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Abstract— Compared with the conventional self-regulated 

EEG neurofeedback strategy, a closed-loop feedback strategy 

can provide a more precise and robust brain wave modulation. 

By detecting a participant’s instantaneous phase of EEG alpha 

oscillation and delivering phase-locked visual stimuli to the 

participant, a new closed-loop feedback paradigm, named 

phase-locked visual feedback modulation (PLVFM), has been 

developed to modulate his/her amplitude and frequency of alpha 

oscillation. However, the underlying neurodynamic mechanism 

of the PLVFM technique is still not clear, which limits the 

developments of precise and individualized applications of this 

new neural modulation technique. In this study, a neural 

dynamical model based on the limit cycle attractor has been 

proposed for alpha wave simulation to explore the 

neurodynamic mechanism of PLVFM. Results show that the 

simulated dynamic behaviors are consistent with the real results 

of online EEG modulation. The external stimuli at a specific 

phase change the instantaneous radius and phase of alpha 

oscillation. The repeated phase-locked stimuli stabilize the alpha 

oscillation in a new trajectory in the phase space and further 

induce the change of the amplitude and peak-frequency of alpha 

wave. The current study improves our understanding of the 

visual-modulated alpha wave, which is an important step 

towards precise modulation of EEG activity for the modulation 

of sensory and cognitive states. 

I. INTRODUCTION 

Different rhythms of electroencephalographic (EEG), such 
as alpha, beta and theta, are highly related with cognitive 
functions [1, 2] and memory performance [3, 4]. The 
modulations of brain waves were found to be related to various 
mental diseases such as attention deficit hyperactivity disorder 
[5, 6], anxiety [7] and depression [8, 9]. Based on visual or 
auditory feedback of the instant information of the brain states, 
neurofeedback technique provides participants a way to 
improve their mental state through self-regulation [10]. 
However, in the absence of well-designed experiments and the 
possibility of placebo effects, the efficacy of neurofeedback 
remains a point of great controversy [11]. Furthermore, 
neurofeedback, as a type of endogenous method for brainwave 
modulation, depends on the user’s active participation. It 
would take a period of time for training, and there are still a 
certain proportion of users who are not able to regulate their 
brain wave after training [12]. Hence, a new exogenous 
neuromodulation is highly desired. 

A phase-locked feedback system [13] has been developed 
for exogenous alpha rhythm modulation via visual natural 
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sensory pathway. In this system, alpha oscillation is modulated 
by phase-locked stimulus at a specific phase, and its amplitude 
and frequency are clearly modulated. Considering different 
evoked dynamic responses by visual stimulus at different 
phases of alpha wave [14], Huang et al. [13] modeled the alpha 
oscillation as the motion trajectory of a simple pendulum. In 
simple pendulum system, the visual stimuli are treated as an 
external force, which is exerted at a specific phase with the 
constant magnitude and direction. If the external force is in the 
same direction of the motion of simple pendulum, the 
amplitude of the simulated alpha oscillation would be 
increased. Otherwise, if the force is against to the direction of 
the motion, the amplitude would be decreased. The experiment 
results showed that the output of the phase-locked feedback 
system was agreed with the simple pendulum model 
assumption, that the amplitude of the alpha wave can be 
increased or decreased obviously when visual stimulus is 
exerted at a certain phase (Fig. 1a). The modulation effect on 
the amplitude presents a clear periodicity increasing along 
with an increase of the stimulus phase. The repeatability of the 
performance was verified in the independent work [13]. 
Comparing with large inter- and intra-individual variability on 
the other exogenous neuromodulation methods, such as 
transcranial direct current stimulation (tDCS) and transcranial 
magnetic stimulation (TMS) [15], the results from the 
proposed phase-locked feedback system were consistent 
across almost all participants in the two replications in 
different days [13]. Further, the external noninvasive stimulus 
from TMS and tDCS would inevitably bring artifact to EEG 
signal, which makes the analysis of the brain rhythm during 
the stimulation difficult. The natural sensory pathway stimulus 
in phase-locked feedback system makes it possible to 
investigate the neural entrainment to the visual stimulus during 
the modulation.  

In addition to the amplitude modulation, frequency of 
alpha wave is also modulated. As shown in Fig. 1b, with the 
increase of stimulus phase, the peak frequency of the alpha 
wave is decreased, which is beyond the expectation of the 
simple pendulum model. Further, the simple pendulum model 
is not a stable system. Repeated stimulus would make the 
system divergence. Hence, a more precise model is desired to 
understand the mechanism of joint amplitude-frequency 
modulation by phase-locked feedback system. Jansen’s neural 
mass model is a classical model to study the generation of 
alpha oscillations [16, 17]. In neural dynamics, neural mass 
model describes the alpha oscillations as a limit cycle attractor 
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in six-dimensional state space, which is a periodic trajectory 
that all neighboring trajectories would approach [16]. 
However, the six-dimensional state space and the nonlinear 
items in the neural mass model make it difficult for analysis 
and visualization. In this study, a two-dimensional limit cycle 
model is established to simulate the alpha oscillation to explore 
the neural dynamics mechanism for the phase-locked feedback 
system. The phase-locked feedback system and the simulation 
model is introduced in Section II. Then the simulation results 
are illustrated in Section III. The conclusion and discussion are 
given in Section IV. 

