the collected simul-
taneous EEG signals, and conduct a decision-level information
fusion for final affective prediction. Specifically, we fuse EEG sig-
nals and audio-visual information in a decision level through
shared weights. Suppose that the predicted emotional individual
preferences based on EEG signals are denoted as
YEEG ¼ yEEG1 ; . . . ; yEEGN

� �
and the estimated intrinsic emotions based

on audio-visual content are denoted as YVideo ¼ yVideo1 ; . . . ; yVideoN

� �
.

The final detected affective results are determined by

yFUSi ¼ wEEG � yEEGi þwVideo � yVideoi

wEEG þwVideo
; ð16Þ
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where wEEG and wVideo are the shared weights of EEG signals and
audio-visual information in the fusion process.
YFUS ¼ yFUS1 ; . . . ; yFUSN

� �
are the final affective detection results. In

the implementation, considering the individual preferences (yEEGi )
predicted from EEG signals and the intrinsic emotions (yVideoi ) esti-
mated by multimedia information play the same important role
in the cross-individual affective detection, the shared weights
(wEEG and wVideo) are set equally.

3. Experimental Results

In this section, we conduct extensive experiments on MAHNOB-
HCI [39] andDEAP [40] databaseswhich are commonly used to eval-
uate the effectiveness of cross-individual affective studies. To cross-
compare with other studies, two types of groundtruth data which
are commonly used in the literature are adopted here to evaluate
the experimental results. One is the aggregated groundtruth,
where different participants watching one video are tagged with
the same emotion label. Another is the non-aggregated ground-
truth, where different participants watching one video are tagged
with different emotion labels according to the corresponding sub-
jective assessment. Different from the aggregated groundtruth, dif-
ferent participants would have different emotional feelings about
the same video, due to the differences in background, experience,
religion, education, and so on. In other words, the non-aggregated
groundtruth could be more capable of reflecting the emotional
dynamics in individuals and should be more encouraged to be used
for affective detection evaluation. During the training process, the
stochastic gradient descent (SGD) is adopted, with the training
epoch, learning rate, momentum, minibatch size, and weight decay
of 1000, 0.001, 0.9, 48, and 0.001, respectively. To fully evaluate the
model generalizability, a strict leave-one-individual-out cross-
validation is introduced through the model evaluation process.
The model is implemented on an NVIDIA GeForce RTX 2080 GPU,
with CUDA 10.0 using the Pytorch API. The source code is available
at https://github.com/KAZABANA/EEG-AVE.

3.1. Emotional EEG Databases

The MAHNOB-HCI database [39] contains EEG data of 30 partic-
ipants (male/female: 13/17; age: 26.06	4.39) from different cul-
tural backgrounds. A total of 20 commercial film clips (duration:
from 34.9s to 117s, with an average of 81.4s and a standard devi-
ation of 22.5s) were selected for emotional eliciting. After the emo-
tional clip played, the participants were requested to give a
subjective assessment of their emotions during watching the emo-
tional clip using a score in the range of 1 to 9. During the experi-
ment, EEG signals were simultaneously collected at a sampling
rate of 256 Hz, by using the Biosemi active II system with 32 Ag/
AgCl electrodes placed according to the standard international
10–20 electrode system. Due to the data incompleteness of partic-
ipants 3, 9, 12, 15, 16, and 26, only 24 participants are used in this
paper.

The DEAP database [40] consists of 32 subjects’ EEG emotion
data. A total of 40 music videos, with a fixed duration of the 60s,
were selected for emotional eliciting. The corresponding subjective
feedback on different emotion dimensions was collected for each
music video. The EEG signals were recorded at a sampling rate of
512 Hz from 32 active AgCl electrode sites according to the inter-
national 10–20 system placement.

3.2. Experiment Protocols

To cross-compare with the results presented in the other stud-
ies, we utilize a fixed threshold of 5 for scores (in the range of 1 to
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9) to discretize the subjective feedback into high and low levels
(P 5 high; < 5 low) as the non-aggregated groudtruth. The aggre-
gated groundtruth is an average of all the returned subjective feed-
back for one video. Two performance metrics, detection accuracy
Pacc and F1-Score Pf , are used to validate the evaluation perfor-
mance. Pacc is an overall detection performance measurement
and Pf is a harmonic average of the precision and sensitivity which
is less susceptible to the unbalanced classification problems. The
corresponding definitions are given as

Pacc ¼ nTN þ nTP

nTN þ nFN þ nTP þ nFP
� 100%; ð17Þ

and

Pf ¼ 2� Ppre � Psen

Ppre þ Psen
� 100%; ð18Þ

where nTN and nTP are the correctly predicted samples, and nFN and
nFP are the incorrectly predicted samples. The precision Ppre and sen-
sitivity Psen are given as

