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A B S T R A C T   

Alpha band oscillations are the most prominent rhythmic oscillations in EEG, which are related to various types 
of mental diseases, such as attention deficit hyperactivity disorder, anxiety, and depression. However, the dy
namics of alpha oscillations, especially how the endogenous alpha oscillations be entrained by exogenous 
stimulus, are still unclear. Recently, a newly-developed phase-locked visual feedback (PLVF) protocol has shown 
effectiveness in modulating alpha rhythm, which provides empirical evidence for the further investigation of the 
neural mechanism of alpha dynamics. In this work, extensive numerical simulations based on four well-studied 
models were used to investigate the questions that (1) What kind of dynamic model exhibits a modulation 
phenomenon of PLVF? (2) What is the dynamic mechanism of PLVF for alpha modulation? (3) Which factors 
affect the modulation effects in PLVF? The result indicates that the dynamics of endogenous alpha oscillations are 
close to a simpler dynamic structure, like fixed-point attractor or limit-cycle attractor, which shows a global 
consistent dynamic behavior at different phases of the alpha oscillation. The further analysis explains the dy
namic mechanism of PLVF for amplitude and frequency modulation of the alpha rhythm, as well as the influence 
of parameter settings in the modulation. All these findings provide a deeper understanding of the endogenous 
alpha oscillations entrained by exogenous phased locked visual stimulus and lead in turn to the refinement of a 
control strategy for alpha modulation, which could potentially be used in developing new neural modulation 
methods for cognitive enhancement and mental diseases treatment.   

1. Introduction 

Discovered by Hans Berger in 1924, alpha rhythm (8–12 Hz) is the 
earliest recorded human brain rhythm, which is the most prominent 
rhythmic oscillation in Electroencephalography (EEG) (Cohen, 2017; 
Ince et al., 2020). Many studies have shown that alpha rhythm is highly 
related to several types of cognitive functions (Debener et al., 2006; 
Hanslmayr et al., 2005), like memory (Hsueh, 2017; Maltseva and 
Masloboev, 1997) and attentional (Hanslmayr et al., 2011). Abnormal 
alpha rhythm is often related to various types of mental diseases, such as 
attention deficit hyperactivity disorder (Butnik, 2005; Fox et al., 2005), 
anxiety (Hammond, 2005), and depression (Choi et al., 2011). Hence, 
the modulation of alpha rhythm has raised the fascinating prospect of 
brain functions enhancement and mental disease treatment. Common 

approaches of non-invasive neural modulation, like transcranial elec
trical or magnetic stimulation (tES or TMS), can directly modulate alpha 
rhythm by delivering external stimuli. However, the strong electro
magnetic artifacts during the exogenous stimulation (Noury and Siegel, 
2017; Noury et al., 2016) have made the investigation of the modulation 
mechanism and the inter-subject response variability difficult, and the 
large response variability has limited the use of these techniques. 

In the previous work, Huang et al. (2019) has proposed phase-locked 
visual feedback (PLVF) protocol for robust artifact-free alpha rhythm 
modulation. Stimulated by visual flashing, instead of electrical or 
magnetic stimulation, no electromagnetic artifact would be induced, 
which makes it possible for online detecting the phase of alpha rhythm 
and delivering transient visual stimulation at a specific phase to make a 
closed-loop alpha rhythm modulation. In result, consistent periodic joint 
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amplitude-frequency modulation effects have been shown on all subjects 
in the resting state with eyes open. More detail about the schema of the 
PLVF system and modulation results of PLVF in real EEG data would be 
introduced in Section 2.2 and Fig. 1. However, the real dynamic of alpha 
oscillation is still somewhat a black box for researchers. The uncertainty 
of internal dynamic structure and parameters in the real EEG modula
tion hinders our further exploration of the dynamic mechanism for the 
alpha modulation. The questions mainly focus on the following three 
points. Below, the problems have been summarized in three aspects. 

Firstly, what kind of dynamic model exhibits a modulation phe
nomenon of PLVF? Generated by thalamo-cortical interaction (Lopes da 
silva et al., 1980; Vijayan and Kopell, 2012; Bollimunta et al., 2011; 
Schreckenberger et al., 2006), alpha rhythm in both visual and so
matosensory cortex propagates from higher-order to lower-order areas 
(Halgren et al., 2019) and can be detected from the occipital lobe during 
the resting state and has an increased amplitude when the eyes are 
closed (Kirschfeld, 2005). Since the discovery of alpha rhythm, various 
mathematical models have been developed to simulate alpha rhythm. 
Among these models, Jansen’s neural mass model (Jansen et al., 1993; 
Grimbert and Faugeras, 2006) is widely used for its simplicity in 
describing the alpha rhythm generation. As a macroscopic-level model 
for alpha dynamic analysis, the neural mass model exhibits multiple 
dynamic behaviors with different parameter settings, including 
fixed-point, limit-cycle, and chaotic strange attractors (Huang et al., 

2011). cccc is generated in neuronal networks as a form of filtered noise. 
Glass et al. (1993), Palus (1993) and Stam et al. (1999) found that alpha 
rhythm cannot be distinguished from filtered noise. Others believe alpha 
rhythm is the product of spontaneous oscillation of the brain network, 
and that its realization is dominated by regular oscillations accompanied 
by irregular oscillations (Lopes da Silva et al., 1997). In addition, some 
evidence showed that EEG signals exhibit chaotic behaviors (Pereda 
et al., 2005; Zhang, 2017). Hence, the modulation phenomenon of PLVF 
provides us a probe to investigate the dynamics structs of alpha 
oscillation. 

Secondly, What is the dynamic mechanism of PLVF for alpha mod
ulation? Entrainment of the brain oscillations is commonly used to 
explain the modulation mechanism of repeated brain stimulation tech
niques, like rTMS and tACS (Schwab et al., 2006). But the strong elec
tromagnetic artifacts make the investigation difficult. For the proposing 
of PLVF, the authors assumed the alpha oscillation as a simple pendulum 
model. In result, the modulation effect on the amplitude of alpha rhythm 
was the same as expected, but the joint amplitude-frequency modulation 
was not expected. Furthermore, the undamped simple pendulum model 
is not stable, and it cannot achieve a stable modulation effect with the 
PLVF protocol. With the understanding about the dynamics structs of 
alpha rhythm in the first question, how about the dynamic mechanism to 
produce the joint amplitude-frequency modulation result, especially 
how the endogenous alpha oscillations be entrained by exogenous 

