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Abstract
EEG neurofeedback using frontal alpha asymmetry (FAA) has been widely used for emotion regulation, but its effec-

tiveness is controversial. Studies indicated that individual differences in neurofeedback training can be traced to neu-

roanatomical and neurofunctional features. However, they only focused on regional brain structure or function and

overlooked possible neural correlates of the brain network. Besides, no neuroimaging predictors for FAA neurofeedback

protocol have been reported so far. We designed a single-blind pseudo-controlled FAA neurofeedback experiment and

collected multimodal neuroimaging data from healthy participants before training. We assessed the learning performance

for evoked EEG modulations during training (L1) and at rest (L2), and investigated performance-related predictors based

on a combined analysis of multimodal brain networks and graph-theoretical features. The main findings of this study are

described below. First, both real and sham groups could increase their FAA during training, but only the real group showed

a significant increase in FAA at rest. Second, the predictors during training blocks and at rests were different: L1 was

correlated with the graph-theoretical metrics (clustering coefficient and local efficiency) of the right hemispheric gray

matter and functional networks, while L2 was correlated with the graph-theoretical metrics (local and global efficiency) of

the whole-brain and left the hemispheric functional network. Therefore, the individual differences in FAA neurofeedback

learning could be explained by individual variations in structural/functional architecture, and the correlated graph-theo-

retical metrics of learning performance indices showed different laterality of hemispheric networks. These results provided

insight into the neural correlates of inter-individual differences in neurofeedback learning.

Keywords Frontal alpha asymmetry � Neurofeedback � EEG � MRI � Brain network

Introduction

Neurofeedback is a self-training technique that adjusts and

enhances brain function by receiving feedback from visual

representations of brain activity. Brain activity can be

measured by Electroencephalographic (EEG), which

records voltage fluctuations due to the flow of ionic current

during synaptic excitations in the neurons of the brain

(Baillet et al. 2001). EEG has a high temporal resolution,

thus it is optimal for real-time feedback of brain processes

(Enriquez-Geppert et al. 2017). EEG has both inter-subject

and intra-subject variability because of multiple factors,

including different brain structures among subjects, non-

stationarity of brain activity, and some unknown factors

(Wei et al. 2021). Neurofeedback training is an individu-

alized intervention that takes into account the uniqueness

of each individual’s EEG (Sitaram et al. 2017). EEG

neurofeedback has many advantages such as being safe,

non-invasive, having lasting effects, and having few side

effects, etc. Among the diversity of training protocols,

frontal alpha asymmetry (FAA) neurofeedback is often

used as an intervention tool to regulate emotions (Tolin

et al. 2020; Melnikov 2021). Emotion regulation training

with FAA neurofeedback has been explored in several

studies (Allen et al. 2001; Baehr et al. 2001; Choi et al.

2011; Peeters et al. 2014a, b; Quaedflieg et al. 2016).

However, the trainability and effectiveness of EEG
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neurofeedback have recently been questioned by some

negative studies, because some participants neither learned

to control their EEG signals nor showed a reduction in

clinical symptoms (Tolin et al. 2020). It is suggested that

these negative results may be related to individual differ-

ences in the short-term learning effect during neurofeed-

back training, i.e., the success in self-regulation of EEG

activities. Several published studies demonstrated that only

the individuals who successfully learned to self-regulate

their brain activity were associated with improved cogni-

tive performance (Hanslmayr et al. 2005a, b; Kouijzer et al.

2013). Previous studies indicated neuroanatomical and

neurofunctional features correlated with individual differ-

ences in EEG neurofeedback training for a diversity of

training protocols except for FAA neurofeedback (Weber

et al. 2020). Therefore, it is necessary to find out the

influencing factors of the learning performance during

FAA neurofeedback so that the neurofeedback treatment

protocol can be adapted to each individual.

Multimodal neuroimaging studies have indicated that

individual differences in neurofeedback training can be

traced to neuroanatomical and neurofunctional baseline

features (Weber et al. 2020). Several studies have reported

a correlation between rest EEG features before training and

neurofeedback learning ability in healthy participants,

including a significant positive correlation between the pre-

training alpha amplitude and learning performance for

alpha neurofeedback training (Wan et al. 2014) and dis-

tinguishing amplitude of low beta between learners from

non-learners for beta/theta neurofeedback training (Nan

et al. 2015). Further, some studies reported structural cor-

relators of neurofeedback learning performance, such as

gray matter volume of the right middle cingulate cortex

and white matter volume of the cingulate tract for frontal-

midline theta neurofeedback training (Enriquez-Geppert

et al. 2013), and gray matter volumes in the supplementary

motor area and left middle frontal gyrus for gamma neu-

rofeedback training (Ninaus et al. 2015). A previous study

by our group pointed out that the neurofeedback learning

ability is related to both structural and functional brain

imaging features (Li et al. 2021a, b). However, no neu-

roimaging predictors for FAA neurofeedback protocol have

been reported so far. In addition, all the above-mentioned

studies focused on regional measures of brain structure or

function, and overlooked possible neural correlates of brain

connectivity and network measures.