Ppre ¼ nTP

nTP þ nFP
; ð19Þ

Psen ¼ nTP

nTP þ nFN
: ð20Þ

To fully evaluate the validity and reliability of the model perfor-
mance, a strict leave-one-out cross-validation is adopted. All the
predicted individual preferences and the estimated intrinsic emo-
tions are obtained in a cross-validation manner. For the proposed
MsDANN model, the model training and testing are conducted on
a leave-one-individual-out cross-validation. In one round of
cross-validation, all the samples from 1 individual are treated as
the test data, while the other samples from the remaining individ-
uals are used as the training data. Until each participant is treated
as the test data once, the final result of MsDANN is a formation of
all the obtained test results through the cross-validation rounds.
For the developed DAVFHC method, the model training and testing
are conducted on a strict leave-one-video-out cross-validation. In
one round of cross-validation, all the samples from 1 video are
used as test data and the other samples from the remaining videos
are treated as training data. Until each video is treated as the test
data once, the final prediction result of DAVFHC is a formation of
the obtained test results in all the cross-validation rounds. In other
words, after obtaining all the test results of all EEG and video sam-
ples in the above-mentioned cross-validation rounds, the final
affective results are obtained by a decision fusion.

3.3. Cross-Individual Affective Detection Experiments

To improve the affective detection performance, both EEG sig-
nals and audio-visual information are embedded in the proposed
EEG-AVE model. Here, we roughly estimate what kind of emotion
Table 3
Affective detection performance on MAHNOB-HCI and DEAP databases.

Methods Groundtruth MAHNOB-HCI

Valence

Pacc Pf

Soleymani et al. [39] Non-Aggregated 57.00 56.00
Zhu et al. [41] Non-Aggregated 58.16 56.36
Huang et al. [42] Non-Aggregated 62.13 -
Rayatdoost and Soleymani [43] Non-Aggregated 71.25 62.08
Wang et al. [24] Aggregated 75.20 73.80
Proposed EEG-AVE model Aggregated 90.21 90.45
Proposed EEG-AVE model Non-Aggregated 71.13 66.83
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could be triggered according to the audio-visual content itself (in-
trinsic emotions estimation), and detect the individual preferences
of each individual through analyzing the recording EEG signals
while he/she is watching the multimedia material (individual pref-
erences detection). The contributions of EEG signals and audio-
visual information through the affective detection process are con-
sidered equally important. The corresponding emotion decoding
performance for valence and arousal on MAHNOB-HCI and DEAP
databases are reported in Table 3. We compare EEG-AVE model
with the existing representative methods such as [39,41–43,24].
It is worth noting that the experimental results presented in [24]
were evaluated with the aggregated groundtruth.

For the MAHNOB-HCI database, our proposed model outper-
forms the existing methods for valence, where the Pacc and Pf

results are 90.21% and 90.45% for the aggregated groundtruth
and 71.13% and 66.83% for non-aggregated groundtruth. For the
results with non-aggregated groundtruth, even the obtained Pacc

values of our proposed EEG-AVE model and Rayatdoost and Soley-
mani [43]’s work are comparable, a better Pf of our proposed EEG-
AVE model is observed, where Pf is 62.08% for Rayatdoost and
Soleymani [43]’s work and 66.83% for our model (improved by
7.65%). For the results with aggregated groundtruth, our proposed
EEG-AVE model increases the affective detection performance by
19.96% for Pacc and 22.56% for Pf , compared to Wang et al. [24]’s
work (Pacc: 75.20%; Pf : 73.80%). Similar promising emotion recog-
nition performance is observed for arousal. The Pacc and Pf results
of our proposed model are 85.59% and 86.55% for the aggregated
groundtruth and 66.47% and 63.25% for non-aggregated ground-
truth. For aggregated groundtruth, the proposed EEG-AVE model
performs better than Wang et al. [24] (Pacc: 85.00%; Pf : 82.40%),
with the corresponding increase rate of 0.69% (Pacc) and 5.04%
(Pf ). For non-aggregated groundtruth, the EEG-AVE model also
gains better performance than the existing methods on recognition
accuracy. Besides, the above results show aggregated groundtruth
leads to a higher detection performance compared to the non-
aggregated groundtruth, as the individual differences in emotional
feelings about the clip are not considered.