Fig. 1. Schema of PLVF system and modulation 
results of PLVF in real EEG data: (a) Schema of 
PLVF system; Raw EEG signals are firstly 
recorded and filtered, and then the phase of the 
alpha wave is detected which is used for the 
generation of visual stimulation sequence (i.e., 
the exact time to deliver visual stimuli). Finally, 
visual stimuli were delivered by LED to provide 
feedback to users. (b) The modulation effect of 
power shows a sinusoidal-like shape at 11 Hz of 
the real EEG data, in which the dash line in
dicates the power of alpha rhythm in resting 
state with eyes open without modulation, the 
dots line indicates the power of the SSVEP at 
10 Hz. The valley and peak of the modulation 
function are marked by blue and red circles. (c) 
Joint amplitude-frequency modulation effect of 
PLVF in real EEG data (online EEG modulation). 
As the phase index ϕ varies, the modulation 
effect at the peak frequency has clear period
icity, in which the peak frequency indicates the 
frequency with the biggest power in the alpha 
band.(For interpretation of the references to 
colour in this figure, the reader is referred to the 
web version of this article.) 
(Reprinted from Huang et al. (2019), Copyright 
(2019), with permission from Elsevier).   
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stimulus, is one of the main concerns to investigate the alpha dynamics. 
Thirdly, which factors affect the modulation effects in PLVF? Due to 

the uncertainty of internal dynamic structure and parameters, it is not 
easy to find the factors which potentially affect the modulation effects. 
To test the modulation result with different parameters is achievable in 
the numerical simulation but would be time-consuming in a real EEG 
experiment. Furthermore, the intra-subject variability caused by the 
nonstationary internal parameters would make the modulation result 
noise. Based on the understanding of the dynamic structure and the 
modulation mechanism, we can further explore the factors affecting the 
modulation effect by numerical simulation. The results would in turn 
lead us to refine the control strategy for alpha modulation. 

In this work, focusing on the questions of (1) What kind of dynamic 
model exhibits a modulation phenomenon of PLVF? (2) What is the 
dynamic mechanism of PLVF for alpha modulation? (3) Which factors 
affect the modulation effects in PLVF? Numerical simulations were 
applied on the neural mass model and three types of typical dynamic 
attractors including fixed-point, limit-cycle, and chaotic strange attrac
tors to investigate the dynamics mechanism of alpha rhythm modulation 
by PLVF. The remainder of this paper is structured as follows. Section 2 
introduces the PLVF system and the four dynamic models for the 
simulation of alpha rhythm modulation. Methods to investigate the 
dynamic mechanism of alpha modulation are described in Section 3. 
Simulation results are given in Section 4, while discussion and conclu
sions are provided in Section 5. 

2. PLVF system and simulation models 

2.1. Closed-loop neural modulation 

Common approaches of non-invasive neural modulation, like trans
cranial electrical or magnetic stimulation (tES or TMS), can directly 
modulate alpha rhythm by delivering external stimuli. However, strong 
electromagnetic artifacts during the exogenous stimulation process 
(Noury and Siegel, 2017; Noury et al., 2016) make real-time monitoring 
of alpha rhythm difficult, which makes closed-loop modulation difficult. 
Although many methods were proposed to remove the artifacts online or 
offline, few of them have been widely accepted (Kasten and Herrmann, 
2019). To address this issue, one approach was often adopted that the 
intermittent stimulation was immediately exerted when intermittent 
EEG recordings were paused and immediately analyzed (Beliaeva et al., 
2021). Take transcranial alternating current stimulation (tACS), several 
such studies were published. Mansouri et al. (2018) used different 
phases of pulsed transcranial current to modulate theta and alpha os
cillations according to the previous short-time oscillation phase. Zarubin 
et al. (2020) utilized 1 s tACS after analyzing previous 1 s oscillations to 
modulate alpha oscillations. Unfortunately, the modulation effects were 
often hard to interpret, which may be due to many factors such as the 
inherent delay of the system or the task design. Hence, it is quite hard 
now for tES or TMS for a real-time stimulation parameters adjustment to 
modulate the frequency or the phase of the individual neural oscillations 
to develop a closed-loop system (Frohlich and Townsend, 2021). 

2.2. PLVF system 

Compared with tES / TMS technique, visual stimuli can modulate the 
brain rhythm without any electromagnetic artifacts. To achieve closed- 
loop alpha modulation and realize more precise alpha modulation, 
Huang et al. (2019) propose a PLVF protocol for alpha rhythm modu
lation based on a simple pendulum assumption in the previous work. By 
delivering visual stimuli at different phases, PLVF modulation can 
induce different amplitude and frequency responses of the alpha 
rhythm. As shown in Fig. 1a, the schema of the proposed PLVF modu
lation includes four modules, which are EEG recording, phase decoding, 
stimulation sequence generation, and visual stimulation. Because the 
sequence of visual stimuli was generated based on the alpha phase and 

then, in turn, modulated the alpha wave, closed-loop control of the 
alpha wave was formed.  

• Module 1 EEG recording. The raw EEG signal is online recorded by 
Self developed C++ programmed from channel Oz with the sampling 
rate of 5000 Hz and referenced to FCz.  

• Module 2 Phase decoding. To achieve real-time phase detection, 
the real-time EEG signal is firstly online filtered by a 2-order alpha- 
band (8–12 Hz) Butterworth bandpass filter. And then a zero- 
crossing point detection method is used on the filtered alpha 
rhythm to identify the positive zero-crossing points with phase 3π/2.  

• Module 3 Stimulation sequence generation. A certain time lag ϕ 
(phase index) is introduced to estimate the time point of the alpha 
rhythm at other phases. Since the alpha rhythm has a period of 
around 100 ms, it is expected that the modulation effect on the alpha 
power with a different phase index ϕ also varies in a period of around 
100 ms.  

• Module 4. Visual stimulation. A visual stimulation sequence is 
generated to be delivered at one fixed phase for each period of the 
alpha rhythm, which leads to closed-loop alpha rhythm modulation. 

In the result shown in Fig. 1b and c, the amplitude of alpha rhythm 
shows a periodic change with the stimulation phase index ϕ. As phase 
index ϕ increases, the peak frequency of the modulated alpha rhythm 
periodically moves toward the lower-frequency bands. A more complete 
description of the PLVF system and modulation results can be found in 
Huang et al. (2019). 

2.3. Dynamic model of PLVF 

The dynamic model of the PLVF system can be described by a dif
ferential equation, 

X ′

= F(X)+Ku(ỹ, ϕ), (1)  

where X is the state variable as a function of time t, y is the observation 
representing the recorded EEG signal in the PLVF system, ̃y is the online 
filtered signal of y, ϕ is the time lag, and K is a vector containing the 
stimulus direction and intensity. F(X) represents the endogenous evo
lution of the alpha rhythm, which can be described by different models 
for simulation. u(ỹ,ϕ) is the exogenous stimulus in the PLVF system. As a 
sum of impulse functions, u(ỹ,ϕ) depends on the filtered EEG signal ỹ 
and the introduced time lag ϕ. The mth positive zero-crossing time point 
of the filtered signal ỹ is detected as tm, with ỹ = 0 and ỹ′ > 0. A time 
lag ϕ is added to tm to produce the phase at which the stimuli are 
delivered. Hence u(ỹ,ϕ) can be written as 

u(ỹ,ϕ) =
∑

m
δ(t − (tm +ϕ)), (2)  

where δ(t) is the unit impulse function with 
∫ j

i
δ(t)dt =

{
1, i < 0 < j,
0, otherwise.

