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A Generalized Encoding System for Alpha
Oscillations Through Visual Saliency Analysis
Zhen Liang , Fangchao Li, Wanrou Hu, Gan Huang, Shigeyuki Oba, Zhiguo Zhang, and Shin Ishii

Abstract— By learning how the brain reacts to external
visual stimuli and examining possible triggered brain
statuses, we conduct a systematic study on an encoding
problem that estimates ongoing EEG dynamics from visual
information. A novel generalized system is proposed to
encode the alpha oscillations modulated during video view-
ing by employing the visual saliency involved in the pre-
sented natural video stimuli. Focusing on the parietal and
occipital lobes, the encoding effects at different alpha fre-
quency bins and brain locations are examined by a real-
valued genetic algorithm (GA), and possible links between
alpha features and saliency patterns are constructed. The
robustness and reliability of the proposed system are
demonstrated in a 10-foldcross-validation.The results show
that stimuli with different saliency levels can induce signifi-
cant changes in occipito-parietal alpha oscillations and that
alpha at higher frequency bins responded the most in invol-
untary attention related to bottom-up-based visual process-
ing. This study provides a novel approach to understand the
processing of involuntary attention in the brain dynamics
and would further be beneficial to the development of brain-
computer interfaces and visual design.

Index Terms— EEG, alpha oscillations, brain encoding,
visual saliency, involuntary attention.

I. INTRODUCTION

ALPHA oscillations are one of the most prominent indi-
cators in electroencephalogram (EEG) studies [1]–[3].
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These oscillations are dominant in the human brain [4] and
play a critical role in understanding the patterns in acquired
raw signals. In Klimesch’s research [5], the significance of
alpha oscillations was delineated in cognitive and memory
performance. Their study demonstrated that a change in alpha
bandpower was positively correlated with brain cognitive func-
tions, and that an increase in alpha bandpower could reflect the
maturity process of the brain. Furthermore, alpha oscillations
in the frequency range of 8-12 Hz were demonstrated to be
critical in the ability to designate attentional processes [6], [7]
and were also shown to be associated with cognitive function-
ing and impairment [8], [9], working memory [10], human
emotion [11] and so forth. Previous studies of visual attention
also revealed that the alpha oscillations are highly associated
with visual processing [4] and selection [12], [13]. For exam-
ple, an alpha suppression could be considered a significant
marker to index the increase in attention level when observing
stimuli [14]. To further broaden the current understanding of
how alpha oscillations work with visual selective processing,
this paper presents a generalized encoding study of alpha
oscillations through visual saliency analysis.

In the field of visual attention, the human visual system
(HVS) is composed of two forms of processing: bottom-up
and top-down processing. In bottom-up processing, involun-
tary attention is allocated to potentially important items in
visual information that have discriminant visual features, such
as a red spot against a green background. Top-down processing
refers to goal-directed visual perception processing, with vol-
untary attention allocated to certain items in visual input that
are related to a given task, such as finding a blue balloon from
a number of colorful balloons. In other words, the bottom-up
processing is a fast and simple procedure triggered by the low-
level visual features in the visual content only, whereas the top-
down processing is a slow and complex procedure triggered by
the prior knowledge and given task. The allocation of attention
in these two processing forms is quite different, uncorrelated,
and independent [15]. For complex visual observation tasks,
the triggered top-down processing could be quite different
from person to person, due to differences in education back-
ground, experience, religion, and so on. To simplify the ques-
tion raised in this encoding study, the present work will focus
on the simple and fast visual selective processing without any
high-level visual understanding involved, namely, bottom-up
processing. Meanwhile, inspired by the processing of bottom-
up-based visual attention, Koch and Ullman [16] proposed the
concept of a saliency map to highlight the conspicuousness of
pixels in a scene. Later, Itti et al. [17] realized the generation
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Fig. 1. The proposed generalized encoding system. Saliency information were extracted in terms of frame-based histogram representation and
reduced to a lower feature dimensionality by using a hypergraph embedding approach. Then, the extracted saliency information were used to encode
the alpha oscillations recorded from the parieto-occipital sites, with a real-valued genetic algorithm based approach and a support vector regression
method.

of a saliency map in a computational manner, where pixel
conspicuity was evaluated in a topographic structure under
the consideration of three primitive visual properties: color,
orientation and intensity.

Alpha oscillations are well known to be associated with the
processing of visual information and are treated as a marker in
many event-related desynchronization (ERD) or event-related
synchronization (ERS) studies [18]–[21]. Alpha desynchro-
nization and synchronization reflect certain types of process-
ing, including information receiving, retrieval and storage.
In addition, modulations in the alpha rhythm were found
to be significantly correlated with the intensity of visual
sources [22] and to be influenced by visual selection [13].
In McDermott et al. ’s flanker task study (including both
congruent and incongruent conditions), the results showed that
the alpha oscillations played an important role in the task
performance, where a significant and robust decrease of the
underlying alpha dynamics was observed in the occipital and
parietal regions [23]. Instead of using simple visual stimuli as
the flanker task, Noah et al. extended the neural dynamic study
of attentional selective mechanism to natural scene process-
ing with specific targets [24]. Similar observations of neural
dynamics in alpha changes were reported, as it was found in
spatial attention [25] and feature attention [26]. These results

proved that the EEG alpha oscillations (8-12 Hz) are closed
related to the attentional selection mechanisms in visual cortex.
A decrease of alpha bandpower refers to an enhancement of
focal cortical and vice versa. Thus, the alpha oscillations in
ongoing brain activity could be considered as the fundamental
component of the neural mechanism of attention [24]. On the
other hand, how the human brain reacts to the involuntary
processing related to a general natural and dynamic visual
content, especially the corresponding performance in terms
of EEG signals, is still incompletely understood. For a better
understanding of the visual attention mechanism, a hypothesis
was made that alpha oscillations can also be an indicator of the
saliency information in displayed visual stimuli, and the pos-
sible associations between these two factors in a generalized
encoding system were investigated. The effect of involuntary
attention study to the changing, complex, and meaningful real-
world is a critical aspect of attentional selection.

In this study, we conducted a visual experiment with
20 healthy subjects and 18 natural videos, and the raw EEG
signals were simultaneously acquired. As illustrated in Fig. 1,
saliency maps were computed for every video frame in the
videos. The corresponding saliency information was extracted
in a histogram representation and further reduced to a lower
feature dimensionality by hypergraph embedding. Meanwhile,
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alpha oscillations in the acquired raw EEG signals were
characterized at five alpha frequency bins measured at parieto-
occipital sites. Because this encoding study was based on the
visual saliency computed in a bottom-up-based computational
approach, we only considered the brain areas involved in low-
level visual processing. In previous studies, the occipital lobe
was recognized as the center of visual processing (e.g., V1,
V2, V3, V4, and V5) [27]; the brain responses in the parietal
area are related to visual attention [28] and the processing of
sensory information, such as spatial awareness, perception and
integration [29]–[32]. The analysis of the alpha bandpowers at
different frequency bins may yield more accurate information
than simply averaging the alpha bandpower in a broad band
and may reveal different functional processes in the reflection
of saliency information. Furthermore, to determine the contri-
bution of the channels on the alpha reactivities related to visual
saliency, a real-valued genetic algorithm (GA)-based approach
for optimal channel-weight searching was adopted in which
the fitness function was designed under the consideration of
both time and space distributions. Then, an alpha index was
generated by a weighted summation based on the discovered
optimal weights. Subsequently, support vector machine (SVM)
regressions were applied to encode the extracted saliency
information to the generated alpha indices at each frequency
bin in a cross-validation (CV) manner. To the best of our
knowledge, no study has examined whether visual saliency
can be used to encode alpha dynamics. Through this study,
the relationship between brain responses and visual content
will be thoroughly examined, and the possibility of using
visual inputs to encode brain dynamics in EEG signals will
be explored. The main contribution of this study is to explore
involuntary attentional selection to the dynamic scenes under
naturalistic conditions, instead of using the simple visual
tasks or static scenes. The low-level based visual saliency map
was introduced to represent the content-specific attentional
information, and a neural signature related to the involuntary
attention was examined. The proposed generalized encoding
model can provide insights into the processing of involuntary
attention and offer a novel view regarding the selection of the
visual stimuli in the brain-computer interface applications.