For the DEAP database, our proposed model outperforms the
existing methods for valence in terms of both accuracy and F1-
score. For aggregated groundtruth, the Pacc and Pf results are
75.26% and 77.16%; For non-aggregated groundtruth, the Pacc and
Pf results are 68.50% and 68.81%. Compared to Wang et al. [24]’s
work (Pacc: 71.10%; Pf : 68.60%), our model increases the affective
detection performance on valence with the increase rates of
5.85% (Pacc) and 12.48% (Pf ). Even the affective detection accuracy
for arousal is not as good as the existing methods, where Pacc values
are 71.92% and 54.52% for aggregated groundtruth and non-
aggregated groundtruth, respectively. The obtained F1-score val-
ues are the highest, where Pf values are 79.50% and 60.80% for
aggregated groundtruth and non-aggregated groundtruth, respec-
tively. Due to the imbalanced data distribution of DEAP database
DEAP

Arousal Valence Arousal

Pacc Pf Pacc Pf Pacc Pf

52.40 42.00 - - - -
61.35 63.08 - - - -
61.80 - - - - -
61.46 50.60 59.22 56.68 55.70 50.02
85.00 82.40 71.10 68.60 79.00 69.20
85.59 86.55 75.26 77.16 71.92 79.50
66.47 63.25 68.50 68.81 54.52 60.80
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[44], F1-score is a better and more important metric for classifica-
tion models which can distinguish specific types of errors including
false positives and false negatives.
4. Discussion and Conclusion

To fully study the EEG-AVE performance, we also compare the
proposed model with different embedding strategies and domain
adaptation conditions. Besides, we also examine the effect of deep
and handcrafted multimedia affective representations.
4.1. Performance Evaluation of Embedding Strategy

We compare the affective detection performance when differ-
ent embedding strategies are adopted. Here are three embedding
strategies: EEG + Visual + Audio (the proposed EEG-AVE model),
EEG + Visual (only visual information embedded with EEG signals),
and EEG + Audio (only audio information embedded with EEG sig-
nals). The corresponding affective detection performances for
valence and arousal with aggregated and non-aggregated ground-
truth on MAHNOB-HCI and DEAP databases are summarized in
Table 4.

The results of the MAHNOB-HCI database show that EEG-based
affective detection with an embedding of both visual and audio
information achieves the best performance for both valence and
arousal. For EEG + Visual strategy, the affective detection perfor-
mance for valence decreases to 74.65% (aggregated) and 67.75%
(non-aggregated) for Pacc and 74.61% (aggregated) and 61.79%
(non-aggregated) for Pf ; while the affective detection performance
for arousal decreases to 77.28% (aggregated) and 63.26% (non-
aggregated) for Pacc and 78.57% (aggregated) and 59.27% (non-
aggregated) for Pf . The average decrease rates of valence and arou-
sal are 11.76% and 7.51%, respectively. For EEG + Audio embedding
strategy, the affective detection performance for valence decreases
from 90.21% to 69.08% for Pacc and from 90.45% to 73.06% for Pf

when aggregated groundtruth is utilized; while it decreases from
71.13% to 58.57% for Pacc and from 66.83% to 58.27% for Pf when
non-aggregated groundtruth is used. A similar decrease pattern is
also observed on the affective detection performance for arousal,
where it decreases from 85.59% to 68.55% for Pacc and from
86.55% to 72.20% for Pf when aggregated groundtruth is adopted;
while it decreases from 66.47% to 54.91% for Pacc and from
63.25% to 53.64% for Pf when non-aggregated groundtruth is uti-
lized. The average decrease rates of valence and arousal are
18.28% and 17.27%, respectively. The comparison results with dif-
ferent embedding strategies reveal that an embedding of both
visual and audio information has a capability to reach better affec-
tive detection performance, compared to only visual or audio
embedded. In addition, we find only visual embedded outperforms
only audio embedded, which suggests that visual information
plays a more critical role in emotion perception, especially in film
clips.
Table 4
Affective detection performance with different embedding strategies on MAHNOB-HCI an