}

(3)  

2.4. Dynamic models of the alpha rhythm 

To further understand the dynamic of the alpha rhythm and the 
modulation mechanism of the PLVF system, different neural dynamic 
models are applied in this study. Previous work modeled the alpha 
rhythm as the motion trajectory of a simple pendulum without damping 
(Huang et al., 2019). But this is too simple to precisely describe the alpha 
rhythm, which is unstable with continuously delivered phase-locked 
stimuli in the PLVF system. To investigate the dynamic structures of 
alpha rhythm with joint amplitude-frequency modulation (Fig. 1b) in 
the PLVF system, four types of dynamical models are applied. The first 
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one is the neural mass model, which has been well studied for the 
generation of alpha oscillation (Huang et al., 2011). Since oscillation is 
the basic characteristic of the alpha rhythm, three typical types of 
oscillatory attractors are also used to simulate the alpha rhythm, which 
are the linear fixed-point attractor, nonlinear limit-cycle attractor, and 
chaotic strange attractor.  

• Model 1: Neural mass model 
At the cellular level, it is well known that the generation of EEG 

relies on the interactions within or between neurons in the excitatory 
and inhibitory populations. Jansen’s neural mass model (Huang 
et al., 2011; Jansen and Rit, 1995) can simulate the interaction of 
excitatory and inhibitory populations. In this model, the neural 
population is simulated by a population of pyramidal cells, and the 
output is subject to excitatory and inhibitory synaptic control. The 
state variable X is a six-dimensional vector, X =

[x1, x2, x3, x4, x5, x6]
T, with the initial value randomly selected from 

the interval x1 ∈ [0.1,0.13], x2 ∈ [23.6,24], x3 ∈ [14.5,18],
x4 ∈ [ − 1.4, 1.3], x5 ∈ [ − 14,10.5], x6 ∈ [ − 108, 110], since the 
attractor located in the region. The output y = x2(t) − x3(t), the 
stimuli intensity K = [0, 0,0, 0, 3000,0]T, and 

F1(X) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x4

x5

x6

Sigm
(
x2 − x3

)
− 2ax4 − a2 x1

AaC2Sigm
(
C1x1

)
− 2ax5 − a2x2 + Aap

BbC4Sigm
(
C3x1

)
− 2bx6 − b2x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)  

where Sigm(v) is the nonlinear sigmoid function, 

Sigm(v) =
2e0

1 + es(v0 − v), (5)  

and the parameter settings are 

A = 3.25mV, a = 100s− 1

B = 22mV, b = 50s− 1

e0 = 2.5s− 1, s = 0.56mV − 1, v0 = 6mV

C1 = 1.25C2 = 4C3 = 4C4 = C.

With p = 200 and C = 135, the output of neural mass model y 
= x2 − x3 shows typical alpha-like activity.  

• Model 2: Fixed-point attractor 
According to the theory that alpha rhythm is generated by the 

filtering of brain noise, a noise-driven linear point attractor is 
established. The state variable for this model is a two-dimensional 
vector, X = [x1, x2]

T, with the initial value randomly selected from 
the interval x1 ∈ [ − 2,2], x2 ∈ [ − 2,2], since the attractor is located in 
the region. The output y = x1, the stimulus intensity K = [3000,0]T , 
and 

F2(X) =
[

m n
− n m

]

X + ϵ, (6)  

where ϵ is Gaussian white noise with mean 0 and variance 100. The 
value of m indicates the rate of convergence of the system, and n 
indicates the rhythm of the oscillation. With m = − 10 and n = 70, 
the output of the point attractor model y = x1 shows an alpha-like 
activity with a peak frequency around 11 Hz.  

• Model 3: Limit-cycle attractor 
According to the theory that alpha rhythm is generated by the 

spontaneous oscillation of the brain’s neural network, a nonlinear 
limit-cycle attractor with constant angular velocity is established. It 

is a simple close orbit with periodic oscillation. The state variable is a 
two-dimensional vector, X = [x1, x2]

T, with the initial value 
randomly selected from the interval x1 ∈ [ − 1.5, 1.5],
x2 ∈ [ − 1.5, 1.5], since the attractor is located in the region. The 
output y = x1, the stimulus intensity K = [3000,0]T , and 

F3(X) =

⎡

⎢
⎢
⎣

kx1

r
− kx1 − cx2

kx2

r
− kx2 + cx1

⎤

⎥
⎥
⎦, (7)  

where the limit cycle trajectory is a circle with radius r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + x2

2

√

. 
The value of k determines the rate of system convergence, and c 
determines the angular velocity, which is constant. With parameters 
k = 10, c = 60, the output of the limit-cycle attractor y = x1 shows 
an alpha-like activity.  

• Model 4: Chaotic strange attractor 
According to the theory that the irregularity of alpha rhythm may 

be related to the chaotic processes of the brain, the Lorenz attractor is 
established. This nonlinear chaotic attractor was obtained by mete
orologist Edward Lorenz when he studied atmospheric convection in 
weather forecasting. It is a complex fractal orbit characterized by 
unstable, driving orbits. The state variable is a three-dimensional 
vector, X = [x1, x2, x3]

T, with the initial value randomly selected 
from the interval x1 ∈ [ − 130,134],x2 ∈ [ − 169,176], x3 ∈ [30, 300], 
since the attractor is located in the region. The output y = x3, the 
stimulus intensity K = [0, 0,100000]T , and 

F4(X) =

⎡

⎣
− σx1 + σx2

γx1 − x2 − x1x3
x1x2 − dx3

⎤

⎦, (8)  

where σ = 80 is the Prandtl number, γ = 180 is the Rayleigh number, 
and d = 25 is a velocity damping constant. 

3. Methods 

Aiming to understand the alpha dynamics behind the joint 
amplitude-frequency alpha modulation in the PLVF system, four dy
namic models are used for a simulation study. Compared to the chaotic 
strange attractor and the neural mass model, which dynamic are com
plex, and the noise-driven fixed-point attractor, which contains noise 
and makes the explanation of the dynamic difficult, the limit-cycle 
attractor has a simpler dynamic structure. Hence, it is then used to 
investigate the underlying dynamic mechanism of PLVF modulation. 
Finally, we analyze parameters in the model to find out key factors that 
may affect the results. 