II. EXPERIMENT

In this study, we conducted a covert brain-visual experiment,
where the conductor kept the true intention of this experiment
concealed from the participants. This approach offers us a
better and valid means to objectively study bottom-up visual
processing. The participants were invited to watch different
natural videos in a free-watching mode, and the corresponding
EEG signals were simultaneously recorded. The data collec-
tion pipeline is provided in Appendix A of the Supplementary
Materials.1 This experiment was approved by the Ethics Com-
mittee of the Health Science Center, Shenzhen University.

A. Participants and Stimuli

A total of 20 healthy participants (male/female: 11/9;
age: 19 to 25 years old, 20.80±1.96; with normal or

1https://drive.google.com/file/d/1gTVhnEdePN45FAAFKlHugI7iw8Gs-
oPn/view?usp=sharing

corrected-to-normal vision) from Shenzhen University partic-
ipated in the study. All participants had no prior knowledge
of the experiment, provided written consent to participate, and
had no history of neurological/eye diseases or disorders. Total
18 natural-colored videos (960 pixels width and 540 pixels
height) with a length of 58 s were selected from Activity
Net.2 All the videos are color videos and cover different kinds
of complex human activities in daily life, such as dancing,
playing sports, caring for animals and so on. In the video
selection, two criteria were considered. One is the selected
videos should cover a certain amount of visually salient parts
to guarantee involuntary attention triggered; another is the
video content do not include too many unexpected or drastic
scene changes to eliminate any surprise factor during the
data collection [33]. During data collection, the videos were
displayed on a 24.5-inch Dell Alienware Aw2518H monitor.
The display resolution was 1920 × 1080, and the refresh rate
was 240 Hz. At a fixed viewing distance of 60 cm, it provided
a subtended visual angle of 48.75 degree × 28.31 degree.
The average frame rate of the video stimuli was 28.81 fps.
To dissociate the auditory effect in the recorded EEG signals,
all the videos were played with the sound muted.

B. Experimental Design and Data Collection

For each participant, the brain-visual experiment included
a total of 18 trials (corresponding to the 18 selected videos).
To exclude other factors that would affect fluctuations in alpha
waves, we introduced a baseline collection before playing
the videos. Thus, one trial consisted of a 4 s baseline and
a 58 s video task:

• baseline: A white fixation point was shown at the center
of a black screen. The participants were instructed to relax
and maintain a clear mind; the collected EEG data are
referred to as baseline data below.

• video playing: The videos were displayed in a random-
ized sequence. The participants were instructed to watch
the videos in a free-viewing mode, without thinking about
anything else; in other words, the participants should
be fully engaged in watching the videos. The collected
EEG data are referred to as video data below.

During data collection, the participants were allowed to
freely blink and move their eyes. To encode the brain activities
from the visual information in a real visual processing situ-
ation, there was no specific task assigned to the participants
during video watching. To minimize possible artifacts in the
recorded EEG signals induced by head or body movements,
a chin-rest was used to immobilize the participant’s head.
Here, EEG signals were recorded by a BrainAmp system
(Brain Products GmbH, Germany) using 64 Ag/AgCI elec-
trode channels. In the BrainAmp system, the online filter
was a fifth-order butterworth filter with 30 dB/octave. The
corresponding lower and high cutoffs were 0.016 Hz/10s
and 1000 Hz, respectively. More technical specifications are
available here.3 The placement of the electrode channels
followed the standard international 10-20 electrode system,

2http://activity-net.org
3https://www.brainproducts.com/productdetails.php?id=1
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Fig. 2. The feature extraction pipeline of the alpha indices. First, alpha spectral powers were extracted from baseline and video data, respectively;
Second, the bandpower changes during video watching were measured by normalizing the video feature to the baseline feature; Third, an alpha
feature standardization was conducted to aggregate the features from participants with a Thompson Tau method; Finally, a real-valued genetic
algorithm based approach was introduced to fuse the extracted features from different channels into an alpha index.

where the placement of electrodes were based on the relative
interelectrode distances of either 10% or 20% of the total
front-back or left-right distance of the skull [34]. The electrode
placements with the GND and reference locations are shown
in Appendix A of the Supplementary Materials. The recorded
signals from each channel were digitized at a sampling rate (fs)
of 1000 Hz. The impedance for all channels were kept lower
than 5 k� in the experiments. Note that the participants kept
their eyes open throughout the entire experiment.

III. METHODOLOGY

A. EEG Data Analysis

1) Preprocessing: To remove the common artifacts from the
acquired raw EEG, such as physiological artifacts (e.g. ocular
activity, cardiac activity, muscle activity, respiration) and non-
physiological artifacts (e.g. body movement, AC electrical,
eletromagnetic inferences), preprocessing was first conducted
in a standard procedure. Here, after IO channel removal and
FCz channel interpolation, we re-referenced the signals using
a common average reference by calculating the mean signal
from all the EEG channels and this mean was subsequently
extracted from the signals of each channel. Then, we filtered
the raw signals by a butterworth filter of [1 Hz, 45 Hz] and
conducted a notch filter at 50 Hz, where the DC components at
the low frequencies, high frequency artifacts and 50 Hz power-
line interference from the recording signals were removed.
It was proven that blind source separation using an inde-
pendent component analysis (ICA) is an efficient approach
to remove the artifacts [35]. We computed ICA components
by using runica algorithm as implemented in EEGLAB [36]

and removed the independent components that capture the
artifacts such as eye blinks, eye movements, muscle activity
and so on. Finally, clean EEG signals were reconstructed based
on the remaining ICA components. More details about every
step in the preprocessing procedure were clearly clarified in
Appendix B of the Supplementary Materials. As proven in
the existing studies, the occipital lobe is the visual processing
center, and the parietal lobe plays a critical role in the inte-
gration of sensory information in the human vision. To focus
on the EEG dynamics involved in low-level visual processing
and to eliminate the influence of high-level visual processing,
we selected only the channels in the parietal and occipital lobes
(a total of 17 channels were selected, which are highlighted by
red circles in Fig. 1). The corresponding alpha indices from
these selected channels were further extracted, as illustrated
in Fig. 2.