Embedding Strategy MAHNOB-HCI

Aggregated No

Pacc Pf Pacc

Valence EEG + Visual 74.65 74.61 67.7
EEG + Audio 69.08 73.06 58.5

EEG + Visual + Audio 90.21 90.45 71.1
Arousal EEG + Visual 77.28 78.57 63.2

EEG + Audio 68.55 72.20 54.9
EEG + Visual + Audio 85.59 86.55 66.4
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For the DEAP database, EEG-based affective detection with an
embedding of both visual and audio information achieves the best
performance for valence. For aggregated groundtruth, the Pacc and
Pf values decrease from 75.26% and 77.16% (EEG + Visual + Audio)
to 62.68% and 65.20% (EEG + Visual) and to 71.46% and 74.58%
(EEG + Audio). The average decrease rate is 10.15%. For non-
aggregated groundtruth, the Pacc and Pf values decrease from
68.50% and 68.81% (EEG + Visual + Audio) to 63.32% and 63.29%
(EEG + Visual) and to 62.11% and 63.89% (EEG + Audio). The aver-
age decrease rate is 8.02%. However, for affective detection of arou-
sal, similar results are obtained for EEG + Audio and EEG + Visual +
Audio. One possible reason could be that the embedding strategies
of visual and audio information could be different for different
emotional dimensions. For example, it is observed that compared
to visual information, audio plays a more important role for affec-
tive detection in the DEAP database, as the used stimuli for
emotion-evoking were music videos. For the MAHNOB-HCI data-
base, the affection detection performance is more relied on visual
information, as the used stimuli for emotion eliciting were movie
clips. To further validate that incorporating both individual prefer-
ences and intrinsic emotions could be beneficial to identify human
emotion changes, we also evaluate the pure EEG-based detection
performance. For aggregated groundtruth, the affective detection
performance is dramatically enhanced. The EEG based affective
detection results are 55.21% (valence) and 50.78% (arousal) for
MAHNOB-HCI database and 55.27% (valence) and 47.33% (arousal)
for DEAP database. While, the EEG + Visual + Audio based affective
detection results are 90.21% (valence) and 85.59% (arousal) for
MAHNOB-HCI database and 75.26% (valence) and 71.92% (arousal)
for DEAP database. For non-aggregated groundtruth, the corre-
sponding affective detection results with pure EEG signals are
69.15% (valence) and 66.93% (arousal) for MAHNOB-HCI database.
For DEAP database, the corresponding affective detection results
with pure EEG signals are 64.97% (valence) and 66.78% (arousal).
Comparing EEG and EEG + Visual + Audio results, the detection per-
formance on valence increases from 69.15% to 71.13% (with an
increased rate of 2.86%) for MAHNOB-HCI database and from
64.97% to 66.78% (with an increased rate of 5.43%) for DEAP
database.

4.2. Performance Evaluation of Domain Adaptation Effect

To analyze the domain adaptation effect in solving the problem
of the individual differences, we also introduce a baseline method,
a multi-scale neural network (termed as MsNN shown in Fig. 4,
with the network configurations in Table 5) for model comparison
under the condition without deep domain adaptation. Based on the
input data with multi-scale DE feature representation, no feature
adaptation or transfer learning is adopted between the source
domain and target domain. In other words, the difference in the
feature distribution extracted from different individuals is not con-
sidered throughmodeling. The corresponding loss function is given
as
d DEAP databases.

DEAP

n-Aggregated Aggregated Non-Aggregated

Pf Pacc Pf Pacc Pf

5 61.79 62.68 65.20 63.32 63.29
7 58.27 71.46 74.58 62.11 63.89
3 66.83 75.26 77.16 68.50 68.81
6 59.27 65.22 78.10 43.22 58.82
1 53.64 72.37 79.59 55.50 61.10
7 63.25 71.92 79.50 54.52 60.80



Fig. 4. The baseline MsNN model for model comparison.

Table 5
The network configurations of MsNN.

Name Input Size Output Size

Generator Full Connection 32�50 32�4
ELU Activation Function 32�4 32�4
Flatten 32�4 128�1
Full Connection 128�1 64�1
ELU Activation Function 64�1 64�1
Full Connection 64�1 64�1
ELU Activation Function 64�1 64�1

Classifier Full Connection 64�1 2�1
Dropout 2�1 2�1
Softmax Activation Function 2�1 2�1
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min
r;h

Exl�S LT r; h; xl
� �� �

; ð21Þ

where Exl�S LT r; h; xl
� �� �

is the cross-entropy loss function in the
source domain (training data). Compared to the loss function of
MsDANN given in Eq. (3), the domain adversarial loss function
between the source and target domains is removed in Eq. (21).
For model validation of MsNN, same as the proposed MsDANN,
the EEG-based emotional individual preferences prediction is
trained and tested on the source domain and target domain sepa-
rately, under a strict leave-one-video-out cross-validation protocol.
The corresponding affective detection performance of MsDANN and
MsNN based EEG-AVE model for valence and arousal detection on
MAHNOB-HCI and DEAP databases are reported in Table 6.