3.1. The method of numerical simulation 

The Runge-Kutta method is applied in the simulation to solve Eq. (1). 
The simulation time is 200 s, the sampling rate is 1000 Hz, and the 
iteration step is 0.001 s. Parameter settings of the four models are shown 
in Section 2.3. In the first 40 s, there is no stimulation, so that the model 
can enter a stable state. External stimuli are applied from the 40th 
second to realize phase-locked modulation. The output signal of the 
model (simulated EEG signal) is recorded for power spectrum analysis, 
which is performed within 100–200 s of the output signal using Welch’s 
method, with a window width of 5000, overlapping of 50%, and fre
quency ranging from 6 Hz to 15 Hz in steps of 0.01 Hz. All simulation 
and analyses are carried out using MATLAB R2020a software on a 
Hewlett-Packard ProDesk computer with an Intel i7–6700 CPU at 
3.4 GHz. Considering the different initial values, all in the simulation 
have been repeated 10 times. For each model, the modulation results of 
each time in two specific phases are shown to illustrate the influence of 
the set of the initial values (Neural mass model: ϕ = 50,120 ms; Fixed- 
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point attractor: ϕ = 55,100 ms; Limit cycle attractor: ϕ = 80,100 ms; 
Lorenz attractor: ϕ = 70,100 ms). Meanwhile, the representative phases 
for each model are chosen, which corresponds to the inhibition and 
enhancement modulation effects. 

3.2. The analysis of alpha modulation effects 

For simplicity of analysis, the limit-cycle attractor is used to inves
tigate the underlying neurodynamic mechanism of the PLVF system. The 
phase portraits of PLVF modulation at time lag ϕ = 10 ms and ϕ = 80 ms 
are illustrated to explain the dynamic mechanism of amplitude and 
frequency modulation. The PLVF modulation result is described with the 
increase of phase index ϕ from 0 to 200 ms. The phase portraits with 
phase index ϕ = 10,45,80,115,150, and 185 ms are used to describe the 
dynamics of neural modulation with the increase of phase index. The 
power and frequency modulation with the increase of phase index are 
explained to summarize the dynamic mechanism of PLVF. 

3.3. The influence of parameters setting 

A signal simulated by a neural mass model, or a limit-cycle attractor 
cannot precisely simulate real alpha rhythm due to purity. Considering 
the complex dynamics of the neural mass model and strange attractor, 
the dynamics of a noise-driven fixed-point attractor are relatively sim
ple. Therefore, the fixed-point attractor is chosen to investigate the 
factors affecting the modulation results. Four factors are under investi
gation, and they are stimulus intensity, the bandwidth of the bandpass 
filter, the center frequency of the bandpass filter, and the accuracy of 
phase estimation. 

In online EEG modulation, the stimulation intensity is an important 
parameter, which should be large enough to produce an evident mod
ulation effect, but may make participants feel uncomfortable when it is 
too large. Hence, we consider stimulation intensity as an important 
factor to investigate the effects of modulation results. Furthermore, 
because the peak frequency of alpha rhythms differs between in
dividuals (Grandy et al., 2013), the setting of the bandpass filter (center 
frequency and filter bandwidth) may have a great influence on the 
modulation results. Therefore, we examine the influence of a bandpass 
filter with: (1) fixed center frequency and variable filter bandwidth; and 
(2) fixed filter bandwidth and variable center frequency. In addition, the 
accuracy of phase estimation is important to PLVF modulation to ensure 
the modulation effect because, when stimulated at different phases, 
alpha rhythms have different dynamic responses and modulation effects 
(Brandt, 1997). Therefore, the accuracy of phase estimation is another 
important factor to explore. The initial value is randomly selected from 
the interval x1 ∈ [ − 2, 2], x2 ∈ [ − 2,2]. The parameter settings are as 
follows.  

(1) Stimulation intensity 
In the simulation, the stimulation intensity increases from 0 to 

5000 with a step of 1000. The amplitude modulation range is 
estimated to show the modulation effect of stimulation intensity, 
which is calculated based on the minimum and maximum 
amplitude of the alpha rhythm during modulation.  

(2) Bandwidth of bandpass filter 
In the simulation, the bandwidth of the bandpass filter is set to 

6–16 Hz, 7–15 Hz, 8–14 Hz, 9–13 Hz, and 10–12 Hz, with the 
center frequency fixed at 11 Hz. The frequency modulation range 
is estimated to show the modulation effect of filter bandwidth, 
which is calculated based on the minimum and maximum peak 
frequency during modulation.  

(3) Center frequency of bandpass filter 
In the simulation, the center frequency increases from 8 Hz to 

12 Hz, with an interval of 1 Hz. The filter bandwidth is fixed at 
2 Hz. The frequency modulation range is estimated to show the 
modulation effect of the center frequency, which is also 

calculated based on the minimum and maximum peak frequency 
during modulation.  

(4) Accuracy of phase estimate 

Since the error in phase estimation is inevitable in real EEG modu
lation by PLVF, which will increase with the phase index, the phase 
estimate accuracy is considered in this simulation, with the form 

Φ̃ = Φ(1+ eiRd), (9)  

where Φ is the real phase index, Rd is a random number from a zero- 
mean normal distribution, and ei is the error index, which increases 
from 0 to 1, with a step of 0.01. Here, we use Φ̃ with the error in the 
phase estimation instead of Φ in Eq. (1). We set the parameter of the 
error index from 0 to 1, with an interval of 0.01. Due to the error of the 
phase estimation, the modulation effect of alpha power is attenuated 
with the phase index varies. Therefore, we use exponential fitting to fit 
the power modulation effect, and the fitting attenuation coefficient μ is 
used to describe the attenuation of power as the phase index increases, 
which is used to assess the modulation effect of phase estimation ac
curacy. The fitting formula of the attenuation coefficient is 

y = ξeμx, (10)  

where μ is the fitted attenuation coefficient, ξ is a positive real number 
not equal to 1, the argument x is the phase index, and y is the fitted 
result. 

4. Results 

4.1. Simulation results in different models 

The modulation effects on the amplitude and frequency of the alpha 
rhythm are shown in Figs. 2 and 3 for the four types of models. 

The modulation result for the neural mass model is illustrated in 
Fig. 2a, which shows similar joint amplitude-frequency alpha rhythm 
modulation with the change of the stimulation phase. But this still differs 
from real EEG modulation. First, the peak frequency of the modulated 
alpha rhythm does not increase linearly with the increase of the phase 
index ϕ. Furthermore, the peak of the power modulation effect (black 
bots in Fig. 2a) is at the lower frequency of the frequency modulation 
range, while it is in the middle frequency of the online EEG frequency 
modulation range (Fig. 1b). The nonlinearity of the neural mass model 
causes globally inconsistent dynamic characteristics, so the same force 
at different positions in the phase space leads to different effects on the 
system. The modulation results at different phase indexes (ϕ = 50,120) 
have largely different shapes, as illustrated in the middle of Fig. 2a. 

