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Abstract—This study focuses on a demonstration of differences
between movement-related cortical potentials (MRCPs) during
emergency and non-emergency situations. Two paradigms were
designed for emergency and non-emergency situations. The nec-
essary pre-processing and Laplacian spatial filter were used in the
collected data. Then initial negative phase of MRCPs was extract-
ed from scalp electroencephalogram (EEG) in non-emergency
situation and compared with that in emergency situation. Based
on the data of non-emergency, a matched filter (MF) algorithm
was designed and was used to detect the motor intention in
two paradigms. The result shows a significant difference of the
initial negative phase of the MRCP in two cases. In addition, if
the MF algorithm based on non-emergency situation was used
for emergency situations directly, there was a large difference
in accuracy. The true positive rate was 60.57±14.79% in non-
emergency while 44.29±5.73% in emergency. The result indicates
that additional consideration should be given to emergency
situation when designing algorithms or collecting data. So,
we designed a new algorithm to solve this problem, which
works better compared to simple MF. The algorithm effectively
improves the true positive rate and reduces the false positive per
minute.

Index Terms—electroencephalogram (EEG); movement-related
cortical potential (MRCP); motor intention; emergency and non-
emergency.

I. INTRODUCTION

Brain Computer Interface (BCI) technology allows people
to control external devices directly through EEG or other
brain signals, which has attracted increasing attention in
recent years. In early years, BCI research aims at helping
paralysed people to be more independent. Therefore, the early
application of BCI was mainly in medical field[1]. With the
development of BCI technology, people saw its potential
application in non-medical field. Recently, more and more
attention has been paid to the application of BCI technology
inin games, status detection and evaluation, and movement
intention prediction for normal people[2][3].

The control of external devices depends largely on the user’s
movement intention, so the detection of the motion intention is
the key to the normal operation of the related BCI equipment.
So far, the research on the control of external equipment based
on the detection of motion intentions, has been developed
to predict the occurrence of braking action and to control
quadcopter to capture targets[4][5]. MRCP is a slow cortical
potential. Using MRCP is one of the most commonly used
methods for the detection of motion intentions[6]. Methods of

classification and detection of MRCP include Support Vec-
tor Machine (SVM)[7], Locality Preserving Projection-Linear
Discriminant Analysis (LPP-LDA)[8], MF[9] and so on. The
latest method is locality sensitive discriminant analysis with
nearest-neighbor (LSDA-NN)[10], and some of the methods
has been used for online system and has got a good effect.
However, the current approaches are based on non-emergency
data which is collected from the self-paced movement.

In real life, the situation where drivers braked sharply is
commonly seen. If the MRCP has a large difference between
emergency and non-emergency situations, the algorithms es-
tablished in non-emergency situation will become not suited
to an emergency. Thus, it is possible to have serious conse-
quences if the movement intention of the emergency is not
detected. However, few people pay attention to this aspect.
It isn’t easy to design the experimental paradigm that only
changes the preparation time and set up the corresponding
experimental environment. The intensity and speed of subjects
may cause some interference. Therefore, the another challenge
is to reasonably quantify the electromyography (EMG) signals
in two situations and compare them.

We designed two scenarios, and all subjects needed to
complete the emergency and non-emergency tasks. After using
the same pretreatment and spatial filtering, we found that there
was a significant difference in MRCP with two situations.
The interval between the initial negative phase of the two is
about 0.8s. We found that there wasn’t significant difference
between EMG singles in two cases (p=0.147). The change in
MRCP was mainly due to the change of the preparation time.
Then, we applied the MF algorithm which was based on the
non-emergency data to the data collected in both tasks. The
detection accuracy calculated as true positive rate (TPR) was
60.57±14.79% for non-emergency task, while 44.29±5.73
for the emergency case. The TPRs of all subjects were less
accurate in the case of emergency (except for subject 5).
Finally, we combined MF and SVM to detect the movement
intention, and the recognition accuracy increased by 9.14%
compared with the effect using the MF algorithm.