For aggregated results on the MAHNOB-HCI database, com-
pared to MsDANN based EEG-AVE model under the embedding
strategy of EEG + Visual + Audio, the detection performance of
MsNN based EEG-AVE model decreases by 9.10% and 7.19% in
terms of Pacc and Pf , respectively. Comparing MsDANN and MsNN
based EEG-AVE model performance under EEG + Visual and
EEG + Audio embedding strategies, both Pacc and Pf values also
have similar decrease patterns. The Pacc value decreases from
74.65% to 70.04% for EEG + Visual, and from 69.08% to 65.33% for
EEG + Audio. The Pf value declines from 74.61% to 73.03% for
EEG + Visual, and from 73.06% to 71.64% for EEG + Audio. When
non-aggregated groundtruth is used, cross-comparing MsDANN
and MsNN based model performance under an embedding strategy
of EEG + Visual + Audio, it is found that the decoding performance
significantly decreases from 71.13% to 63.58% (decreased by
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10.61%) in terms of Pacc and from 66.83% to 62.35% (decreased by
6.7%) in terms of Pf . Similar trends are also observed in the other
embedding strategies. The corresponding detection accuracies
decrease to 60.98% (Pacc) and 59.20% (Pf ) for EEG + Visual embed-
ding strategy, and to 53.38% (Pacc) and 56.34% (Pf ) for
EEG + Audio embedding strategy. On the other hand, for arousal
detection, the aggregated results show MsDANN based EEG-AVE
model outperforms MsNN based EEG-AVE model across all three
different embedding strategies in terms of both Pacc and Pf . For
EEG + Visual + Audio, EEG + Visual and EEG + Audio embedding
strategies, the corresponding improvement rates from MsNN to
MsDANN are 9.18%, 7.30% and 4.93% for Pacc , and that are 6.30%,
3.71% and 1.08% for Pf . For non-aggregated results, similar patterns
are observed. Better results are achieved when MsDANN based
EEG-AVE model is adopted. Here, the improvement rates for three
different embedding strategies are 14.60%, 14.73% and 10.73% for
Pacc and 8.73%, 7.90%, and 2.72% for Pf . Similar comparison results
are also observed on the DEAP database, where MsDANN generally
performs better than MsNN across all three embedding strategies
(EEG + visual, EEG + Audio, EEG + Visual + Audio). For example,
comparing MsDANN and MsNN based EEG-AVE model perfor-
mance under EEG + Visual + Audio embedding strategy, the Pacc

and Pf values of valence decrease from 75.26% and 77.16% to
66.03% and 72.55% for aggregated groundtruth and from 68.50%
and 68.81% to 55.59% and 61.84% for non-aggregated groundtruth.
The average decrease rate is 11.80%. For arousal, MsDANN outper-
formed MsNN when non-aggregated groundtruth is adopted.

Besides, to further verify the domain adaption effect under dif-
ferent feature representations (single-scale and multi-scale fea-
ture representations), we take the MAHNOB-HCI database as an
example and evaluate the individual preferences detection results
on individuals when the single-scale (low-scale/ middle-scale/ and
high-scale) and multi-scale (a fusion of low-scale, middle-scale,
and high-scale) feature representations are adopted. Here, the per-
formance comparisons are conducted based on MsDANN and
MsNN, and the corresponding comparison results are reported in
Table 8 and 9. For both MsDANN- and MsNN-based individual pref-
erences detection models, the multi-scale feature representation (a
fusion of low-scale, middle-scale, and high-scale) consistently per-
forms superiorly against the single-scale feature representations
(low-scale/ middle-scale/ high-scale) at the individual level and
group level. For MsDANN, the cross-individual model performance



Table 6
Affective detection performance of MsDANN and MsNN on MAHNOB-HCI and DEAP databases using deep features.

Embedding Strategy EEG Model MAHNOB-HCI DEAP

Aggregated Non-Aggregated Aggregated Non-Aggregated

Pacc Pf Pacc Pf Pacc Pf Pacc Pf

Valence EEG + Visual MsDANN 74.65 74.61 67.75 61.79 62.68 65.20 63.32 63.29
MsNN 70.04 73.03 60.98 59.20 58.21 66.07 52.15 58.69

EEG + Audio MsDANN 69.08 73.06 58.57 58.27 71.46 74.58 62.11 63.89
MsNN 65.33 71.64 53.38 56.34 64.47 71.67 53.02 60.21

EEG + Visual + Audio MsDANN 90.21 90.45 71.13 66.83 75.26 77.16 68.50 68.81
MsNN 82.00 83.95 63.58 62.35 66.03 72.55 55.59 61.84

Arousal EEG + Visual MsDANN 77.28 78.57 63.26 59.27 65.22 78.10 43.22 58.82
MsNN 72.02 75.76 55.14 54.93 65.20 78.11 42.45 58.30

EEG + Audio MsDANN 68.55 72.20 54.91 53.64 72.37 79.59 55.50 61.10
MsNN 65.33 71.43 49.59 52.22 72.27 79.58 49.96 56.42

EEG + Visual + Audio MsDANN 85.59 86.55 66.47 63.25 71.92 79.50 54.52 60.80
MsNN 78.39 81.42 58.00 58.17 72.62 80.07 50.62 57.59

Table 7
Affective detection performance of MsDANN and MsNN on MAHNOB-HCI and DEAP databases using handcrafted features.