Compared to the neural mass model, the dynamic structures of the 
fixed-point and limit-cycle attractors are much simpler. The fixed-point 
attractor mode is a linear model with noise, in which all positions share 
the same dynamic characteristics. The negative real part of the eigen

values of the matrix 
[

m n
− n m

]

shows the system would eventually reach 

the fixed point. However, the existence of noise prevents the conver
gence of the solution to the fixed points. The periodic oscillation with 
alpha rhythm is caused by the imaginary part of the eigenvalues in the 
simulation model. As illustrated in the middle of Fig. 2b, the modulation 
results of the fixed-point attractor are closer to the real online EEG 
modulation result in Fig. 1b. With phase-locked stimuli at different 
phases, the alpha rhythm induces different modulation results, while the 
phase portraits of modulation results at phase indexes ϕ = 55,100 are 
too noisy to observe the modulation mechanism. 

Without the influence of noise, the modulation result from the limit- 
cycle attractor is clearer and more regular in Fig. 2c. In the proposed 
limit-cycle attractor, the noise in the fixed-point model is replaced by a 
constant outward force, which makes the model nonlinear and more 
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complex than the fixed-point attractor. But the dynamic characteristics 
of each point with the same radius are still very consistent. The phase 
portraits of the modulation result at phase indexes ϕ = 80,130 are 
clearer, which is further investigated below in Section 4.2. 

For the chaotic Lorenz attractor, the simulation shows a more com
plex modulation result in Fig. 3. It is interesting to find that it only has a 

modulation effect like the online EEG modulation result under half-cycle 
phase index stimulation. With ϕ = 40, the modulation effect is signifi
cant, and the oscillation behavior is greatly suppressed. With the in
crease of the phase index (ϕ = 55, 70), the radius of the modulation 
trajectory increases as the oscillation frequency decreases. At another 
half-period of the phase index (ϕ = 25,85,100), the modulation by PLVF 

Fig. 2. Modulation results (amplitude and frequency modulation functions against phase index/time lag ϕ = 0 − 150 ms) of (a) the neural mass model, (b) the fixed- 
point attractor, and (c) the limit-cycle attractor. Phase portraits at the top raw are modulation trajectories with stimuli at the two different phase indexes (indicated 
by black triangles at x-coordinates of lower plots). The black curve indicates the resting state of the system from 38 to 40 s before the stimulus. And the blue curve 
indicates the modulated state of the system from 40 to 48 s after the stimulus. The results in the middle raw show the power changed with time with 10 different 
initial values and stimuli at the two different phase indexes. Considering a 10 s window is used for smoothing, all the results are shown from 5 to 195s. Modulation 
results at the bottom show the joint amplitude and frequency modulation effect and are the average of the results of 10 different initial values. The black dots indicate 
the peak of the power modulation effect.(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

Fig. 3. Modulation results of Lorenz attractor: 
(a) Phase portrait of Lorenz attractor with phase 
index ϕ = 25, 40, 55, 70, 85, 100ms. 
Black curves in phase portraits indicate trajec
tories without stimulation from 38 to 40 s 
before the stimulus. And blue curves indicate 
modulated trajectories from 40 to 48 s after the 
stimulus. Meanwhile, the black dots indicate 
two equilibrium points and the red circles 
indicate stimulation points; (b) The power 
response changes over time with 10 different 
initial values and stimuli at the phase index ϕ =

70, 100ms; (c) The joint amplitude and fre
quency modulation effect against phase index 
(time lag) ϕ = 0 − 150ms.(For interpretation 
of the references to colour in this figure, the 
reader is referred to the web version of this 
article.)   

X. Jin et al.                                                                                                                                                                                                                                       



Journal of Neuroscience Methods 368 (2022) 109473

7

would no longer be effective. 
For all four dynamic models, the difference of initial values does not 

influence the modulation results. To understand the modulation result of 
the chaotic Lorenz attractor, we analyze the dynamic characteristics 
near the fixed points. By setting F4(X) = 0 in Eq. (8), it is found that 
there is only one equilibrium point with r ≤ 1, which is at the origin (0,0,
0). With r > 1, two additional equilibrium points appear, which are 
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b(r − 1)

√
,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b(r − 1)

√
, r − 1) and ( −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b(r − 1)

√
, −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b(r − 1)

√
, r − 1). 

These two points are located in the center of the two wings of the but
terfly trajectory. Bringing σ = 80, γ = 180, b = 25 into the system, we 
find that the eigenvalues of the local linearization matrix 

F
′

4(X) =

⎡

⎣
− σ σ 0

r − x3 − 1 − x1
x2 x1 − b

⎤

⎦ (11)  

at the two nontrivial equilibrium points are λ1 = − 107.50, λ2,3 =

0.75 ± 81.61i. Hence the two nontrivial equilibrium points are unstable 
saddle points, but they have the same dynamic properties. Therefore, the 
trajectory in the system with phase index ϕ = 40,55,70 for PLVF 
modulation may be restricted in any one wing of the butterfly. As shown 
in Fig. 4 with ϕ = 70, the modulation curve converges to the left-wing, 
or the right-wing, which depends on the initial value. But whatever in 
which wing the trajectory has the same amplitude and frequency 
response for a given phase index. 

4.2. Dynamic mechanism of PLVF modulation 

To understand the joint amplitude-frequency modulation of PLVF in 
real EEG data, we first analyze the limit cycle model with the phase- 
locked stimulation at two phase indexes, ϕ = 10ms, and ϕ = 80ms, in  
Fig. 5. The simulation results of the PLVF system are shown in Fig. 6, as 
the phase index (time lag) ϕ increases from 0 to 200 ms. 

Fig. 5a shows the dynamics of the simulated EEG rhythm modulated 
by an external stimulus with phase index ϕ = 10ms. The simulated raw 
EEG signal is first filtered by a second-order Butterworth filter with 
bandwidth 8–12 Hz. Zero-crossing detection is used to recognize the 
phase of 3π/2, and a certain time lag ϕ = 10ms is added to the zero-cross 
point to approximate the phase to be locked (upper left). The modulated 
EEG signal is illustrated in blue curves. Without the external stimulus, 
the system runs. 

in a fixed orbit (black cycle at upper-right). With the external stim
ulus, the system reaches a stable state in less than one second, and both 
the power and frequency of the oscillation increase (Fig. 6b and c). As 
illustrated in the phase portrait (upper-right) of Fig. 5a, it is found that 
the external stimulus causes the radius of the trajectory to increase 
(Δr > 0), and the power of the oscillation correspondingly increases 

(P↑). The instantaneous phase angle also increases (Δθ > 0), as does the 
frequency of the oscillation (F↑). 