Neurofeedback is a form of training that enables sub-

jects to learn self-regulation of brain networks implicated

in a specific behavior (Mennella et al. 2017). One study

collected functional magnetic resonance imaging (fMRI)

data during FAA neurofeedback emotion regulation and

revealed increased interaction/connectivity among multiple

brain networks (Dehghani et al. 2020). Therefore,

characteristics of brain networks might be more promising

for explaining complex emotion-regulation performance

than those measured based on local brain regions (Horien

et al. 2020). Furthermore, the human brain is asymmetric in

terms of structure and function (Tian et al. 2011). Con-

sidering, FAA is naturally a measure of the brain’s asym-

metry, the two hemispheric networks might be distinctively

correlated with learning performance during FAA neuro-

feedback training. The graph theory approach is one of the

most commonly used methods to quantify the brain’s

structural and functional networks, and it provides a means

of quantifying individual differences in the topological

structure of brain networks (Sporns 2018), which has been

related to normal human cognitive functioning (Cohen and

D’Esposito 2016), as well as emotion regulation ability

(Uchida et al. 2015). Therefore, multimodal network con-

struction and graph theory analysis might provide new and

global insight into the structural and functional correlates

of FAA neurofeedback learning performance.

In summary, FAA neurofeedback training exhibited a

large individual difference in its effects on emotion regu-

lation, but the predictors of learning performance have not

been well understood yet. The combined analysis of mul-

timodal brain networks and graph-theoretical features

could be applied for a thorough investigation of predictors

of the FAA neurofeedback training effect. Thus, in the

present study, we conducted a single-blind pseudo-con-

trolled FAA neurofeedback experiment to analyze indi-

vidual differences in FAA neurofeedback training effects.

We collected multimodal neuroimaging data [structural

magnetic resonance imaging (sMRI) and diffusion tensor

imaging (DTI), and resting-state functional MRI (fMRI)]

from healthy participants before neurofeedback training.

We aim to test the hypothesis that the individual differ-

ences in FAA neurofeedback learning ability can be

explained using graph-theoretical features of multimodal

brain networks.

Materials and methods

Participants

Sixty healthy participants (age: 22.28 ± 2.08, 28 males)

were recruited by advertisements at Shenzhen University.

The present study included only right-handed subjects and

handedness was determined with the Edinburgh Handed-

ness Inventory (Oldfield 1971). Participants were screened

for eligibility using the following exclusion criteria: psy-

chiatric history, neurological disease, drug or alcohol abuse

in the past year, brain surgery, and any standard MRI

counter-indications. All participants had a normal or cor-

rected vision. The procedures of this experiment were
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approved by the Human Research Ethics Committee of

Shenzhen University. All participants in this experiment

signed an informed consent form.

Participants were assigned randomly to the real group

(n = 30) or sham group (n = 30). A single-blind placebo-

controlled design was applied, and the neurofeedback

signals for the sham group were from previously tested

participants of the real group. All participants had to

complete one session of neurofeedback training and the

real group had to complete another session of MRI scan.

Data acquisition

EEG was recorded using a BrainAmp amplifier and

BrainVision Recorder software (BrainProducts, Germany)

from 32 Ag/AgCl electrodes positioned in an elastic cap

according to the international 10–20 system. The sampling

rate was set at 1000 Hz. The electrodes at Fp1 and Fp2

recorded horizontal eye movements, and the electrode at

IO above the right eye recorded vertical eye movements.

Scalp-electrode impedance was kept below 5 kX to ensure

high-quality EEG recordings. EEG signal was collected

during ten neurofeedback training blocks (3 min each) and

two rest blocks (3 min eyes-open and 3 min eyes-closed)

before and after training. In order to explore the association

between neurofeedback learning performance and charac-

teristics of structural and functional networks, MRI images

of all subjects in the real group were also collected (Sup-

plementary Methods 1.1).