II. MATERIALS AND METHODS

A. Participants

Seven healthy, right-handed subjects (three females, av-
erage age 21.7±1.6 years), denoted by SUB1-SUB7, par-
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Fig. 1: The virtual emvironment of non-emergency task.
Subjects sit on the chair with right foot on the brake pedal and
take actions according to what they saw on the screen in front
of them. In this virtual environment, it displays a suburban
road, with no traffic signs or traffic lights. The setting of the
virtual environment is different between emergency and non-
emergency tasks.

Fig. 2: Schematic diagram of the two tasks. The schematic
diagram on the top represents a non-emergency task, while the
below is for the emergency task. The time interval in which the
obstacle appears is a random value between 5 and 8 seconds
in two cases.The probability of obstacles on either side is the
same, while the time required for the movement of obstacles
from either side to the front of the vehicle is also the same.

ticipated in the experiment. Every subject had normal or
corrected-to-normal vision, reported normal hearing and had
no history of known neurological diseases. All subjects gave
their informed consent before participation.

B. Virtual environment and experimental paradigm

The virtual environment displayed on the screen was
developed using the Open Graphics Library (OpenGL) cross-
platform graphical programming interface.

1) Non-emergency tasks: The road in the virtual environ-
ment will appear an obstacle every once in a while, and the
obstacle will move to the front of the vehicle when the vertical
distance between the vehicle and the obstacle is less than a
certain distance. The subjects need to step on the brakes before
the vehicle hits the object. Given that the subjects are able to
detect obstacles in the distance and are ready to step on the
brakes, they are thought to have completed a non-emergency
mission when they step on the brake once.

2) Emergency tasks: In emergency tasks, other settings
in the virtual environment are consistent with non-emergency
settings. The only difference is that there are always obstacles

on both sides of the road, but not all of obstacles will move to
the front of the vehicle. Since the obstacle is suddenly moving
from the pavement to the driveway, the subject has little time
to prepare and will hit the brake as fast as he can. In this
case the subject puts on the brakes once, and we think he has
finished an emergency task.

At the experimental stage, each experiment was divided
into five rounds, 5 minutes per round. The rest time between
each two rounds is 2∼3 minutes.

C. Data acquisition

A Brain Products GmbH BrainAmp Amplifier and an
EasyCAP EEG cap were used to collected nine channels
of EEG. The EMG signals were recorded from the tibialis
anterior muscle of the right leg. According to the standard
international 10-20 system, the EEG electrodes were placed on
Fz, FC1, FC2, C3, Cz, C4, CP1, CP2 and Pz, while the ground
electrode and reference electrode were placed on AFz and
FCz. The impedances were below 15kΩ for EEG electrodes
and below 50kΩ for EMG before data acquisition. The EEG
and EMG were sampled at 5000Hz.

D. Signal analysis

The data we obtained was used in the form of a five-fold
cross validation. That is, every time four of the five data sets
was selected as the training set to extract the tracking template,
and then the remaining one data sets were used as the test set
to verify the effect. Data processing was in two steps. First
was pre-processing, including the spatial filtering operation.
The second step was to extract the detected template from the
training set. With the extracted template, the motion intention
would be detected in the test set by using the matching filter
algorithm.

1) Pre-processing: First, we deleted the useless infor-
mation from EEG signal and EMG signal we obtained. When
the virtual environment ended, the background program is still
recording the data. Besides, before the first obstacle appeared,
some subjects had some unnecessary actions. So to avoid the
interference of these useless data, we only intercepted data
collected from when the first obstacle appeared to the time
the virtual environment program ended. In addition, for EEG
signals, the bandpass filter (second-order Chebyshev type II)
was used for filtering with the frequency of 0.04-3Hz, and
then down-sampled to 50Hz. The EMG signals were high-pass
filtered (second-order Butterworth) with a cut-off frequency of
10Hz.

2) Definition of reference events: In order to compare
with the final detection result, the reference movement onsets
were supposed to be found. One-tenth of the maximum am-
plitude of the electromyography signals in the whole process
of physical movement was considered as the threshold, and
the time point of signal amplitude crossing threshold was
approximated as the start time of the movement[11].