Embedding Strategy EEG Model MAHNOB-HCI DEAP

Aggregated Non-Aggregated Aggregated Non-Aggregated

Pacc Pf Pacc Pf Pacc Pf Pacc Pf

Valence EEG + Visual MsDANN 62.68 64.75 51.38 46.23 59.96 58.80 61.40 57.04
MsNN 59.96 65.08 47.45 47.03 56.51 62.75 50.66 54.90

EEG + Audio MsDANN 64.11 62.70 59.51 49.86 59.31 65.92 55.62 60.39
MsNN 61.82 64.42 54.41 50.37 56.52 66.89 48.74 58.65

EEG + Visual + Audio MsDANN 73.52 69.26 64.99 50.48 61.05 63.65 59.89 59.82
MsNN 68.75 68.58 58.43 50.52 57.23 65.08 50.25 56.79

Arousal EEG + Visual MsDANN 70.04 71.99 55.23 50.87 64.56 76.64 46.73 59.27
MsNN 66.08 71.15 50.08 50.91 65.06 77.02 44.69 57.83

EEG + Audio MsDANN 65.23 71.41 52.95 55.51 62.00 71.44 53.94 58.91
MsNN 62.51 70.97 48.03 54.11 62.99 72.36 48.77 54.64

EEG + Visual + Audio MsDANN 72.18 72.92 59.79 53.71 61.69 67.74 58.93 58.00
MsNN 67.33 71.39 52.80 51.99 63.11 69.34 50.89 50.58

Table 8
MsDANN-based individual preferences detection results of each individual (S1, S2, . . ., S24) under leave-one-individual-out cross-validation on MAHNOB-HCI database. Here, left-
top: low-scale feature representation; right-top: middle-scale feature representation; left-bottom: high-scale feature representation; right-bottom: the proposed multi-scale
feature representation. The average performance of low-scale, middle-scale, high-scale, and multi-scale feature representations are 64.44%, 64.51%, 63.96%, and 69.16%,
respectively.

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

65.01 73.74 70.23 59.96 67.40 62.92 65.74 74.54 70.17 59.23 65.38 64.39
S7 S8 S9 S10 S11 S12 S7 S8 S9 S10 S11 S12

56.03 71.83 66.97 70.11 68.51 68.14 56.21 71.03 68.33 70.23 69.86 68.02
S13 S14 S15 S16 S17 S18 S13 S14 S15 S16 S17 S18
69.13 54.24 56.70 52.95 62.30 63.78 66.42 54.43 58.73 52.64 60.89 64.82
S19 S20 S21 S22 S23 S24 S19 S20 S21 S22 S23 S24
63.35 67.16 69.37 58.92 72.63 55.23 64.33 68.51 68.70 59.84 69.31 56.58

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
63.90 68.70 69.00 59.41 65.74 63.35 68.82 77.49 71.83 60.76 70.79 67.10
S7 S8 S9 S10 S11 S12 S7 S8 S9 S10 S11 S12

58.36 68.94 66.61 69.74 68.57 68.51 60.15 76.51 78.35 74.60 72.88 73.06
S13 S14 S15 S16 S17 S18 S13 S14 S15 S16 S17 S18
71.65 53.69 56.21 50.06 57.81 65.87 78.60 56.46 61.07 58.73 64.15 66.73
S19 S20 S21 S22 S23 S24 S19 S20 S21 S22 S23 S24
60.82 66.67 70.17 59.29 74.78 57.26 65.13 72.57 77.49 62.24 85.36 58.92
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results (group level) using the single-scale feature representation
are 64.44% (low-scale), 64.51% (middle-scale), and 63.96% (high-
scale), while the corresponding performance based on the multi-
scale feature representation enhances to 69.16%. The results show
that, compared to the single-scale feature representation, the
multi-scale feature representation could be beneficial to the affec-
tive detection performance, with an average increase rate of 7.55%.
A similar phenomenon is observed in MsNN-based individual pref-
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erence detection results. The single-scale feature representation
results are 60.43% (low-scale), 59.92% (middle-scale), 60.50%
(high-scale), and the multi-scale feature representation result is
61.41% (the average increase rate is 1.87%). The above results con-
firm the proposed multi-scale feature representation is robust
enough for EEG decoding. On the other hand, comparing the results
presented in Table 8 and 9, the benefit of domain adaption is con-
sistently observed under both single-scale and multi-scale feature



Table 9
MsNN-based individual preferences detection results of each individual (S1, S2, . . ., S24) under leave-one-individual-out cross-validation on MAHNOB-HCI database. Here, left-
top: low-scale feature representation; right-top: middle-scale feature representation; left-bottom: high-scale feature representation; right-bottom: the proposed multi-scale
feature representation. The average performance of low-scale, middle-scale, high-scale, and multi-scale feature representations are 60.43%, 59.92%, 60.50%, and 61.41%,
respectively.