Fig. 5b shows the dynamics of the simulated system modulated by an 
external stimulus with phase index ϕ = 80ms. The whole process of 
modulation is similar to that of Fig. 5a (upper-left). But the phase index 
ϕ increases from 10ms to 80ms. In the results, both the power and fre
quency of the oscillation decrease with external stimulation (Fig. 6b and 
c). Because the stimuli are delivered at different phases, it is found that 
the external stimuli decrease the trajectory radius (Δr < 0), and the 
power of the oscillation correspondingly decreases (P↓). At the same 
time, the instantaneous phase angle decreases (Δθ < 0), corresponding 
to the decreased frequency of the oscillation (F↓). 

Fig. 6 shows the joint amplitude-frequency modulation effect with 
phase index ϕ increasing from 0 to 200ms. The frequency decreases and 
shows a clear periodicity (Fig. 6b), and the power shows a sinusoidal- 
like shape with the increase of the phase index ϕ (Fig. 6c). The phase 
portrait with phase index ϕ = 10,45,80,115,150, and 185 ms is illus
trated in Fig. 6a. It is found that the increase of the trajectory radius 
(Δr > 0) leads to the increase of power (P↑), and the increase of the 
instantaneous phase angle (Δθ > 0) corresponds to the increase of 
oscillation frequency (F↑). 

4.3. Modulation result with different parameters 

Considering the background noise in the EEG signal, the noise-driven 
fixed-point attractor model is used to explore the influence of different 
parameter settings on alpha modulation results. These parameters are 
stimulation intensity, bandwidth and center frequency in the bandpass 
filter, and accuracy of phase estimation. 

4.3.1. Stimulation intensity 
Fig. 7a shows how the modulation depth varies with stimulation 

intensity. The black line indicates the alpha amplitude without external 
stimulus, and the blue shade indicates the amplitude modulation range 
of the simulated alpha rhythm. The modulation depth increases with the 
stimulation intensity. More specifically, with the increase of stimulation 
intensity, the maximum amplitude of the modulated rhythm increases 
(upper bound of blue shadow). The minimum amplitude of the modu
lated rhythm (lower bound of blue shadow) first declines to reach the 
bottom at a stimulation intensity of 1000, and then rises with the 
stimulation intensity. With stimulation intensity greater than 3000, the 
suppression effect at certain phases in the PLVF no longer occurs. This 
result implies that, with the increase of stimulation intensity, the 
amplitude of alpha rhythm is more difficult to suppress. The frequency 
modulation effect shows that, with the increase of stimulation intensity, 
the peak frequency (bottom) is clearer and more focused, but the fre
quency modulation range remains unchanged (about 8–12 Hz). 

Fig. 4. The modulation results of different initial values with ϕ = 70. The modulation curve converges to the left-wing, or the right-wing, which depends on the 
initial value. 
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4.3.2. Bandwidth of bandpass filter 
Fig. 7b shows the frequency modulation range with the change of 

filter bandwidth. The blue shade indicates the frequency modulation 
range of the simulated alpha rhythm, and the blue line indicates its peak 
frequency. Simulation results show that the frequency modulation range 
narrows as the filter bandwidth decreases. The frequency modulation 
results (bottom) with filter bandwidths of 6–16 Hz and 10–12 Hz are 
similar. 

4.3.3. Center frequency of bandpass filter 
Fig. 7c shows the frequency modulation range with the change of 

center frequency of the bandpass filter. The frequency modulation range 
increases with the center frequency. The frequency modulation results 
(bottom) with filter bandwidths of 7–9 Hz and 11–13 Hz are similar. 

4.3.4. Accuracy of phase estimation 
Fig. 7d shows that the modulation result varies with the phase esti

mation error index. Added random noise is increased with the increase 
of the phase index to control the phase estimation error. The red line 
indicates the curve of exponential fitting, which is fitted by the ampli
tude of alpha rhythm (black line) or the attenuation coefficient (black 
points). The absolute value of the attenuation coefficient increases with 
the phase estimation error index, which means the error of modulation 
increases with the phase estimation error index. The peak frequency 
gradually becomes ambiguous with the increase of the phase estimation 

error index (from 0 to 0.5 at the bottom) and phase index (0–300 ms). 

5. Discussion and conclusion 

In this work, we investigated the dynamic mechanism of alpha 
rhythm via the simulation of the proposed PLVF protocol by Huang et al. 
(2019). All these investigations are conducive to our deeper under
standing of the dynamic structure and modulation mechanism of alpha 
dynamics modulation in PLVF, which can have practical significance for 
the modulation of alpha oscillation and further be used for potentially be 
used cognitive enhancement and mental diseases treatment. In the 
following, we discuss the three questions raised in the section of intro
duction and provide our answers based on the results presented in this 
study. 

5.1. What kind of alpha dynamic model exhibits a modulation 
phenomenon of PLVF? 

In the proposing of PLVF, Huang et al. assumed the alpha oscillation 
as a simple pendulum (Huang et al., 2019). However, a simple pendulum 
is not a stable attractor, the joint amplitude-frequency modulation result 
was also not as expected. In this work, we firstly investigate what kind of 
alpha dynamic model would exhibit a similar modulation result. This 
work does not aim to seek a precise model in the simulation of alpha 
oscillation but to qualitatively explain what dynamic structure can 

Fig. 5. Simulation results of PLVF system with 
external stimuli at phase index (time lag) ϕ =

10 ms (a) and at phase index (time lag) ϕ =

80 ms (b). Upper left in both (a) and (b): 
schema of output signal modulation. Black dots 
indicate the positive zero-crossing points. Red 
dots indicate the actual stimulation points. 
Upper right in both (a) and (b): modulation 
effect of the system in the phase space. Red dots 
indicate stimulation points. Angles of black ar
rows indicate angle changes of the system. 
Lower in both (a) and (b): output signals 
(simulated EEG signals).(For interpretation of 
the references to colour in this figure, the 
reader is referred to the web version of this 
article.)   

Fig. 6. Simulation results of the PLVF system 
with external stimuli as phase index (time lag) 
ϕ increases from 0 to 200 ms. (a) Modulation 
effect of the system in the phase space, with 
phase index ϕ of 10 ms, 45 ms, 80 ms, 115 ms, 
150 ms, and 185 ms, respectively (left to right); 
(b) Power spectra of the system modulated by 
external stimuli delivered at different phases of 
ϕ; (c) Power modulation function against phase 
index ϕ. Black-dashed lines indicate the fre
quency (b) or the power (c) without external 
stimuli.   
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produce such a modulation result by PLVF. Compare with the existing 
model, the actual alpha rhythm would be much more complex. The 
emphasis of mathematical modeling is not to consider all the details of 
the model but to abstract the core factors for the complex brain activity. 
Considering the large intra- and inter-subject variability, we did not 
make a precise estimation for the internal parameters in the model, but 
used the simplest models for all the three kinds of attractors to explore 
what kind of dynamic model exhibits a modulation phenomenon of 
PLVF? 