2) Alpha Feature Extraction: The commonly used represen-
tative features from the acquired EEG signals are the spectral
power distributions at different frequency bins, which are
characterized by power spectral density (PSD) estimation in
the frequency domain. In this study, we focused on exploring
the visual saliency effect on the spectral power distributions
in a possible alpha-located frequency range ([8 Hz, 12 Hz]).
Rather than directly averaging all the power distributions
on a broad alpha frequency range, we computed the alpha
spectral power and evaluated the alpha at each frequency bin,
as given in Table I. This approach allowed us to examine the
encoding study of each individual alpha bandpower separately
and determine which alpha frequency corresponded the most
to the saliency information in the presented stimuli.
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TABLE I
THE ALPHA FREQUENCY BINS EVALUATED IN THIS STUDY

In a single trial, the recorded raw EEG signals in the
baseline and video playing sessions were denoted Eb

c and Ev
c ,

respectively, where c indicates the selected EEG channels
(c = 1, . . . , cn). To thoroughly examine the changing trend
of alpha oscillations in the process of video watching, we first
measured the alpha powers in Eb

c and then used them as refer-
ences to measure the bandpower changes in Ev

c . Specifically,
the alpha bandpowers were extracted from the 4 s baseline
data by the power spectral estimation algorithm [37] with a
50% overlap and a Hamming window, and these bandpowers
were denoted Ȧb

c,a, a = α1, . . . , α5. To better assess alpha
dynamics over time, rather than extracting bandpower infor-
mation from the entire 58 s of video data, we first divided Ev

c
into a number of short segments with a time length of 0.5 s
(Ev

c,w, where w ∈ [1, wn] refers to the EEG-based seg-
ment index). Note that no content overlap occurred between
any of the adjacent short segments ({Ev

c,w}wn
w=1). The alpha

bandpowers were also extracted from each segment as the
baseline data, which were denoted Ȧv

c,a,w, a = α1, . . . , α5
and w = 1, . . . , wn . Subsequently, to establish the elicited
brain activities in the process of video viewing, the extracted
Ȧv

c,a,w were normalized by Ȧb
c,a as

Ãc,a,w = Ȧv
c,a,w − Ȧb

c,a, (1)

where Ãc,a,w can be considered the alpha dynamic that was
caused only by the displayed video content.

3) Alpha Feature Standardization: In the previous
section III-A.2, the alpha features were extracted from
a single participant’s individual trial data. Because the focus
of the present paper is on a cross-subject study and a
generalized encoding system, after feature processing and
feature extraction, the features extracted from the participants
were aggregated. In the past studies, the commonly used
fusion approach is to simply average the extracted features
from all the participants. However, this average based method
would include the contaminated feature(s) (also called
“noise”) in the feature fusion processing and further affect
the following encoding model proposal. To eliminate the
effect of the “noise” in the features, we suggested to check
the extracted feature quality first and cancel out the “noise”
before feature fusion / standardization. In other words, only
the shared common patterns across participants should be
remained and aggregated. Suppose that the extracted alpha
features from different participants while watching the same
stimuli were denoted Ãs

c,a,w, where s is ranging from 1 to sn

(here, the feature size was equal to 20, which was the same
as the subject number sn). Furthermore, { Ãs

c,a,w}sn
s=1 were

integrated by means of feature standardization and formed
into a single participant-independent feature vector to capture
the common EEG dynamics evoked by the presented video.
In this paper, a statistical-based feature standardized approach
called the Thompson Tau method was adopted to adaptively

filter the “noises” from { Ãs
c,a,w}sn

s=1 as described below.
Compared to the other popular outlier detection methods
such as Z-score and K-means, the Thompson Tau method has
been proven as a credible, useful and high-efficient method
in various studies [38]–[41], which performed reliably and
provided an objective approach to determine whether the
sample in the data distribution is an anomaly point.

1) Calculate the respective mean and standard deviation as

μ Ãc,a,w
=

∑sn
s=1 Ãs

c,a,w

sn
, (2)

σÃc,a,w
=

√∑sn
s=1( Ãs

c,a,w − μ Ãc,a,w
)2

sn − 1
. (3)

2) Compute the Thompson Tau value, as

tau = tα/2 × (sn − 1)
√

sn ×
√

sn − 2 + t2
α/2

, (4)

where tα/2 is the α/2% point of Student’s t-distribution
(α = 0.05).

3) Measure the value of T S as

T S = tau × σÃc,a,w
. (5)

4) Remove the outliers (“noises”) as presented in
Algorithm 1. For clarity, we denoted the returned { Ãs

c,a,w}sn
s=1

as { Âs
c,a,w}ŝn

s=1, where the remaining number of features was
ŝn (ŝn ≤ 20).

Algorithm 1 Outlier Removal based on the Thompson Tau
Method
1: s = 1;
2: while do
3: if | Ãs

c,a,w − μ Ãc,a,w
| > T S then

4: remove Ãs
c,a,w from { Ãs

c,a,w}sn
s=1, and update sn =

sn − 1 and { Ãs
c,a,w}sn

s=1
5: else
6: s = s + 1
7: end if
8: if s > sn then
9: break

10: end if
11: end while
12: return the final obtained { Ãs

c,a,w}sn
s=1

5) Form the generalized alpha feature across the remaining
clean features as

Ac,a,w =
∑ŝn

s=1 Âs
c,a,w

ŝn
, (6)

where c, a and w refer to the EEG channel, alpha frequency
bin and short segment, respectively. In practice, feature stan-
dardization was conducted individually for every combination
of alpha frequency bins (5), segments (116), channels (17)
and videos (18). For each combination, the feature size of
the inputs to the Thompson Tau outlier detection method
were 20 (equal to the total number of participants). The total
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number of the combinations was 177480 (5 × 116 × 17 ×
18 = 177480). We checked the outlier removal results in the
total 177480 combinations, and found the average and stan-
dard deviation of the removed feature samples across all the
combinations were 1.35 and 0.56, respectively. In other words,
the average number of samples for each of the remaining clean
features in step 5) for further feature standardization across all
the combinations was equal to 18.65 (20 − 1.35 = 18.65).

4) GA-Based Alpha Index Generation: A key question is
how to combine the extracted features from different channels.
Based on the principle of natural genetic selection operations,
the genetic algorithm (GA) [42], a probabilistic and heuristic
optimization technique, was proposed to learn and discover
optimal solutions that can produce promising performances
and are computationally practical. The conventional GA is
a binary coding method based on the strings of 0 and 1,
which would cause inefficient occupation of computer memory
and are not sufficiently flexible to solve complex problems.
To overcome these limitations, we adopted a real-valued
GA that utilizes floating point codings in its solutions [43].
The real-valued GA performed in a more straightforward
and efficient manner than the binary GA. The benefits of
the real-valued GA technique have been widely demon-
strated in various search problems, such as feature weight
learning [44]–[46].