Neurofeedback training

Experimental design

All participants in the real and sham groups completed one

neurofeedback training session. The complete session

consisted of five sections: (1) the Positive and Negative

Affect Schedule (PANAS) scale was used to measure self-

reported emotions; (2) resting-state EEG data collection

before neurofeedback training (pre-NF; eyes-open and

eyes-closed, 3 min each); (3) ten neurofeedback training

blocks; (4) resting-state EEG data collected after neuro-

feedback training (post-NF; eyes-open and eyes-closed,

3 min each); (5) an neurofeedback training effect ques-

tionnaire was used to measure participants’ subjective

feelings and strategies. Three questions were included in

the questionnaire: (i) Please briefly describe the adjustment

strategy of the feedback signal used in training. (ii) Please

evaluate whether the strategy you use is effective (scale of

1–5). (iii) Please evaluate the degree of concentration

during training (scale of 1–5).

The neurofeedback training session consisted of ten

training blocks. In particular, the first training block was

the baseline block, during which participants saw moving

feedback signals and were instructed to relax without try-

ing to control the feedback signals. The EEG signals

recorded during the neurofeedback baseline block are used

to calculate the initial individual threshold for the next

block, and the threshold of the neurofeedback signal is

adjusted after each block based on the previous block.

Participants were provided with visual feedback consisting

of a histogram reflecting the current FAA score. If the FAA

score was below the threshold, the histogram was blue;

when the FAA score exceeded the threshold (i.e., desired

state), the histogram became yellow. All participants were

instructed to maintain a positive mental/emotional state

that kept the FAA score increased. If the asymmetry score

was kept above the threshold for more than 10 s, they got

reward points displayed on the screen. Participants of the

real group received real-time feedback about their alpha

activity. The sham group and the real group underwent

identical procedures, except for the feedback provided to

them. Specifically, the real group was presented with

genuine real-time EEG activity and the sham group was

given false EEG feedback using pre-recorded EEG data

from participants who had undergone genuine neurofeed-

back training. After the completion of the neurofeedback

training session, participants’ regulation strategies and

subjective feelings were recorded through questionnaires.

Learning indices

The neurofeedback training performance was assessed

using two indices. The first learning index (L1) measured

the learning effect on the FAA score during the neuro-

feedback training blocks (Enriquez-Geppert et al. 2013).

Specifically, the mean of FAA scores for each training

block was calculated and then a linear regression was

performed on mean values. Then L1 was calculated as the

regression slope. Another learning index (L2) measured the

effect of the neurofeedback protocol on FAA at rest

(Hanslmayr et al. 2005a, b; Alkoby et al. 2018). Specifi-

cally, L2 was calculated as the changes of FAA between

the pre-NF resting-state and post-NF resting-state.

EEG data analysis

Offline analysis

Because interindividual differences in frequency bands are

large for healthy adults (Klimesch 1999), the pre-NF rest-

ing-state EEG data were offline analyzed for estimation of

individual alpha peak frequency (IAPF) to define alpha

band for neurofeedback training as in previous studies

(Quaedflieg et al. 2016; Gong et al. 2020). Besides, both

pre-/post-NF resting-state EEG data were analyzed for the
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calculation of the FAA score. EEG data were processed

using the Letswave toolbox (https://github.com/

NOCIONS/letswave) and the self-written MATLAB

scripts. The continuous resting-state EEG signals were

sampled offline at 500 Hz and band-pass filtered between

0.5 Hz and 40 Hz using a 2nd-order Butterworth filter.

After visual inspection, bad channels were interpolated

with adjacent channels. Then eye artifacts were corrected

by an infomax independent component analysis (ICA). The

components related to eye blinking or movements were

removed from the original data. Finally, all EEG signals

were re-referenced to TP9 and TP10. Based on the power

spectral density of the post-NF resting-state (eyes-closed)

EEG signal recorded at the posterior electrode (Pz), the

IAPF was defined as the frequency of absolute power

gravity between 7.5 and 12.5 Hz (Corcoran et al. 2018).

Then the alpha frequency band was defined individually for

each participant as [IAPF - 2, IAPF ? 2] Hz. The FAA

score was calculated by subtracting the logarithm of left-

alpha power from the logarithm of right-alpha power (log

[F4] - log [F3]).