Hence, the commonly used neural mass model and three well-studied 
attractors, including fixed-point attractor, limit-cycle attractor, and 
Lorenz strange attractor, were applied to simulate alpha oscillations and 
phase-locked feedback stimulation for alpha rhythm modulation. The 
simulation results show that the fixed-point attractor and the limit-cycle 
attractor are more consistent with the characteristics of real-world alpha 
dynamics. Both models have good global consistency, in that all points 
at different phases with the same radius have similar dynamic charac
teristics. They converge to a fixed point or a perfect circle by rotating at a 
fixed angular velocity. With the increase of the phase index ϕ, the peak 
frequency of alpha rhythm decreases and has clear periodicity, and the 
power shows a sinusoidal-like shape. On the contrary, the strong 
nonlinearity in the neural mass model and Lorenz attractor would 
destroy this global consistency, which makes the amplitude and fre
quency responses of the PLVF simulation different from the real EEG 

result. 

5.2. What is the dynamic mechanism of PLVF for alpha modulation? 

Based on the simple pendulum assumption, Huang et al. (2019) 
proposed the closed-loop PLVF method for the modulation of alpha 
oscillation. Entrained by the exogenous stimulus, a joint 
amplitude-frequency modulation was observed from the endogenous 
alpha oscillations. The amplitude modulation is consistent with the 
expectation of the model assumption, while the peak frequency modu
lation does not meet the expectation. Considering the real alpha dy
namic is still somewhat a black box for researchers, the experiment 
result on the real EEG modulation may not promote the understanding 
of the dynamic mechanism of PLVF-based alpha modulation. Instead, a 
numerical simulation based on existing experimental results can help us 
further understand the dynamic mechanism for alpha modulation. Based 
on the simulation of the limit cycle model, we find that external stim
ulation at a specific phase can cause the stimulated EEG signal to sta
bilize on a new trajectory, which leads to the modulation of amplitude. 
More specifically, the change of the trajectory radius Δr modulated by 
external stimulation causes the modulation of alpha amplitude. With a 
constant angular velocity in the PLVF system, the change of instanta
neous phase angle Δθ, which is stimulated by external stimulation, gives 
rise to the change of peak frequency. As a result, the simultaneous 

Fig. 7. Modulation results are affected by 
different factors: (a) stimulation intensity, (b) 
bandwidth of the bandpass filter, (c) center 
frequency of the bandpass filter, and (d) accu
racy of phase estimation. (a) Upper: the result 
of modulation depth with the increase of stim
ulation intensity; Lower: frequency modulation 
results against phase index ϕ with a stimulation 
intensity of 1000 or 3000. (b) Upper: the result 
of frequency modulation with the decrease of 
bandwidth of the bandpass filter (center fre
quency fixed at 11 Hz); Lower: frequency 
modulation result against phase index ϕ with 
filter bandwidth of 6–16 Hz or 10–12 Hz. (c) 
Upper: the result of frequency modulation with 
the change of center frequency of the bandpass 
filter (bandwidth fixed at 2 Hz); Lower: fre
quency modulation result against phase index ϕ 
with filter bandwidth of 7–9 Hz or 11–13 Hz. 
(d) Upper: attenuation index of amplitude 
modulation with the increase of error of phase 
estimation; Lower: frequency modulation result 
against phase index ϕ with error index of 0 or 1.   
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modulation of trajectory radius and instantaneous phase angle leads to 
the joint amplitude-frequency modulation of the alpha rhythm. 

5.3. Which factors affect the modulation effects in PLVF? 

The influences of stimulation intensity, bandwidth, and center fre
quency of the bandpass filter, and accuracy of phase estimation on the 
modulation result are investigated. The modulation effect of the simu
lated alpha rhythm is affected by the stimulus intensity and the filter 
bandwidth. More precisely, the modulation effect on alpha amplitude is 
mainly affected by stimulus intensity, while the modulation effect on 
peak frequency is mainly influenced by filter bandwidth. It is worth 
noting that the suppression effect of the amplitude would disappear 
when the stimulus intensity is increased to a certain extent. The phe
nomenon can be explained by the limit-cycle attractor. When the change 
of trajectory radius Δr caused by external stimuli is greater than the 
radius of the initial trajectory, external stimuli only causes a promoting 
effect on the amplitude of the alpha rhythm (in Fig. 7a, the promoting 
effect is indicated by the blue shade above the black line, and the sup
pression effect is indicated by the blue shade below the black line). In 
addition, the accuracy of phase estimation directly affects that of the 
modulation result, which means the accuracy of phase estimation is 
fundamental to EEG modulation. 

In conclusion, the results of this study provide us with greater in
sights into alpha rhythm modulation. By comparing four types of dy
namic models in the simulation of PLVF modulation, we find that the 
dynamic evolution of alpha rhythm may follow a simpler dynamic 
structure (a fixed-point attractor or a limit-cycle attractor with globally 
consistent dynamic characteristics). In contrast to the highly complex 
functions of the brain, this result indicates that the dynamic structure of 
alpha rhythm may be much simpler than our expected, which even 
simpler than the greatly simplified lumped neural mass model. Further 
simulation results also explain the dynamic mechanism of PLVF for 
amplitude and frequency modulation of alpha rhythm and how did the 
parameters in the model simulation influence the modulation result. All 
these investigations are not only helpful for the in-depth understanding 
of alpha oscillation and the dynamic mechanism of PLVF modulation, 
but also provide theoretical guidance for the development of a precise, 
effective, and controllable neuromodulation technology. More specif
ically, the result of this study suggests that to achieve the goal of 
increasing or decreasing alpha rhythm, different modulation strategies 
should be designed. Increasing the alpha amplitude can be simply ach
ieved by increasing the stimulation intensity in PLVF modulation, while 
the suppression of the alpha amplitude is more difficult, which depends 
on the phase of stimulation at certain intervals of the stimulation 
intensity. 

For future work, it should be noticed that the investigation of the 
EEG dynamics is limited on the alpha oscillation. Currently, the modu
lation with PLVF methods has only been verified on the alpha band 
oscillation by the visual stimulus on the occipital area. Several mean
ingful topics need to be explored. 