In the real-valued GA technique, the possible solutions
are named chromosomes. After initialization, a set of chro-
mosomes form the very first population. The merit of each
chromosome is evaluated by the predefined fitness function,
and only the chromosomes with high fitness values are selected
and remained in the next generation of the population. Addi-
tionally, to increase the population diversity, the selected chro-
mosomes are used to generate new chromosomes through two
manners: mutation and crossover. Mutation is conducted based
on the existing chromosomes to increase the randomness of the
chromosomes and decrease the possibility of reaching a local
optimum, whereas crossover is based on two chromosomes
to generate a new offspring. After repeated alternations of
the population selection and generation steps, the searching
process terminates once the maximum generation number
(G AM ) is reached. In this study, we applied the real-valued
GA technique to explore the optimum weights W = {W a

c }cn
c=1

of the selected EEG channels {c}cn
c=1 for each individual

alpha frequency bin {a}α5
a=α1, where one set of weights is

one chromosome. The obtained optimum weights {W a
c }cn

c=1
can be interpreted as indicators of the importance of the
EEG channels that contribute to the alpha dynamics related
to visual saliency during video viewing. Then, the extracted
alpha features {Ac,a,w}cn

c=1 were weighted summed into an
alpha index, as

Aa,w =
cn∑

c=1

W a
c × Ac,a,w. (7)

To quantify the quality of a chromosome and guide population
selection and generation toward globally optimal solutions,
we designed the fitness function as

fG A = |eval1| × exp(eval2 + 1), (8)

where eval1 and eval2 are two evaluation standards of regres-
sions between the prediction and target data: the Pearson
correlation coefficient and NMSE. A high correlation coef-
ficient indicates that the prediction and target data share a
similar trend, while a high value for NMSE indicates the
deviation between the prediction and target data is small
in both space and time. Thus, the global optimum in this
search problem should be the one that can maximize both the
correlation coefficient and NMSE, namely, the optimum that
can maximize the given fitness function. The operation process
for GA-based weight searching was independently performed
for each individual alpha frequency bin. In the implementation,
each chromosome was a vector {W a

c }cn
c=1, which was initialized

by random numbers in the range of [0, 1]. The size of the
initial population G AN and the maximum generation number
G AM were varied from 10 to 1000, and the corresponding
performances are compared in Section IV. Moreover, the non-
uniform mutation and arithmetic crossover approaches were
utilized to generate new chromosomes. The normalized geo-
metric selection probability was equal to 0.08, which was
demonstrated as an optimal setting in the GA based function
optimization applications [47].

B. Video Data Analysis

In this study, we introduced video saliency to encode EEG
dynamics via time-series regressions. As illustrated in Fig. 4,
the video-based saliency maps were first computed at every
video frame and were then characterized and embedded in the
form of short segment-based structures. More details about
the computation process are reported in Appendix C of the
Supplementary Materials.

1) Frame-Based Saliency Map Generation: The model of
Itti et al. is the most known bottom-up-based computational
visual attention model [17], and it was applied to compute
the visual saliency of the video frames in this study. Figure 3
shows an example result produced by Itti’s model, where the
contrast difference in the input was first examined according
to three primitive visual features, namely, color, intensity,
and orientation (denoted SC

f , SI
f and SO

f , respectively), and
then formed into one final saliency map (denoted S f ). In the
example shown in Fig. 3, the final saliency map revealed that
the woman in the center was assigned the highest saliency
values close to 1 (the bright areas), while the background was
close to 0 (the dark areas). To avoid confusion, the primitive
feature-based saliency results are referred to as feature maps
below. In the encoding studies, in addition to evaluating the
encoding performance using S f , we also investigated the
encoding effects with each type of feature map.

2) Segment-Based Saliency Map Generation: For each video
frame V f in one video V , the corresponding feature maps
and the final saliency map were computed as presented in
Section III-B.1 and were then downsampled to a lower spatial
resolution (18 × 32). Notably, the values in the obtained
feature/saliency maps reflected the conspicuousness of pixels
in terms of each feature or the overall conspicuousness of
pixels in the video frame across all the features, which were
all in the range of [0, 1]. Similar to the feature extraction
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Fig. 3. An example result of Itti et al. model. The feature map of the
input image was first evaluated in three primitive visual features (color,
intensity and orientation) and then formed into one saliency map.

Fig. 4. The flowchart of saliency feature extraction. The saliency maps of
video frames were first computed. The computed frame-based saliency
maps were then integrated into segment-based saliency maps and a 128-
bin histogram representation of each segment-based saliency map was
characterized. To lower computation complexity and remove redundant
features / noise, a hypergraph embedding method was introduced to
capture the essence of the data and reduce the saliency representation
to a lower feature space.

process in the raw EEG signals, the saliency feature extraction
from videos was also implemented in terms of short segments
with a length of 0.5 s. For one video, we integrated the
obtained frame-based feature/saliency maps to segment-based
feature/saliency maps, denoted SC

w , SI
w , SO

w and Sw .
3) Segment-Based Saliency Feature Extraction: A

histogram-based feature representation is a simple
and direct method that shows good results in various
applications [48], [49]. Compared to a single feature index
(e.g., average or medium) to describe the distribution,
a histogram-based feature representation can provide a more
accurate description to show the probability estimation of

the underlying distribution of the input. In the present study,
we adopted the histogram-based feature representation to
characterize the obtained segment-based feature/saliency
maps as follows. (1) define the number of bins: the number
of bins bn was set to 128 here, as the other histogram-based
feature representation studies; (2) calculate the bin width and
edges: as the defined bins (bp = 1, . . . , bn) were a series of
consecutive and non-overlapping intervals with equal size,
the bin width could be calculated as the entire value range
in feature/saliency maps divided into bn . In this paper, as the
range of saliency map was normalized to the range of [0,1],
the width of each histogram bin was equal to 1/128; (3) count
the number of values in each bin: counted how many values
in feature/saliency maps fall into each bin according to the
defined bin width and edges; (4) normalization: to render the
histogram-based feature representations comparable among
different segments and videos, normalization was conducted
by diving the number of pixels in the saliency map. More
details are reported in Appendix C of the Supplementary
Materials. The obtained normalized features for feature and
saliency maps were denoted C̃C

bp,w, C̃ I
bp,w, C̃ O

bp,w and C̃bp,w,
respectively.

4) Hypergraph Embedding: The size of the extracted
segment-based saliency feature vector {C̃bp,w}bn

bp=1 was 1×128
(M = 128). In practice, reducing the feature dimensional-
ity to a lower dimension is necessary and beneficial, e.g.
M ′ < M . For dimensionality reduction with graph embedding
techniques, the common approach is to construct an undirected
weighted graph and identify an optimal surface to represent the
original feature space. However, traditional graph embedding
approaches may cause substantial loss of information because
only simple pairwise relations are considered. To avoid
misleading representation and information loss, hypergraph
embedding provides a more natural method to identify the
optimal subspace, where multiple or higher-order relationships
among vertices are captured. In this study, we treated each
segment-based saliency feature vector as a vertex and formed
a corresponding hypergraph. A hypergraph, Gh , is composed
of a number of vertices Vh (vh,i ∈ Vh, i = 1, . . . , |Vh |)
and hyperedges Eh (eh, j ∈ Eh, j = 1, . . . , |Eh |), where a
hyperedge can connect more than two vertices. vh,i and eh, j

are a vertex and a hyperedge on the hypergraph, respectively.
In this study, a hyperedge was formed by a centroid vertex
(the centroid of the hyperedge) and its nearest neighbors. Each
vertex in the database was used as the centroid once. Thus,
the formed number of hyperedges was the same as the number
of vertices. More details about hypergraph construction are
provided below. (1) Set the hyperedge size to τh . (2) Set
a vertex as a centroid and measure the pairwise similarities
between this centroid vertex and other available vertices. The
similarity between any two vertices was defined as

ζ(vh,i , vh,i ′ ) = 1

1 + disti,i ′
, (9)

where disti,i ′ is given as

disti,i ′ =
∑

bp=1,...,bn

(C̃vh,i (bp) − C̃vh,i′ (bp))
2

C̃vh,i (bp) + C̃vh,i′ (bp)
, (10)
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Fig. 5. An illustration of hyperedge formation. A centroid vertex with the
nearest vertices were formed a hyperedge.