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

62.42 60.33 58.98 54.98 55.78 63.59 53.63 66.05 54.86 56.46 58.00 66.30
S7 S8 S9 S10 S11 S12 S7 S8 S9 S10 S11 S12

57.13 68.51 49.45 72.45 70.42 56.70 52.58 67.71 59.16 67.40 68.57 57.20
S13 S14 S15 S16 S17 S18 S13 S14 S15 S16 S17 S18
76.57 51.97 54.67 50.74 59.41 52.15 75.58 51.97 56.33 47.60 58.67 49.82
S19 S20 S21 S22 S23 S24 S19 S20 S21 S22 S23 S24
57.20 64.70 71.77 60.82 57.44 62.18 59.72 65.25 68.82 58.12 56.77 61.44

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6
56.46 64.51 61.50 54.74 58.49 66.73 58.06 65.31 59.96 55.10 58.18 66.73
S7 S8 S9 S10 S11 S12 S7 S8 S9 S10 S11 S12

58.49 65.19 55.78 63.90 68.82 58.12 56.33 68.57 55.97 71.16 71.16 58.61
S13 S14 S15 S16 S17 S18 S13 S14 S15 S16 S17 S18
73.55 51.11 55.60 58.36 53.75 55.84 76.69 52.28 56.03 53.38 59.10 52.34
S19 S20 S21 S22 S23 S24 S19 S20 S21 S22 S23 S24
55.23 64.45 70.30 56.52 63.78 60.82 58.06 66.11 72.32 59.35 59.66 63.28
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representations for each individual. These results further demon-
strate the reliability and generalizability of the proposed MsDANN.
Note that all the results are measured under non-aggregated
groundtruth.

The above results demonstrate that, compared to MsNN,
MsDANN is much more powerful in the proposed EEG-AVE model
to deal with the problem of the individual differences in EEG signal
processing. It provides a reliable and useful way to adaptively learn
the shared emotion-related common and discriminant feature rep-
resentation across individuals and demonstrates the validity of the
domain adaptation method in EEG-based affective detection
applications.

4.3. Performance Evaluation of Multimedia Representation

In this study, audio-visual information is represented by deep
features characterized by two pretrained networks. We further
verify the effectiveness of the deep feature representation and
compare it with the performance using more traditional hand-
crafted features. Inspired from the previous video affective studies
[45–47,24], the commonly used handcrafted features are extracted
and compared here. For visual information representation, the
adopted handcrafted features include lighting key features, color
information, and shadow portions in the HSL and HSV spaces. For
audio information representation, the used traditional audio fea-
tures include energy, loudness, spectrum flux, zero-crossing rate
(ZCR), Mel-frequency cepstral coefficients (MFCCs), log energy,
and the standard deviations of the above ZCR, MFCC, and log
energy. The affective analysis of multimedia content with different
feature representations is conducted and the corresponding com-
parison results of valence and arousal are summarized in Table 7.
The results show that, compared to the performance presented in
Table 6, a significant improvement in affective detection perfor-
mance is obtained when deep feature representation is used
instead of handcrafted features. It reveals that compared to the tra-
ditional handcrafted feature representation, deep feature represen-
tation is a better and richer affective representation for
understanding and perceiving the multimedia content.

4.4. Performance Evaluation of Fusion Manner

As shown in Eq. (16), the final affective detection results are
determined by a fusion of EEG information and video content,
referring to the individual preferences and intrinsic emotions,
respectively. This fusion manner could be termed EEG-Video-
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Fusion. To further verify the efficiency and effectiveness of the pre-
sented EEG-Video-Fusion, we also evaluate the affective detection
performance under another fusion manner, by separately incorpo-
rating EEG information, visual content, and audio content as

yFUSi ¼ wEEG � yEEGi þwVisual � yVisuali þwAudio � yAudioi

wEEG þwVisual þwAudio
: ð22Þ

This fusion manner is termed EEG-Visual-Audio-Fusion. Here,
yEEGi ; yVisuali , and yAudioi are the detected affective results by EEG, visual,
and audio information, respectively. wEEG;wVisual, and wAudio are the
corresponding fusion weight. For cross-comparison with EEG-
Video-Fusion, the shared weights (wEEG;wVisual;wAudio) are set equally
as well in EEG-Visual-Audio-Fusion.