Online analysis

During neurofeedback training, the EEG signals were

collected and analyzed in real time. Online analysis was

completed by self-written MATLAB script, including

epoching, filtering, online eye movement correction, re-

referencing, spectral density estimation, and calculation of

FAA scores. Specifically, the EEG raw signals were ana-

lyzed in a 6-s window, with a 0.4-s step. There has been a

large variation in the choice of window width in previously

published studies, most studies used a 2-s window

(Quaedflieg et al. 2016; Enriquez-Geppert et al. 2017;

Mennella et al. 2017), while one study used a 20-s window

(Wang et al. 2019). Actually, a targeted neural feature is

differently well captured with windows of different widths,

low-frequency features as opposed to higher-frequency

features necessitate the use of large windows (Darvishi

et al. 2013). Thus, considering alpha-band features used in

this study, we chose a relatively larger 6-s window width

and a larger overlap between adjacent windows in order to

provide smooth feedback to the participant. The EEG

signals were first band-pass filtered between 0.5 and 40 Hz

using a 2nd-order Butterworth filter and then re-referenced

to TP9 and TP10 because these two channels have a higher

signal-to-noise ratio than Cz according to previous FAA

neurofeedback studies (Quaedflieg et al. 2016). Fast

Fourier transform (FFT; 50% Hanning window) was

applied for power spectral density estimation. Power den-

sity values were calculated by averaging spectral power

within the individual alpha band (between IAPF - 2 and

IAPF ? 2) at right (F4) and left (F3) frontal channels and

then the FAA score was calculated. The signal recorded at

the IO electrode was used to detect and remove signals

contaminated by ocular artifacts. Specifically, the individ-

ual threshold for the detection of eye movement was

selected using pre-NF resting-state EEG data, and the

online performance of ocular artifacts detection was

checked after each NF run. The feedback was updated for

every step (0.4-s) signal and it was inhibited if ocular noise

was identified according to the IO channel.

MRI data analysis

Brain parcellation

The whole cerebral cortex was automatically divided into

116 regions of interest (ROIs) using the automatic

anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al.

2002), which has been popularly used in previous studies

of multimodal brain network analyses (Jiang et al. 2019;

Yao et al. 2019). In order to check whether the network

measures of the structural and functional networks of the

hemispheres were related to the learning index, we also

grouped the ROIs of the left and right hemispheres (58

ROIs for each hemisphere) according to the AAL atlas for

constructing the hemispheric networks.

Construction of multimodal brain network

Predefined regions of interest (ROIs) were used for the

construction of the whole-brain and hemispheric networks.

The single-subject gray matter network (GMN) was con-

structed by calculating the inter-regional similarities of

local brain morphology (Kong et al. 2015). The single-

subject white matter network (WMN) was constructed by

counting the number of fiber tracts connecting the two

regions (Cui et al. 2013). The single-subject resting-state

functional brain network (FBN) was constructed using the

mean regional time series of resting-state fMRI data. For

more details on the construction of multimodal brain net-

works, please refer to Supplementary Methods 1.2.

Global properties of network analysis

We used the Graph Theoretical Network Analysis

(GRETNA) toolbox to calculate global graphic-based net-

work metrics of both functional and structural brain net-

works (Wang et al. 2015). Because the physiological

interpretation of negative correlations is ambiguous (Mur-

phy and Fox 2017), functional connections with negative

correlation values were not considered here. Binary undi-

rectional structural or functional brain networks were built

for each subject by thresholding the GMN/WMN/FBN

matrices at predefined thresholds (from 10 to 40%, with 1%
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intervals). This sparsity band was used to ensure that the

network density was less than 50% and the average degree

was greater than the natural logarithm of the number of

nodes (Chen et al. 2019). The global metrics included

small-world parameters (normalized clustering coefficient

gamma, normalized characteristic path length Lambda),

and network efficiency parameters (global efficient Eg and

local efficiency Eloc). The metrics of small-worldness

(gamma and lambda) quantify the balance between the

segregation and integration of the information processing

and communication in the brain (Humphries et al. 2006).

The network efficiency is a biological relevant metric to

describe brain networks from the perspective of informa-

tion transfer (Achard and Bullmore 2007). For each net-

work metric, we calculated the area under the curve (AUC)

over the range of sparsity, which provides a summarized

scalar for the topological characterization of brain net-

works independent of the single threshold selection.

Besides, we also calculated these small-worldness and

efficiency metrics for each hemispheric network (Fig. 1).

Statistical analysis

Statistical analysis was carried out using IBM SPSS 22.

The Chi-square test was used for gender and independent

two-sample t-tests were used for age and psychological

ratings. Besides, a paired-sample t-test of the FAA score

between pre-NF and post-NF resting-states was performed

for each group, and two sample t-tests were performed to

compare learning indices between the real group and sham

group.