• Other sensory stimuli. Based on the evidence for steady-state vi
sual/ somatosensory/ auditory evoked potential (SSVEP/ SSSEP/ 
SSAEP), the visual, vibrotactile and auditory stimulus would have 
the largest response from their corresponding primary sensory cor
tex, at the frequency band around 10 Hz, 20 Hz, and 40 Hz corre
spondingly (Northoff et al., 2010). Whether PLVF modulation would 
be extended to the other band, other brain areas by other types of 
stimulus, and how about the neural dynamic for the modulation 
would be interesting to explore.  

• Other stimulation techniques. PLVF modulates the brain rhythm 
along the sensory pathway. Unlike the other noninvasive brain 
stimulation technique, like TMS, TDCS, and TACS, PLVF could not 
effectively work on any target brain area. But artifact-free is the most 
significant characteristic for PLVF modulation. Based on this, closed- 

looped modulation is easy to develop by decoding the brain signal in 
real-time. The large artifact in TMS, TDCS, and TACS, by contract, 
would make the closed-looped modulation difficult or indirectly 
(Noury and Siegel, 2017; Noury et al., 2016), which is considered as 
one of the main reasons for inter-subject variability (Frohlich and 
Townsend, 2021).  

• Other brain rhythms. The current work focuses on the alpha 
rhythm modulation with eyes open. In 2020, Philipp et al. (Philipp, 
2018) reported a consistent result in the modulation of alpha rhythm 
with eyes closed, which demonstrates effective of the PLVF method 
on close eye alpha rhythm modulation. Whether the result of alpha 
dynamic analysis still works on other sub-bands, especially the 
gamma band, still needs to be verified. Gamma rhythm may have 
very different functions and dynamics from alpha rhythm (Herrmann 
and Demiralp, 2005; Le Van Quyen and Bragin, 2007). The 
cross-frequency coupling between gamma and theta oscillation 
might play a functional role in inter-cortical communication 
computation, and learning (Canolty and Knight, 2010; Jensen and 
Colgin, 2007). Recent studies show the links between gamma and 
cognitive functions, such as emotion (Aydin et al., 2016; Aydin, 
2020), working memory (Howard et al., 2003). However, the low 
amplitude and high oscillation of the gamma rhythm make it difficult 
to be modulated by phase-locked feedback stimulus.  

• Other brain functions. The proposed PLVF could modulate the 
alpha oscillation on the primary sensory cortex with eyes open. How 
to further modulate the cognitive related brain rhythm and further 
affect users’ cognition and behavior need to be further explored, 
which should be rigorously examined by well-designed experiments, 
large-scale validation, randomized trials, and longitudinal study, and 
be compared with other types of mainstream and advanced brain 
stimulation techniques. 

Acknowledgments 

This work was supported by the Science, Technology, and Innovation 
Commission of Shenzhen Municipality Technology Fund (No. 
JCYJ20190808173819182, JCYJ20170818093322718), the Shenzhen 
Science and Technology Program (No. JSGG20210713091811038), and 
the National Natural Science Foundation of China (No. 81871443). 
None of the authors has potential conflicts of interest to be disclosed. 

Declaration of Interest Statement 

None. 

References 

Aydin, S., 2020. Deep learning classification of neuro-emotional phase domain 
complexity levels induced by affective video film clips. IEEE J. Biomed. Health 
Inform. 24, 1695–1702. 

Aydin, S., Demirtas, S., Ates, K., Tunga, M.A., 2016. Emotion recognition with eigen 
features of frequency band activities embedded in induced brain oscillations 
mediated by affective pictures. Int. J. Neural Syst. 26, 1650013. 

Beliaeva, V., Savvateev, I., Zerbi, V., Polania, R., 2021. Toward integrative approaches to 
study the causal role of neural oscillations via transcranial electrical stimulation. 
Nat. Commun. 12, 2243. 

Bollimunta, A., Mo, J., Schroeder, C.E., Ding, M., 2011. Neuronal mechanisms and 
attentional modulation of corticothalamic alpha oscillations. J. Neurosci. 31, 
4935–4943. 

Brandt, M.E., 1997. Visual and auditory evoked phase resetting of the alpha EEG. Int. J. 
Psychophysiol. 26, 285–298. 

Butnik, S.M., 2005. Neurofeedback in adolescents and adults with attention deficit 
hyperactivity disorder. J. Clin. Psychol. 61, 621–625. 

Canolty, R.T., Knight, R.T., 2010. The functional role of cross-frequency coupling. Trends 
Cogn. Sci. 14, 506–515. 

Choi, S.W., Chi, S.E., Chung, S.Y., Kim, J.W., Ahn, C.Y., Kim, H.T., 2011. Is alpha wave 
neurofeedback effective with randomized clinical trials in depression? a pilot study. 
Neuropsychobiology 63, 43–51. 

Cohen, M.X., 2017. Where does EEG come from and what does it mean? Trends Neurosci. 
40, 208–218. 

Debener, S., Ullsperger, M., Siegel, M., Engel, A.K., 2006. Single-trial EEG-fMRI reveals 
the dynamics of cognitive function. Trends Cogn. Sci. 10, 558–563. 

X. Jin et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref1
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref1
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref1
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref2
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref2
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref2
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref3
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref3
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref3
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref4
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref4
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref4
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref5
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref5
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref6
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref6
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref7
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref7
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref8
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref8
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref8
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref9
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref9
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref10
http://refhub.elsevier.com/S0165-0270(21)00408-8/sbref10


Journal of Neuroscience Methods 368 (2022) 109473

11

Fox, D.J., Tharp, D.F., Fox, L.C., 2005. Neurofeedback: an alternative and efficacious 
treatment for attention deficit hyperactivity disorder. Appl. Psychophysiol. 
Biofeedback 30, 365–373. 

Frohlich, F., Townsend, L., 2021. Closed-loop transcranial alternating current 
stimulation: towards personalized non-invasive brain stimulation for the treatment 
of psychiatric illnesses. Curr. Behav. Neurosci. Rep. 8, 51–57. 

Glass, L., Kaplan, D.T., Lewis, J.E. , 1993. Tests for deterministic dynamics in real and 
model neural networks. In: Proceedings of the 2nd Annual Conference on Nonlinear 
Dynamics Analysis of the EEG, World Scientific, Singapore. pp. 223–49. 

Grandy, T.H., Werkle-Bergner, M., Chicherio, C., Schmiedek, F., Loevden, M., 
Lindenberger, U., 2013. Peak individual alpha frequency qualifies as a stable 
neurophysiological trait marker in healthy younger and older adults. 
Psychophysiology 50, 570–582. 

Grimbert, F., Faugeras, O., 2006. Bifurcation analysis of Jansen’s neural mass model. 
Neural Comput. 18, 3052–3068. 
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