where C̃vh,i and C̃vh,i′ are the extracted histogram
representations of vertices vh,i and vh,i ′ . (3) Rank the
similarities in descending order. (4) Form a hyperedge by
connecting the centroid vertex with the top τh − 1 nearest
vertices. Examples of the formed hyperedges are shown in
Fig. 5. (5) Repeat Steps (2) to (4) until each vertex is treated
as a centroid once and the corresponding hyperedge is formed.
Consequently, the number of the constructed hyperedges
was the same as the number of vertices. The corresponding
incidence matrix Hh was a |Vh |-by-|Eh| matrix defined as

hh(vh,i , eh, j ) =
{

1 if vh,i ∈ eh, j

0 if vh,i /∈ eh, j .
(11)

The weight of one hyperedge was a summation of the
similarities between the centroid vertex and the top τh − 1
nearest vertices,

wh(eh, j ) = 1 +
∑

in=1,...,τh−1

ζ(v
eh, j
h,c , v

eh, j
h,in

), (12)

where v
eh, j
h,c is the centroid vertex of the hyperedge eh, j

and {veh, j
h,in

}τh−1
in=1 are the connected top nearest vertices. The

hyperedge weight matrix Wh was a |Eh |-by-|Eh| diagonal
matrix in which the diagonal elements were the hyperedges’
weights calculated by Eq. 12. The degree of a vertex vh,i was
a summation of all hyperedge weights of all the hyperedges
belonging to the matrix, as

dv (vh,i ) =
∑

vh,i∈e
vh,i
h

wh(e
vh,i
h ), (13)

where e
vh,i
h are all the hyperedges that were connected to the

vertex vh,i . The degree of a hyperedge eh, j was a summation
of all the connected vertices, as

de(eh, j ) =
∑

v
eh, j
h ∈eh, j

h(v
eh, j
h , eh, j ), (14)

where v
eh, j
h refers to all the connected vertices in the

hyperedge eh, j . Therefore, the vertex degree matrix Dv

and the hyperedge degree matrix De were constructed
accordingly, which were used to compute the diagonal
elements dv (vh,i ) and de(eh, j ), respectively. The optimal
subspace of the constructed hypergraph was the eigenvectors
with the smallest nonzero eigenvalues of the computed
hypergraph Laplacian, established as

� = I − D−(1/2)
v HhWh D−1

e H T
h D−(1/2)

v . (15)

In practice, we calculated the hypergraph Laplacian �,
measured the corresponding eigenvalues, sorted them in
ascending order, retained only the eigenvectors whose
eigenvalues were the top M ′ smallest eigenvalues, and formed
a new and optimal surface of feature representations. The new
feature surface with the lower dimension was denoted Cw .
In a similar manner, the feature representations of the feature
maps C̃C

bp,w, C̃ I
bp,w, and C̃ O

bp,w were also reduced to a lower

dimension, which were denoted CC
w , C I

w , and C O
w , respectively.

Later, the new feature representations were used to estimate the
extracted alpha index Aa,w in a supervised learning approach.

IV. EXPERIMENTAL RESULTS

A. Cross-Validation Based Encoding Results

In this study, we conducted continuous encoding from visual
saliency to alpha powers at each frequency bin, with a time
length of 0.5 s. In total, we had 2088 samples in the database
for modeling (18 videos × 116 short time segments). The
proposed generalized encoding system was evaluated through
a 10-fold cross validation (CV) to assess the robustness of
performance on an independent / new dataset in a statistical
analysis approach. To measure the encoding performance in
both the space and time domains, the encoding performance
was evaluated with both Pearson correlation coefficient and
normalized mean square error (NMSE) (definitions given in
Appendix D of the Supplementary Materials). In this study, all
the presented correlation coefficient results had a significance
level that was much smaller than 0.05. The value of hyperedge
size τh and the feature dimensionality M ′ were set to 30 and
110 empirically. A discussion on the two value selections were
reported in section IV-D.

We constructed a series of support vector regression (SVR)
models to predict the extracted alpha indices Aa,w by using
the extracted saliency representation Cw in the final saliency
map S f , and we evaluated the results in 10-fold CV in terms
of the correlation coefficient, NMSE and fitness function (the
model construction and evaluation process refer to Appendix E
of the Supplementary Materials). The overall results across
all alpha frequency bins are presented in Table II, where the
initial population (G AN ) and the maximum generation number
(G AM ) were adjusted from 10 to 1000. In accordance with
our predictions, the results showed that an increase in G AN

and G AM values led to better encoding performance. The best
results were obtained when G AN = 1000 and G AM = 1000,
where the correlation coefficient and NMSE were equal to
0.6207 and -2.4625, respectively. The best calculated fitness
value ( fG A) was 0.6544. The results showed an increase
of population size and generation number could lead to an
improvement of the encoding performance in terms of corre-
lation coefficient, NMSE and fG A . This is consistent with the
idea of genetic algorithm: the larger the population size and
the generation number are, the greater chance to reach to an
optimal solutions after iterative mutation and crossover [50].
Moreover, to better illustrate the encoding behavior at each
alpha frequency bin, we also examined the corresponding
encoding results in Table III. We found that the encoding
performances in higher frequency bins, such as α3, α4
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Fig. 6. The 10-fold CV encoding results of Aa,w by using Cw in an alignment of video sequences. Red and blue lines indicate the true value
and predicted value of Aa,w, respectively. Compared to α1 and α2, the estimated alpha dynamics in α3, α4, and α5 showed better encoding
performance.

Fig. 7. The final discovered optimum channel weights at each alpha frequency bin. Here, the map colors were all scaled to the range of [−1,1].
It shows O1 in α4 responses contributed the most to visual saliency, with a channel weight of 0.8973.

TABLE II
THE OVERALL 10-FOLD CV PERFORMANCE OF Aa,w

BY USING Cw, CC
w, CI

w, AND CO
w , RESPECTIVELY

and α5, were significantly better than those in lower fre-
quency bins (α1 and α2). The best encoding performance
occurred in α4 with a significant correlation coefficient of
0.74 and an NMSE of −0.30, where the fitness value was
equal to 1.48. These results suggest that, comparing to the
frequency range of 8 to 9 Hz, the alpha oscillations in the
frequency range of 10 to 12 Hz were more sensitive to saliency
changes in the visual content (better encoding performance
achieved). The results are consistent with the general agree-
ment that upper alpha could reflect the processing of sensory
information [51]–[53]. We also assessed the true and predicted
values of Cw in an alignment of video sequences from 1 to 18,
as shown in Fig. 6. The line distribution of the true value
of Cw (red line) further verified our assumption that the

alpha dynamics in α1 and α2 did not vary significantly in
their responses to a change in the video content. Rather,
the estimated results (blue line) in α3, α4, and α5 showed
promising coincidences with the true alpha responses while
watching videos.

B. Results of the Optimal Channel Weights

In the exploration of the contributions of all the 17 selected
channels, we discovered the optimal channel weights (W)
using the real-valued GA-based searching approach. The visu-
alization results of the discovered W are shown in Fig. 7.
In the heatmap, higher weights tend to exhibit hotter orange
and red colors, whereas lower weights tend to exhibit a green
color. The results show that the contributions of the channels at
each alpha frequency bin were slightly different. For example,
left occipital areas (O1 and Oz) contributed the most in the
α4 responses to visual saliency, with Wα4

O1 = 0.8973 and
Wα4

Oz = 0.7628. PO4 in the parietal lobe obtained the highest
weight (Wα5

P O4 = 0.8135) in the response of α5 to visual
saliency. For the alpha dynamics in α3, the site with the great-
est contribution was PO3 (Wα4

P O3 = 0.8354). The obtained
optimal weights in every loop of CV-based GA multiobjective
searching are reported in Appendix F of the Supplementary
Materials. These results showed that involuntary attention
processing of sensory information at different frequency bins
would exhibit distinct changes and depend on the electrode
locations, as found in other mental activities [51], [54]–[57].