We compare the affective detection performance of EEG-Video-
Fusion and EEG-Visual-Audio-Fusion for valence and arousal on
MAHNOB-HCI and DEAP databases, with different groundtruth
types (aggregated and non-aggregated) and EEG models (MsDANN
and MsNN). The corresponding results are reported in Table 10 and
11, which show EEG-Video-Fusion outperforms in most cases on
the two databases. For example, compared to EEG-Visual-Audio-
Fusion, EEG-Video-Fusion leads to 17.42% (Pacc) and 23.58% (Pf )
increase for valence and 19.29% (Pacc) and 25.87% (Pf ) increase
for arousal on MAHNOB-HCI, when aggregated groundtruth is
adopted with MsDANN. A similar increase trend is also observed
for non-aggregated case on MAHNOB-HCI with MsNN. For DEAP
database, compared to EEG-Visual-Audio-Fusion, it is observed
that EEG-Video-Fusion performs better on valence (with increase
rates of 17.26% for aggregated and 13.79% for non-aggregated in
terms of Pf ), but performs similarly on arousal. One possible reason
could be the elicited arousal largely relied on the audio content,
when music videos were used as the emotion-evoking materials.
The above comparison results demonstrate that the adopted
EEG-Video-Fusion in the proposed EEG-AVE model achieves a bet-
ter and more reliable cross-individual affective detection perfor-
mance across emotion dimensions and databases.
4.5. Conclusion

In this paper, we propose a novel affective detection model
(EEG-AVE) with an embedding protocol, where both EEG-based
emotional individual preferences and audio-visual-based intrinsic
emotions are incorporated to tackle the problem of the individual
differences in EEG processing. The multimodal information is ana-
lyzed and compensated to realize efficient and effective EEG-based



Table 10
Affective detection performance with different fusion manners on MAHNOB-HCI and DEAP databases using MsDANN.

Fusion Manner MAHNOB-HCI DEAP

Aggregated Non-Aggregated Aggregated Non-Aggregated

Pacc Pf Pacc Pf Pacc Pf Pacc Pf

Valence EEG-Video-Fusion 90.21 90.45 71.13 66.83 75.26 77.16 68.50 68.81
EEG-Visual-Audio-Fusion 76.83 73.19 70.54 58.49 70.45 65.80 68.75 60.47

Arousal EEG-Video-Fusion 85.59 86.55 66.47 63.25 71.92 79.50 54.52 60.80
EEG-Visual-Audio-Fusion 71.75 68.76 63.04 50.44 73.10 79.89 55.37 60.45

Table 11
Affective detection performance with different fusion manners on MAHNOB-HCI and DEAP databases using MsNN.

Fusion Manner MAHNOB-HCI DEAP

Aggregated Non-Aggregated Aggregated Non-Aggregated

Pacc Pf Pacc Pf Pacc Pf Pacc Pf

Valence EEG-Video-Fusion 82.00 83.95 63.58 62.35 66.03 72.55 55.59 61.84
EEG-Visual-Audio-Fusion 72.78 73.88 59.05 58.94 70.46 70.52 61.45 58.48

Arousal EEG-Video-Fusion 78.39 81.42 58.00 58.17 72.62 80.07 50.62 57.59
EEG-Visual-Audio-Fusion 75.34 71.82 67.58 49.22 73.11 79.95 50.33 56.14
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affective detection. The experimental results show that the pro-
posed EEG-AVE model achieves promising affective detection
results, compared to the state-of-the-art methods. Besides, aiming
at characterizing dynamic, informative, and domain-invariant EEG
features across individuals, we develop a deep neural network with
a transfer learning method (MsDANN) to solve the problem of the
individual differences in the EEG data processing and investigate
the performance variants with different neural network architec-
tures (with or without domain adaptation). Our analysis demon-
strates a superior cross-individual result is achieved under an
evaluation of the leave-one-individual-out cross-validation
individual-independent method. Furthermore, we utilize two
well-known pretrained CNNs for semantic audio-visual feature
extraction and introduce hypergraph theory to decode deep visual
features, deep auditory features, and deep audio-visual fusion fea-
tures for intrinsic emotions estimation. The possibility of affective
detection using the multimedia materials is verified and the bene-
fit of the proposed embedding strategy is examined. These results
show both EEG signals and audio-visual information play impor-
tant and helpful roles in affective detection, and the proposed
EEG-AVE model could be applied to boost the development of
affective brain-computer interface in real applications.
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