For the real group, we examined the correlations

between learning indices (L1/L2) and graph-theoretical

metrics of the multimodal MRI network by partial corre-

lation analysis, controlling for age and sex as confounding

variables (P\ 0.05). Due to the exploratory nature of the

analysis, uncorrected P values were retained.

Results

Sample characteristics and behavioral results

This study included 30 participants in the real group and 30

participants in the sham group. There were no significant

differences in gender, age, pre-NF mood (PANAS score),

and self-reported validity of neurofeedback between the

two groups. There was a significant difference in self-re-

ported attention between the two groups, with participants

in the real group paying more attention during neurofeed-

back training than in the sham group (real group = 4.07

± 0.63, sham group = 3.69 ± 0.66, P = 0.03). The

descriptive statistics for each group was shown in Table 1.

Learning effects of neurofeedback training
on FAA

The learning performance of FAA neurofeedback training

was assessed by investigating the effect of the neurofeed-

back protocol on changes of FAA during the neurofeed-

back blocks and at pre-NF/post-NF rests. Figure 2A

provides a visual representation of the mean FAA score of

10 consecutive neurofeedback training blocks for each

group. It can be seen that participants in the real group

were able to significantly improve the FAA score during

training (R = 0.84, P = 0.002), while participants in the

sham group did not (R = 0.31, P = 0.39). According to

Fig. 2B, the real group, but not the sham group, showed a

significant increase in FAA at rest (post-NF compared with

pre-NF; P = 0.03). The neurofeedback training perfor-

mance was assessed using two neurofeedback learning

indices (L1 and L2), and no significant group difference

was observed for both L1 (FAA change during training

blocks; Fig. 2C) and L2 (FAA change between pre-NF and

post-NF resting-states; Fig. 2D).

The correlation between learning effect
and graph-theoretical metrics of structural
networks

The global graph-theoretical metrics of the whole-brain

and hemispheric structural networks (GMN and WMN)

were calculated for the real group, and the correlation

analyses between graph-theoretical metrics and neuro-

feedback learning indices (L1/L2) were performed. Sig-

nificant results were only observed between global graph-

theoretical metrics of GMN and neurofeedback perfor-

mance during training blocks (as assessed by learning

index L1). As shown in Fig. 3A, D, significant negative

correlations between graph-theoretical metrics and L1 were

mainly observed in the right hemisphere (normalized

clustering coefficient, R = - 0.51, P = 0.005; local effi-

ciency: R = - 0.44, P = 0.02). No significant correlation

was observed between characteristic path length and global

efficiency and L1 (Fig. 3B, C). For neurofeedback learning

index L2, which assessed the changes of FAA between pre-

NF and post-NF resting-states, no significant correlation

was observed for all global graph-theoretical metrics.

The correlation between learning effect
and graph-theoretical metrics of functional
networks

The neurofeedback learning index L1 according to FAA

change during training blocks showed a significant positive

correlation with local efficiency of the right hemispheric
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FBN (R = 0.46, P = 0.01, Fig. 4B), but no significant

correlation with global efficiency (Fig. 4A).

For the learning index L2, which assessed the FAA

change between pre-NF and post-NF rests, significant

correlations were mainly observed for the whole-brain and

left hemispheric FBN. Such as negative correlation with

small-worldness (Fig. 5A; whole-brain normalized clus-

tering coefficient, R = - 0.38, P = 0.04), negative corre-

lation with global efficiency (Fig. 5C; whole brain,

R = - 0.37, P = 0.047; left hemisphere, R = - 0.42,

P = 0.02), and negative correlation with local efficiency

(Fig. 5D; whole brain, R = - 0.54, P = 0.002; left hemi-

sphere, R = - 0.47, P = 0.01), but no significant correla-

tions was observed for the characteristic path length

(Fig. 5B).

bFig. 1 The flowchart depicts the main analytic process of constructing

the multimodal brain networks

Table 1 The demographic and

behavioral results
Real group

(n = 30)

Sham group

(n = 30)
t=X2, P

Age 22.13 ± 2.05 22.43 ± 2.14 t= - 0.55, P = 0.58

Gender 14 M/16F 14 M/16F X2= 0, P = 1

PANAS.pos 31.73 ± 5.72 30.70 ± 5.27 t= 0.73, P = 0.47

PANAS.neg 17.33 ± 4.94 19.20 ± 5.52 t= -1.38, P = 0.17

Self-reported validity score 3.68 ± 0.55 3.40 ± 0.84 t= 1.51, P = 0.14

Self-reported attention score 4.07 ± 0.63 3.69 ± 0.66 t= 2.24, P = 0.03*

Both mean and SD are shown. *P\ 0.05

M, male; F, female; PANAS.pos, positive score of the Positive and Negative Affect Schedule; PANAS.neg,

negative score of the Positive and Negative Affect Schedule

Fig. 2 Neurofeedback modulation of FAA. A The real group, but not

the sham group, showed a significant increase in FAA during training

blocks. B The real group, but not the sham group, showed a

significant increase in FAA at rest. C No significant group difference

was observed for learning index L1 (FAA change during training

blocks). D No significant group difference was observed for learning

index L2 (FAA change between pre-NF and post-NF resting-states).