C. Encoding Performance Using Feature Maps

We also evaluated the encoding performance by only using
the feature maps of SC

w , SI
w, and SO

w on the basis of the
extracted features CC

w , C I
w, and C O

w . The overall performances
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TABLE III
THE 10-FOLD CV PERFORMANCE OF Aa,w BY USING Cw, CC

w, CI
w, AND CO

w

TABLE IV
THE 10-FOLD CV PERFORMANCE OF Aa,w BY USING Cw AT EACH FREQUENCY BIN WHEN A SIMPLE GRAPH WAS ADOPTED

across all frequency bins are reported in Table II, and the
detailed results at each frequency bin are shown in Table III.
The results indicated that, except intensity map, poor encoding
performance was achieved if only a single color or orienta-
tion feature map was applied. This observation is consistent
with previous psychophysical studies in HVS [16], [17],
[58], [59]. The same as proven in [22], the intensity feature
showed the most stable encoding performance than the others.
While, orientation-based encoding for alpha oscillations was
the weakest among the three. For different frequency bins,
the encoding at α4 was consistently more sensitive to all the
single feature maps, which was similar to the encoding results
to saliency map. Furthermore, compared to the encoding
results of α3, α4 and α5, the performances of α1 and α2
were still the worst in the feature-map-based encoding.

D. Effects of Parameter Settings

We verified the effect of hyperedge size τh and the reduced
feature dimensionality M ′ on encoding performance, which
were used in hypergraph embedding for dimensionality reduc-
tion. This testing was conducted when both G AN and G AM

were equal to 10. We quantified and compared the influence
of hyperedge size by varying τh from 3 to 700 when M ′ was
set to 110. The overall encoding results across all frequency
bins in terms of the calculated correlation coefficient values
are compared in Fig. 8 (a). An increase in the hyperedge
size resulted in an increase in correlation coefficient until the
highest encoding performance was achieved when τh was 30.
Subsequently, the encoding performance notably decreased.
On the other hand, when the hyperedge size was equal
to 2, it was the same as a simple graph. The corresponding
encoding performance is reported in Table IV, where the
encoding performance was quite unsatisfactory. This result

Fig. 8. The obtained correlation coefficient values when (a) the
hyperedge size and (b) the feature number were set to different values.
The best encoding performance was achieved when τh was 30 and
M′ was equal to or larger than 60.

also indicated the benefit of the hypergraph structure in feature
dimensionality reduction. Furthermore, the feature size M ′
was varied from 3 to 120 when τh = 30. The performance
is presented in Fig. 8 (b). The curve showed that similar
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good encoding performance was achieved when M ′ was equal
to or larger than 60. The results demonstrated that the encoding
framework with the proper parameter settings could benefit the
estimation of brain dynamics from visual saliency.

V. DISCUSSION AND CONCLUSION

The human visual system has a remarkable ability to
automatically select the salient content from the visual inputs,
which enables people to allocate limited resources to process
relevant and important information [60]–[62]. In the human
visual system, involuntary attention is a fundamental compo-
nent of visual attention mechanism, in which the attention is
navigated according to the pure low-level visual features and
will be used to further support and interact with the voluntary
attention. Current attentional selection has typically been stud-
ied in visual tasks with simplified or artificial displays [23],
[25], [26]. Although these studies are very important to reflect
the basic principles of attention, they do not explain how the
attention reacts to the complicated real-world. Few attention
studies were conducted with natural visual processing, but
they only focused on the static scenes [24], [62]. To further
investigate how the brain efficiently selects salient information
in dynamic and natural scenes such as natural-colored videos,
in this paper we proposed a generalized encoding framework
for real-world visual processing that connects the relationships
between involuntary attention modulation (in terms of alpha
oscillations) and visual information (in terms of saliency maps
generated from the natural-colored videos).

The past physiological studies have demonstrated that the
performance of the selective visual attention are highly cor-
related with the neural dynamics in perceptual systems [63].
We chose the generated saliency map by a bottom-up based
computational model [17] as the topographic representation
of attentional information in the visual inputs, because there
is converging evidence that the generated saliency maps have
been closely linked to the selection process in primary visual
cortex [4], [64], [65]. We could use the saliency maps to
estimate which are more likely to capture the attention of
the stimuli, and further extend to evaluate whether different
saliency levels could induce the changes in neural oscillations.
Our results presented in this paper are in agreement with
the existing findings that we found a highly significant cor-
respondences between computational model of attention and
neural oscillations, where the neural oscillation at a frequency
of 11 Hz reflects the most to the bottom-up, stimulus-driven
attributes. The results also suggested that the neural oscillation
in the frequency range of 10 to 12 Hz played a significant
role in the involuntary attention (early attentional mechanism).
Besides, we conducted a t-test analysis to investigate whether
there exists a statistical significance of the differences of
the extracted saliency features between any two videos. The
results showed the extracted features from different videos
are statistically different with a confidence level of 95%.
In other words, the present videos could be considered to
have different involuntary attention effects. In the collected
EEG data, the attentional influences on neural oscillations in
the frequency range of 10 to 12 Hz during watching different

videos were also observed, that suggests the upper alpha band
could be considered as the fundamental component of the
neural mechanism of involuntary attention.

In addition to looking at the relationship between invol-
untary attention and the frequency of neural oscillations,
we also examined the attentional effects to the brain loca-
tions. The existing studies found the attention-related neural
activation was mainly located in primary visual cortex, and
the involuntary attentional effects are most correlated to the
parieto-occipital areas [27], [28], [66]. In response to visual
attention associated tasks, a signification neural activation in
the parieto-occipital region was observed [67]–[69]. To further
investigate finer-scale brain regions to involuntary attention,
we evaluated the contribution of every single EEG channel
in the parieto-occipital areas by building a genetic algorithm
based regression model. The obtained weight of each channel
in the regression process could be considered as an indicator
to show how important of the channel location to the selective
processing and measure the brain source of the interaction to
the involuntary attention. Our results showed that the most
related channels to involuntary attention were distributed on
the O1 and PO3 sites, with a great channel weight obtained
(0.8973 and 0.8354). These locations may be responsible for
the sensory information processing in the involuntary attention.

Investigating the possibility of encoding brain dynamics by
visual content is a critical aspect in the cognitive neuroscience
and biomedical engineering. This current study demonstrated
the effects of low-level visual attributes on the neural mecha-
nisms involved in the involuntary attention via the changes
in EEG oscillations and proposed a generalized encoding
pipeline for alpha oscillations from visual saliency features.
Our work outlined possible processing steps to solve an EEG
encoding problem, supporting the future development of brain
analysis. The results indicated that visual saliency informa-
tion can be indeed reflected by different alpha frequency
bins and different locations. We found that α4 responded
the most to involuntary attention related to bottom-up-based
visual information processing and that the extracted saliency
features were reliable predictors of alpha dynamics. In light
of neuroadaptive technologies, the obtained results in the
present work could be applied to the field of brain-computer
interfaces where suitable visual stimuli will be interactively
and automatically selected to elicit certain mental statuses and
further improve the interaction experience in terms of usability,
accessibility, and pleasure. The current work successfully
investigated involuntary attention in a set of natural-colored
videos. Instead of considering the low-level visual features
(such as color, texture, orientation) in the dynamic scenes,
we introduced saliency map as a reflection of attention in the
present variable and cluttered videos and evaluated the perfor-
mance of alpha oscillations at different frequency bins to the
involuntary attentional selection under naturalistic conditions.
An intelligent-based generalized encoding pipeline was built
to help a mapping from involuntary attention reflection in the
visual content to the involuntary attention modulation with
alpha oscillations.