3) The comparison of EMG signals: After determining
the time of movement, we extracted the EMG signals from
three to three seconds before and after each movement and
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Fig. 3: (A)Average MRCP signals under emergency (dashed
line) and non-emergency (solid line) tasks. It can be seen
that, under emergency task, the descending curve of MRCP
is in the position of -0.2s, while in the emergency task,
the corresponding inflection point is at -1s. In cases, the
initial negative phases of MRCP are significantly different.
The initial negative phase of the signal under an emergency
task is delayed, close to the movement onset.(B)Average EMG
signals under emergency (dashed line) and non-emergency
(solid line) tasks. The start time of movement corresponds
to 0s in the figure.

calculate the average value of two tasks (See Fig.3(B)). Since
EMG signals were mainly concentrated in the time period of
0∼0.25s, the root mean square (RMS) value of this period
is used to represent the energy feature of the signals during
exercise. We carried out paired-sample t-test for 7 pairs of
RMS values, and the difference was not significant between
them (p=0.147).

This result and Fig.3(B) can show that there is no
significant difference between the EMG signals in the two
cases, so the MRCP signals is only related to the length of
the preparation time, which has nothing to do with the speed
and intensity of stepping down the pedal.

4) Spatial filtering: Spatial filtering is a common method
in MRCP signal processing and analysis, which can ef-
fectively increase the signal-to-noise ratio. Using Laplacian
spatial filter (LSF) as the spatial filter, the formula is Cz
- (FC1+FC2+CP1+CP2+PZ+FZ+C3+C4) /8. The sum of all
coefficients is zero, so it can remove the spatial dc components.
The surrogate Cz channel after LSF will be used for matched
filter algorithm.

E. Matched filter algorithm

There are a number of effective classification and detec-
tion techniques, such as K-Nearest Neighbors(KNN), Support
Vector Machine (SVM), Bayesian Classifiers (BC), Neural
Network (NN), etc. However, Matched Filter (MF) is a method
which can easily calculate the time interval between the
detection point and the reference point. Besides, it can also

be used for online system[8][9][11][12].
We can extract all the MRCPs in the training set and

take the mean value as the template for the matching filter
detection. But this method is not practical and not good
enough. It can achieve better detection result with the part
of the MRCP as the template for detection.

When conducting detection, we did the same pre-
processing (remove the useless data, etc.) for the test set, and
then used the template extracted from the training set to detect
the motion intention. The true positive rate (TPR) and the
number of false positive (FP) per minute were calculated as
performance parameters for the MF algorithm evaluation.

F. MF-SVM

This algorithm combined matched filter and support vec-
tor machine. Each subject had ten data sets (five for emergency
and five for non emergency). Each round we selected a data
set as a test set, and then extracted two templates (emergency
and non emergency) from the remaining data. The remaining
data were processed by MF algorithm based on two templates,
and the result was the training data for SVM. The test data of
SVM was the selected test set with the same operation.

III. RESULT

A. The difference of full MRCPs in two cases

After the experiment finished, the data obtained was
used to extract the MRCP template. Three seconds before
and three seconds after of a reference point was seen as
an MRCP segment. In two types of tasks, we got seven
subjects’ MRCPs. Then for each subject, we got an average
MRCP in each task, which was used as his or her full MRCP
template for the corresponding task. The final average MRCP
template in a task, presented in Fig.3(A), was obtained by
the accumulation of everyone’s full MRCP template under the
corresponding task divided by the number of subjects. We can
see from the figure that the initial negative phase of MRCP
was very different in two cases. We recorded three values
of the average MRCP of each subject under two tasks. They
were the minimum value of MRCP, the corresponding time,
and the initial time of negative phase. The t-test was used to
determine whether there was a significant difference between
the MRCPs of the two tasks. The results showed that the initial
time of negative phase were very different (p=0.002), but there
was little difference between the other two values(p=0.765 for
the minimum value of MRCP and p=0.487 for the time of
corresponding minimum value). So even for the same person,
the MRCP generated in an emergency is very different from
the normal time.