FAA frontal alpha asymmetry, NF neurofeedback
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Discussion

The present study applied graph-theoretical analyses on

both functional MRI and structural MRI data to identify the

multimodal brain network predictors related to the learning

ability of participants during FAA neurofeedback training.

Our study revealed three main findings: (i) The predictors

of learning performance were different for evoked EEG

modulations during training blocks and at rest, so it is

necessary to evaluate the efficacy of EEG neurofeedback

training in different ways and investigated its related pre-

dictors separately. (ii) At the overall topological level, the

learning performance in evoked EEG modulations was

correlated with topographic metrics of both functional and

structural brain networks, so individual differences in

neurofeedback learning performance could be explained

with (stable) trait-like variation in structural/functional

architecture. (iii) Despite common small-world organiza-

tion for both the hemispheres and imaging modalities,

correlated global topological metrics of different learning

performance indices showed different laterality of hemi-

spheric brain networks.

Efficacy of FAA neurofeedback training in evoked
EEG modulations

FAA is thought to reflect the balance between the left and

right prefrontal lobe activity (Davidson et al. 1990; Cook

et al. 1998). Accordingly, greater left-sided activity (re-

duced alpha at left) has been related to the approach system

and positive emotions (Sutton and Davidson 1997; Jackson

et al. 2003). On the other hand, greater right-sided activity

(reduced alpha at right) has been associated with the

withdrawal system and negative emotions (Tomarken et al.

bFig. 3 Scatter plots with linear regression fit and a 95% confidence

interval for the correlations between global properties of GMN and

individual learning performance during training blocks (L1). GMN
gray matter network, AUC the area under curve. L1, neurofeedback

learning index according to FAA change during training blocks

Fig. 4 Scatter plots with linear regression fit and a 95% confidence

interval for the correlations between global properties of FBN and

individual neurofeedback learning performance L1 during training

blocks. FBN functional brain network, AUC the area under curve. L1,

neurofeedback learning index according to FAA change during

training blocks
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1992; Davidson 1998). EEG neurofeedback has been pro-

posed as a tool to modulate FAA, and the successful self-

regulation of EEG activity is necessary to achieve the

essential purpose of neurofeedback (Weber et al. 2020).

The assessment criteria of neurofeedback learning are

heterogeneous as reported in recent reviews (Alkoby et al.

2018; Weber et al. 2020). Since the current study only

included one training session, the learning ability was

assessed by the changes within a short period. According to

existing studies, the efficacy of neurofeedback training in

evoked EEG modulations was typically evaluated by

comparing the targets of brain activity (neurofeedback

signal) recorded within/between training sessions or before

and after the whole training (Rogala et al. 2016). Previous

studies focused on the comparison of these parameters of

neurofeedback efficacy between the experimental and

control groups, and the observed significant difference

could indicate successful training in the EEG domain.

Here in this study, participants from both real and sham

groups could increase their FAA during training blocks by

maintaining a positive emotional state. Because false

feedback signals of the sham group were not conducive to

real-time adjustment of regulatory strategies, the increasing

trend of FAA during training blocks was more obvious for

the participants in the real group. Besides, only the real

group showed a significant increase in FAA at rest. Even

though measured training efficacy during training blocks

was not significantly different between the real group and

sham group, we can also qualify them as a success when

the comparison between the pre-training and post-training

measurements provided a different outcome in the real and

sham group. Because it is possible that real neurofeedback

training is more effective in changing tonic rather than

phasic FAA as tonic alpha changes occur at a slower rate

(Hanslmayr et al. 2005a, b; Quaedflieg et al. 2016). After

the examination of neurofeedback effects on EEG for the

whole group, the large inter-individual difference in neu-

rofeedback learning should be noticed, which is consistent

with previous studies (Quaedflieg et al. 2016; Mennella

et al. 2017). However, so far the reason for the FAA

neurofeedback learning difference has been rarely

investigated.