The present study suggests the feasibility of estimating brain
dynamics by monitoring the saliency changes in the present
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visual stimuli and offers an opportunity to regulate neural
oscillations through multimedia information. Limitations of
this study include the relatively simple experimental design
and the limited number of participants and video clips that
were examined at the current stage. In the future extend
experiment, the number of participants will be increased,
and visual stimuli with various saliency distributions will
be examined. Based on the study proposed in this paper,
the design of visual content could be improved by interacting
with the estimated brain responses while watching them, and
more intelligent-inspired multimedia could be produced.
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and G. Sedek, “Frontal EEG alpha band asymmetry as a predictor of
reasoning deficiency in depressed people,” Cognition Emotion, vol. 31,
no. 5, pp. 868–878, Jul. 2017.

[12] J. J. Foxe and A. C. Snyder, “The role of alpha-band brain oscillations as
a sensory suppression mechanism during selective attention,” Frontiers
Psychol., vol. 2, p. 154, Jul. 2011.

[13] B. Zoefel and R. VanRullen, “Oscillatory mechanisms of stimulus
processing and selection in the visual and auditory systems: State-of-the-
art, speculations and suggestions,” Frontiers Neurosci., vol. 11, p. 296,
May 2017.

[14] B. F. Händel, T. Haarmeier, and O. Jensen, “Alpha oscillations correlate
with the successful inhibition of unattended stimuli,” J. Cognit. Neu-
rosci., vol. 23, no. 9, pp. 2494–2502, Sep. 2011.

[15] Y. Pinto, A. R. van der Leij, I. G. Sligte, V. A. Lamme, and
H. S. Scholte, “Bottom-up and top-down attention are independent,”
J. Vis., vol. 13, no. 3, p. 16, 2013.

[16] C. Koch and S. Ullman, “Shifts in selective visual attention: Towards
the underlying neural circuitry,” Human Neurobiol., vol. 4, no. 4,
pp. 219–227, 1985.

[17] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998.

[18] T.-P. Jung, S. Makeig, M. Stensmo, and T. J. Sejnowski, “Estimating
alertness from the EEG power spectrum,” IEEE Trans. Biomed. Eng.,
vol. 44, no. 1, pp. 60–69, Jan. 1997.

[19] S. Hanslmayr et al., “Visual discrimination performance is related to
decreased alpha amplitude but increased phase locking,” Neurosci. Lett.,
vol. 375, no. 1, pp. 64–68, Feb. 2005.

[20] W. Klimesch, R. Fellinger, and R. Freunberger, “Alpha oscillations and
early stages of visual encoding,” Frontiers Psychol., vol. 2, p. 118,
May 2011.

[21] S. D. Mayhew, D. Ostwald, C. Porcaro, and A. P. Bagshaw, “Sponta-
neous EEG alpha oscillation interacts with positive and negative BOLD
responses in the visual-auditory cortices and default-mode network,”
NeuroImage, vol. 76, pp. 362–372, Aug. 2013.

[22] T. Ergenoglu, T. Demiralp, Z. Bayraktaroglu, M. Ergen, H. Beydagi,
and Y. Uresin, “Alpha rhythm of the EEG modulates visual detection
performance in humans,” Cognit. Brain Res., vol. 20, no. 3, pp. 376–383,
Aug. 2004.

[23] T. J. McDermott, A. I. Wiesman, A. L. Proskovec,
E. Heinrichs-Graham, and T. W. Wilson, “Spatiotemporal oscillatory
dynamics of visual selective attention during a flanker task,”
NeuroImage, vol. 156, pp. 277–285, Aug. 2017.

[24] S. Noah, T. Powell, N. Khodayari, D. Olivan, M. Ding, and
G. R. Mangun, “Neural mechanisms of attentional control for objects:
Decoding EEG alpha when anticipating faces, scenes, and tools,” J. Neu-
rosci., vol. 40, no. 25, pp. 4913–4924, 2020.

[25] O. Jensen and A. Mazaheri, “Shaping functional architecture by oscil-
latory alpha activity: Gating by inhibition,” Frontiers Hum. Neurosci.,
vol. 4, p. 186, Nov. 2010.

[26] A. C. Snyder and J. J. Foxe, “Anticipatory attentional suppression of
visual features indexed by oscillatory alpha-band power increases: A
high-density electrical mapping study,” J. Neurosci., vol. 30, no. 11,
pp. 4024–4032, 2010.

[27] Z. Li, “A saliency map in primary visual cortex,” Trends Cognit. Sci.,
vol. 6, no. 1, pp. 9–16, Jan. 2002.

[28] C. L. Colby and M. E. Goldberg, “Space and attention in parietal cortex,”
Annu. Rev. Neurosci., vol. 22, no. 1, pp. 319–349, Mar. 1999.

[29] M. Critchley, The Parietal Lobes. Baltimore, MD, USA: Williams &
Wilkins, 1953.

[30] M.-M. Mesulam, “A cortical network for directed attention and unilateral
neglect,” Ann. Neurol., vol. 10, no. 4, pp. 309–325, Oct. 1981.

[31] G. Rizzolatti, L. Fogassi, and V. Gallese, “Parietal cortex: From sight
to action,” Current Opinion Neurobiol., vol. 7, no. 4, pp. 562–567,
Aug. 1997.

[32] G. Coricelli, H. D. Critchley, M. Joffily, J. P. O’Doherty, A. Sirigu, and
R. J. Dolan, “Regret and its avoidance: A neuroimaging study of choice
behavior,” Nature Neurosci., vol. 8, no. 9, p. 1255–1262, 2005.

[33] C. Summerfield and T. Egner, “Expectation (and attention) in visual
cognition,” Trends Cognit. Sci., vol. 13, no. 9, pp. 403–409, Sep. 2009.

[34] R. Oostenveld and P. Praamstra, “The five percent electrode system
for high-resolution EEG and ERP measurements,” Clin. Neurophysiol.,
vol. 112, no. 4, pp. 713–719, Apr. 2001.

[35] T.-P. Jung et al., “Removing electroencephalographic artifacts by blind
source separation,” Psychophysiology, vol. 37, no. 2, pp. 163–178,
Mar. 2000.

[36] A. Delorme and S. Makeig, “EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent com-
ponent analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21,
Mar. 2004.

[37] P. Welch, “The use of fast Fourier transform for the estimation of
power spectra: A method based on time averaging over short, modified
periodograms,” IEEE Trans. Audio Electroacoustics, vol. 15, no. 2,
pp. 70–73, Jun. 1967.

[38] J. Griffin, T. Schultz, R. Holman, L. S. Ukeiley, and L. N. Cattafesta,
“Application of multivariate outlier detection to fluid velocity measure-
ments,” Exp. Fluids, vol. 49, no. 1, pp. 305–317, Jul. 2010.