B. Comparison of Non-emergency task and emergency task

In order to further demonstrate that there are significant
differences between emergency and non-emergency data, it is
necessary to consider two cases separately, especially when
using the algorithm such as MF, which requires a template.
Therefore, we used the MF algorithm to detect movement
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TABLE I: The result of all subjects in two tasks

Non-emergency Emergency

SUB.ID TPR(%) FP(per min) TPR(%) FP(per min)

SUB.1 76 4.13 44 10.31
SUB.2 47 8.97 45 7.41
SUB.3 67 4.90 50 5.52
SUB.4 54 7.75 44 5.96
SUB.5 41 7.68 52 9.52
SUB.6 58 5.84 35 10.6
SUB.7 81 2.36 40 11.2

Avg 60.57±14.79 5.94±2.33 44.29±5.73 8.64±2.32

intention upon the data obtained from two tasks. In non-
emergency situation, we took the [-1, 0]s before the peak
negativity of full MRCP template as the detection template. In
an emergency, we used the corresponding time point of each
person in non-emergency situation to determine the detection
template. Then we selected the turning point in the receiver
operating characteristic curve as the threshold. The test sets
were tested with these selected parameters.

The detection results of all subjects are shown in Table 1.
In non-emergency situation, the TPR was 60.57±14.79%, and
the number of FP was 5.94±2.33 per minute. In an emergency,
the average TPR and FP per minute of all subjects were
44.29±5.73% and 8.64±2.32 respectively. T-test showed that
the accuracy of the emergency was significantly lower than
that of non-emergency situation (p=0.019). This is the result
of using a time interval of each subject in a non-emergency
situation to obtain a detection template of an emergency case
without additional consideration.

(a) TPR of two methods (b) FP per minute of two methods

Fig. 4: The true positive ratio and the false positive of MF-
SVM and MF.

C. Comparison of SVM-MF and MF

After using MF-SVM on the data, we can compare the
result with before. It’s obvious that MF-SVM is better than
the simple MF (See Fig.4). Besides, the true positive rate of
MF was 52.43±6.86% and the false positives per minute was
7.30±1.17, which was an average value of non-emergency and
emergency tasks. However, the values were 61.57±5.19% and
6.41±0.93 for MF-SVM.

IV. DISCUSSIONS

Whether there is a difference between MRCPs in e-
mergency and non-emergency situations, determines whether
emergency situation should be taken into account in designing
algorithms and choosing parameters. We demonstrate that the

MRCP of emergency situation differs greatly from that of non-
emergency (see Fig.3(A)). This difference is only related to
the preparation time by comparing the EMG signals of two
tasks. In addition, if the emergency situation is not considered
separately, and the parameters in the non-emergency situation
are used directly in the emergency situation, it will lead to
the loss of the accuracy of recognition and the increase of the
FPR.

The MRCP-BCI technique is developing continuously in
the field of detection of motor intention. Its effect is getting
better, and the application of MRCP-BCI gradually extends
from offline identification to online identification. User scope
also extends from patients to healthy people. However, in
these studies, the data obtained from the experiment was
basically collected from the self-paced movement, which
was collected in non-emergency situation. Conclusions and
methods for non-emergency situation can be helpful for the
rehabilitation of neurological diseases such as stroke.When
applying brain-computer interface technology to people’s daily
life, emergency situation exists inevitably, but relatively rare.
If emergency situation is not taken into account, algorithms
will be designed based on non-emergency data completely.
Finally, the probability of an error increases greatly in case of
an emergency. If the equipment is always unable to respond
properly in an emergency, the corresponding consequences
will be serious.

The limitation of our work is that we only used the MF
algorithm to prove the difference, and did not compare other
algorithms such as SVM and LDA[8], which are commonly
used for offline identification. Besids, the number of subjects
was small in this experiment. Larger data will have a better
effect on validation differences. And because of the limitation
of the equipment, there was no online experiment to obtain
real-time information. In addition, the detection of movement
intention using the SVM-MF algorithm achieved the average
accuracy of 61.57%, which was not good enough for urgent
situations.

The future work is to recruit more subjects, and validate
the conclusion on other algorithms. In addition, we are sup-
posed to find a more efficient and accurate algorithm.

V. CONCLUSION

The study demonstrates that MRCPs are significantly
different in emergency and non-emergency situations, and the
lack of consideration of that can lead to low accuracy of
movement recognition in emergency situation. This conclusion
indicates that the emergency needs to be paid more attention
to. So, we proposed a new algorithm based on MF and SVM.
This work has certain significance to the detection of the
movement intention through MRCP.
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