Predictors of the efficacy of FAA neurofeedback
during training blocks

The assessment of learning ability varies among previous

studies (Weber et al. 2020), within-session changes have

been proposed to be more useful to identify changes

resulting from neurofeedback training (Dempster and

Vernon 2009). As one of the most studied assessments of

learning ability, we defined the learning index L1 to cap-

ture immediate responsiveness. In order to investigate if the

individual differences in neurofeedback learning perfor-

mance can be explained by trait-like variation in brain

architecture, global topographic measures that reflect long-

term functional/structural network organization were ana-

lyzed. Resting-state FBN may reflect stable functional

brain organization sculpted by long-term experiences and

the nature of these intrinsic networks was associated with

inter-individual differences in cognitive functions (Cohen

and D’Esposito 2016; Vriend et al. 2020). GMN is a robust

and valuable tool for investigating topological organization

and it can provide information complementary to resting-

state brain network analysis (Alexander-Bloch et al. 2013).

Compared with FBN, structural networks (such as GMN

and WMN) could reflect more stable patterns of the

anatomical organization affected by heredity, and experi-

ence-related plasticity (Kong et al. 2015). Besides, it is

widely acknowledged that the left and right hemispheres of

human brains display both anatomical and functional

asymmetries (Tian et al. 2011), and FAA is a measure of

the hemispheric differences in alpha oscillations, therefore

possible predictors of hemispheric metrics were also

investigated.

In this study, we constructed structural and functional

networks based on whole-brain and separate hemispheres

and observed small-worldness (Figures S1 and S2 in the

supplementary materials). According to our results, the

individual differences in learning ability during training

blocks can be explained by the topographic metrics of both

functional and structural networks of the right hemisphere,

including clustering coefficient and local efficiency. During

FAA neurofeedback training, the participants were trying

to maintain a positive emotional state by recalling happy

memories, and the right hemisphere was thought to dom-

inate related emotional functions (Gainotti 2019). This

explains why the observed predictors for learning ability

during training blocks were mainly on the right hemi-

sphere. Specifically, the neurofeedback learning index L1

showed a significant positive correlation with local effi-

ciency of the right hemispheric FBN, which means par-

ticipants with a less integrated brain network during

resting-state showed better learning performance. The

ability of the brain for integration and segregation is vital

bFig. 5 Scatter plots with linear regression fit and a 95% confidence

interval for the correlations between global properties of FBN and

individual neurofeedback learning performance L2 during resting-

states. FBN functional brain network, AUC the area under curve. L2,

neurofeedback learning index according to FAA change between pre-

NF and post-NF resting-states
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for cognitive processes (Cohen and D’Esposito 2016), and

a previous study proposed that individuals with a more

integrated brain during resting-state are less able to further

increase network efficiency when transitioning from rest to

task state, leading to slower response during cognitive tasks

(Vriend et al. 2020).

Contrary to the functional network, we observed sig-

nificant negative correlations between graph-theoretical

metrics (clustering coefficient and local efficiency) of the

morphological structural network of right hemispheric and

neurofeedback learning index L1. The disparity in the

results related to functional and structural brain networks

may be attributed to the distinct neural mechanisms

underlying morphological and functional brain network

alternations (Reid et al. 2016). A more integrated mor-

phological network has been associated with a higher score

of cognitive intelligence (Li et al. 2021a, b). A study

reported that individuals who have a higher score of

intelligence could perform better in learning self-control of

gamma during neurofeedback training (Khodakarami and

Firoozabadi 2020). Because no intelligence assessment was

included in the current study, future studies are needed to

further verify the potential relationship between topo-

graphic metrics of the morphological network, learning

performance during FAA neurofeedback training, and

cognitive intelligence.

Predictors of the efficacy of FAA neurofeedback
at resting-states

Different evaluation criteria in neurofeedback learning may

lead to different results of learning performance, but they

are not conflicted because they evaluated different aspects

of neurofeedback learning. Two types of learning indices

were widely used in published studies: one type of indices

focuses on the learning performance during training blocks

(such as L1 in the current study) (Enriquez-Geppert et al.

2013; Wan et al. 2014; Nan et al. 2015; Ninaus et al. 2015;

Reichert et al. 2015; Kober et al. 2017, 2018), while

another type of indices usually focuses on the learning

performance across training sessions (Enriquez-Geppert

et al. 2013; Wan et al. 2014; Nan et al. 2015). Because here

the participants only performed one training session, the

learning performance across sessions cannot be evaluated.