[39] S. J. Klawikowski, C. Zeringue, L. S. Wootton, G. S. Ibbott, and
S. Beddar, “Preliminary evaluation of the dosimetric accuracy of the
in vivo plastic scintillation detector OARtrac system for prostate cancer
treatments,” Phys. Med. Biol., vol. 59, no. 9, p. N27, 2014.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 12,2021 at 18:01:21 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: GENERALIZED ENCODING SYSTEM FOR ALPHA OSCILLATIONS THROUGH VISUAL SALIENCY ANALYSIS 2743

[40] S. M. Mahmoud, H. A. Alabbasi, and T. E. Abdulabbas, “Monitoring
and detecting outliers for elder’s life activities in a smart home: A case
study,” in Proc. E-Health Bioeng. Conf. (EHB), Jun. 2017, pp. 458–461.

[41] A. Megahed, S. M. Fadl, Q. Han, and Q. Li, “Handwriting forgery
detection based on ink colour features,” in Proc. 8th IEEE Int. Conf.
Softw. Eng. Service Sci. (ICSESS), Nov. 2017, pp. 141–144.

[42] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Mach. Learn., vol. 3, nos. 2–3, pp. 95–99, 1988.

[43] Y.-P. Huang and C.-H. Huang, “Real-valued genetic algorithms for fuzzy
grey prediction system,” Fuzzy Sets Syst., vol. 87, no. 3, pp. 265–276,
May 1997.

[44] Z. Liang, H. Fu, Z. Chi, and D. Feng, “Refining a region based attention
model using eye tracking data,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2010, pp. 1105–1108.

[45] R. Irani and R. Nasimi, “Evolving neural network using real coded
genetic algorithm for permeability estimation of the reservoir,” Expert
Syst. Appl., vol. 38, no. 8, pp. 9862–9866, Aug. 2011.

[46] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014.

[47] C. R. Houck, J. Joines, and M. G. Kay, “A genetic algorithm for function
optimization: A MATLAB implementation,” Ncsu-ie tr, vol. 95, no. 09,
pp. 1–10, 1995.

[48] A. Ion-Margineanu et al., “Comparison of manual and semi-manual
delineations for classifying glioblastoma multiforme patients based on
histogram and texture MRI features,” in Proc. 25th Eur. Symp. Artif.
Neural Netw., Comput. Intell. Mach. Learn., 2017, pp. 501–506.

[49] F. Lee, J. Zhao, K. Kotani, and Q. Chen, “Video copy detection using
histogram based spatio-temporal features,” in Proc. 10th Int. Congr.
Image Signal Process., Biomed. Eng. Informat. (CISP-BMEI), Oct. 2017,
pp. 1–5.

[50] S. G. B. Rylander and B. Gotshall, “Optimal population size and the
genetic algorithm,” Population, vol. 100, no. 400, p. 900, 2002.

[51] W. Klimesch, M. Doppelmayr, T. Pachinger, and H. Russegger, “Event-
related desynchronization in the alpha band and the processing of
semantic information,” Cognit. Brain Res., vol. 6, no. 2, pp. 83–94,
Oct. 1997.

[52] W. Klimesch, M. Doppelmayr, H. Russegger, T. Pachinger, and
J. Schwaiger, “Induced alpha band power changes in the human EEG
and attention,” Neurosci. Lett., vol. 244, no. 2, pp. 73–76, Mar. 1998.

[53] I. Babu Henry Samuel, C. Wang, Z. Hu, and M. Ding, “The frequency
of alpha oscillations: Task-dependent modulation and its functional
significance,” NeuroImage, vol. 183, pp. 897–906, Dec. 2018.

[54] A. J. Shackman, B. W. Mcmenamin, J. S. Maxwell,
L. L. Greischar, and R. J. Davidson, “Identifying robust and sensitive
frequency bands for interrogating neural oscillations,” NeuroImage,
vol. 51, no. 4, pp. 1319–1333, Jul. 2010.

[55] P. Capotosto, C. Babiloni, G. L. Romani, and M. Corbetta, “Resting-
state modulation of alpha rhythms by interference with angular
gyrus activity,” J. Cognit. Neurosci., vol. 26, no. 1, pp. 107–119,
Jan. 2014.

[56] T. Chow, T. Javan, T. Ros, and P. Frewen, “EEG dynamics of mindful-
ness meditation versus alpha neurofeedback: A sham-controlled study,”
Mindfulness, vol. 8, no. 3, pp. 572–584, Jun. 2017.

[57] Y. Kitaura et al., “Functional localization and effective connectivity of
cortical theta and alpha oscillatory activity during an attention task,”
Clin. Neurophysiol. Pract., vol. 2, pp. 193–200, 2017.

[58] R. Desimone and J. Duncan, “Neural mechanisms of selective
visual attention,” Annu. Rev. Neurosci., vol. 18, no. 1, pp. 193–222,
Mar. 1995.

[59] S. Kollmorgen, N. Nortmann, S. Schröder, and P. König, “Influence of
low-level stimulus features, task dependent factors, and spatial biases
on overt visual attention,” PLoS Comput. Biol., vol. 6, no. 5, May 2010,
Art. no. e1000791.

[60] M. V. Peelen and S. Kastner, “Attention in the real world: Toward
understanding its neural basis,” Trends Cognit. Sci., vol. 18, no. 5,
pp. 242–250, May 2014.

[61] E. H. Cohen and F. Tong, “Neural mechanisms of object-based atten-
tion,” Cerebral Cortex, vol. 25, no. 4, pp. 1080–1092, Apr. 2015.

[62] D. Kaiser, N. N. Oosterhof, and M. V. Peelen, “The neural dynamics
of attentional selection in natural scenes,” J. Neurosci., vol. 36, no. 41,
pp. 10522–10528, Oct. 2016.

[63] T. Moore and M. Zirnsak, “Neural mechanisms of selective visual
attention,” Annu. Rev. Psychol., vol. 68, no. 1, pp. 47–72, Jan. 2017.

[64] S. Treue, “Visual attention: The where, what, how and why of saliency,”
Current Opinion Neurobiol., vol. 13, no. 4, pp. 428–432, Aug. 2003.

[65] O. Jensen, M. Bonnefond, and R. VanRullen, “An oscillatory mechanism
for prioritizing salient unattended stimuli,” Trends Cognit. Sci., vol. 16,
no. 4, pp. 200–206, Apr. 2012.

[66] M. Kawasaki and Y. Yamaguchi, “Effects of subjective preference of
colors on attention-related occipital theta oscillations,” NeuroImage,
vol. 59, no. 1, pp. 808–814, Jan. 2012.

[67] K.-M. G. Fu, J. J. Foxe, M. M. Murray, B. A. Higgins, D. C. Javitt, and
C. E. Schroeder, “Attention-dependent suppression of distracter visual
input can be cross-modally cued as indexed by anticipatory parieto–
occipital alpha-band oscillations,” Cogn. Brain Res., vol. 12, no. 1,
pp. 145–152, 2001.

[68] H. Kojima and T. Suzuki, “Hemodynamic change in occipital lobe
during visual search: Visual attention allocation measured with NIRS,”
Neuropsychologia, vol. 48, no. 1, pp. 349–352, Jan. 2010.

[69] C. Liang, C.-T. Lin, S.-N. Yao, W.-S. Chang, Y.-C. Liu, and S.-A. Chen,
“Visual attention and association: An electroencephalography study in
expert designers,” Des. Stud., vol. 48, pp. 76–95, Jan. 2017.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 12,2021 at 18:01:21 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