One previous study of FAA neurofeedback training has

assessed neurofeedback learning by the changes of training

parameters between pre-NF and post-NF resting-states

(Quaedflieg et al. 2016). Their results indicated that sig-

nificant cross-sessions change in FAA was only found

during the rest and not during the training blocks

(Quaedflieg et al. 2016). The results here in the current

study showed a significant change of FAA during resting-

state only for the real group, not the sham group.

Therefore, it is necessary to investigate whether there are

any parameters related to learning ability during resting-

states.

For the learning index L2, which assesses the FAA

change between pre-NF and post-NF resting-states, sig-

nificant negative correlations were mainly observed for the

whole-brain and left hemispheric FBN. Specifically, par-

ticipants with better learning performance during resting-

states were associated with less clustering coefficient,

global efficiency, and local efficiency. These graphic

metrics can all be seen as complementary measures of how

efficiently the information is transferred throughout the

brain (Bullmore and Sporns 2009). The local efficiency can

be thought of as the global efficiency of the sub-network

consisting only of a node’s neighbors, and the average local

efficiency at the whole-network level reflects the network’s

ability to effectively compensate for the localized failure of

a single node. Similarly, the clustering coefficient at the

whole-brain level can be thought of as the average effi-

ciency of information transfer throughout the brain. The

previous study has reported that higher levels of trait

emotional awareness are associated with more efficient

global information integration, greater local processing

efficiency, and clustering of resting-state functional brain

network (Smith et al. 2018). Hence, the modulation effect

of resting-state FAA might be more efficient for individ-

uals with low emotional awareness, reflecting the effec-

tiveness of FAA feedback training as an emotion regulation

training approach. However, compared with the predictors

obtained for the learning performance during neurofeed-

back training (L1), the predictors of learning performance

at resting-states (L2) showed different laterality. So far,

there were two main models concerning the relationship

between emotions and brain laterality. The first model

posits a general dominance of the right hemisphere for all

emotions, regardless of affective valence (Gainotti 2012);

the second model assumes an opposite dominance of the

left hemisphere for positive emotions and of the right

hemisphere for negative emotions (Killgore and Yurgelun-

Todd 2007). Due to the lack of evaluation of emotional

state changes, we can only assume that the learning effect

during resting-states might be derived from a more positive

emotional state after training, which is more related to the

left hemisphere.

Limitations and future directions

The findings of this study still need further validation. One

important limitation of our study is the single-session

neurofeedback training design and the learning ability was

assessed by the changes within a short period. Most prior

research in this area has focused on learning performance

across multiple training sessions for both self-regulation of
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EEG activities and the long-term effects of enhanced

behavioral performance (Weber et al. 2020). Second, MRI

data have not been collected for the sham group, however,

the sham group also showed some level of learning effect,

and comparing the predictors of learning effect between

groups would help to control for the non-specific effects

possibly driving learning. Third, considering reported

gender-related differences in topographic metrics of both

whole-brain and hemispheric networks (Tian et al. 2011),

future studies with larger sample sizes could report data

analysis results separately for male and female participants.

Fourth, the neuroimaging predictors correlated with the

learning ability are different among different neurofeed-

back paradigms, depending upon some psychological and

physiological mechanisms. Therefore, the specificity of

these brain network predictors of FAA neurofeedback

should be considered in future studies. Last but not least, it

is unclear how these predictors can be transferred to patient

groups, such as patients with major depression. Despite that

one recently published meta-analysis questioned FAA as a

biomarker of depression disorders (Kolodziej et al. 2021),

existing evidence provides a strong rationale for the use of

FAA neurofeedback training for the reduction of depres-

sive symptoms in clinical settings (Peeters et al. 2014a, b;

Quaedflieg et al. 2016; Zotev et al. 2020). Thus, we need to

recruit patients in future experiments to investigate whether

the identified network metrics correlated with neurofeed-

back learning performance can be generalized to patient

groups.

Conclusion

As the first study to date, we investigated the correlation

between the learning performance of FAA neurofeedback

training and the global topographic metrics of multimodal

large-scale brain networks. Our results suggested that

individual differences in FAA neurofeedback learning

performance could be explained by trait-like variation in

large-scale brain network architecture, which improves our

knowledge about the mechanisms of inter-individual dif-

ferences in neurofeedback learning. These findings have

the potential to be used for designing individualized neu-

rofeedback protocols as well as the promotion of neuro-

feedback training techniques in clinical applications. To

achieve this purpose, future research should consider using

a long-term training evaluation design with multiple

training sessions and include patients with mood disorders

to validate and extend the results of this study.
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