II. MODEL AND METHOD 

A. The phase-locked feedback system 

The process of the phase-locked feedback system [13] is 
shown in Fig. 1c, which is mainly divided into three steps. (1) 
EEG signal from channel Oz is online filtered by a 2-order 8-
12Hz bandpass Butterworth filter to obtain the alpha wave. (2) 
The positive zero-crossing point is detected to identify the time 
point of alpha wave with phase of 3𝜋/2 (blue dot in Fig. 1c), 
which reaches a positive value from a negative value through 
a zero point. (3) A certain time lag 𝜙 is applied as the phase 
index to estimate the certain phases of alpha wave and generate 
a stimulus sequence (red line in Fig. 1c) to control stimulation 
feedback. Finally, the visual stimuli, which are controlled by 
the stimulus sequence and delivered by LED, is served as 
external stimuli to achieve stimulation feedback to EEG 
signal. 

The entire system is a closed-loop phase-locked visual 
feedback system for EEG modulation. Since alpha wave 
results in different dynamic responses and modulation effects 
under a stimulation of different phases [14], the timely and 
accurate phase detection is the key of the phase-locked 
feedback system to guarantee modulation effect. In general, 
three strategies could be applied for phase estimation of real-
time EEG signals: (1) zero-crossing point detection with a 
certain time lag, (2) an autoregressive (AR) model with Hilbert 

transform, and (3) machine learning. The last two methods 
could estimate the phase of ongoing alpha wave directly. The 
AR model achieve the phase estimation through predicting the 
future signal firstly, and then estimating the phases of signal 
by Hilbert transform. Several machine learning methods can 
be applied for phase estimation, such as multiple linear 
regression. However, the accuracy of phase estimation in these 
two methods depend on the stationarity of the signal. With 
external stimulus, the assumption of stationarity is not 
guaranteed. Hence, zero-crossing detection method with a 
certain time lag is applied for phase estimation in this study. 
By positive zero crossing, the 3𝜋/2 phase of alpha wave can 
be identified and a certain time lag 𝜙 is added to zero-crossing 
time point 𝑡𝑚 to estimate the specific phase of alpha wave (Fig. 
1c). This method is simple for online system implementation, 
and the low computation complexity can guarantee the real-
time performance of the system. 

B. Limit cycle model 

For simplicity of analysis, a two-dimensional limit cycle 
model is applied to simulate alpha dynamics in phase-locked 
feedback system, as follows 

 𝑋′ = 𝐹(𝑋) + 𝐾𝑢(𝑦̃, 𝜙), 

in which 𝑋 = [𝑥1, 𝑥2]𝑇  is the state variable, 𝑦 = 𝑥1  is the 
observation variable (output signal) of the system, 𝑦̃  is the 
online filtered signal of 𝑦  with 2-order 8-12Hz bandpass 
Butterworth filter and 𝜙 is the time lag, and 𝐾 = [3000,0]𝑇 is 
a vector with only one dimension non-zero, which indicates 
the stimulus dimension and stimulus intensity. 𝐹(𝑋) describes 
the spontaneous EEG signal 

 𝐹(𝑋) = [

𝑘𝑥1

𝑟
− 𝑘𝑥1 − 𝑐𝑥2

𝑘𝑥2

𝑟
− 𝑘𝑥2 + 𝑐𝑥1

] 

with the parameters 

 𝑘 = 10, 𝑐 = 60, 

in which the limit cycle attractor trajectory is a circle with the 

radius of 𝑟 = √𝑥1
2 + 𝑥2

2, the value of 𝑘 determines the rate of 

the system that converges to the limit cycle attractor, and 𝑐 
determines the angular velocity of the limit cycle attractor, 
which is constant. The external stimulus 𝑢(𝑦,̃ 𝜙), depending 
on 𝑦̃ and 𝜙, is the sum of impulse function and 

 𝑢(𝑦̃, 𝜙) = ∑ 𝛿(𝑡 − (𝑡𝑚 + 𝜙))𝑚 . 

Firstly, the positive zero-crossing time point of the filtered 
signal 𝑦̃ is detected as 𝑡𝑚, with 𝑦̃ = 0 and 𝑦̃′ > 0. Then a time 
lag 𝜙  is added into 𝑡𝑚  to perform the stimulus. Dirac delta 
function 𝛿(𝑡) is the unit impulse function with  

 ∫ 𝛿(𝑡)𝑑𝑡
𝑏

𝑎
= {

1, 𝑎 < 0 < 𝑏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Runge-Kutta method is applied to run the simulation [18] and 
the initial value is set as 𝑋(0) = [1,0]𝑇. 

 

Figure 1.  The expremental modulation results and the schema of the 
phase-locked feedback sysem. (a) The amplitude modulation function 

against the phase index (time lag) 𝜙. (b) Power spectra of the system 

regulated by visual stimulus delivered at different values of 𝜙. The dash 
line indicates the power and frequency without external stimulation. (c) 

The schema of the phase-locked feedback sysem. 
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III. RESULTS 

In this section, the neural dynamics of the phase locked 
feedback system is shown with two different values of the time 
lag 𝜙 . Then the result of joint amplitude-frequency 
modulation is shown as the phase increases from 0-200ms. 

Fig. 2 shows the dynamic of the system modulated by an 
external stimulus with time lag 𝜙 = 10ms. In the first second, 

there is no external stimulus, and the spontaneous EEG is 
illustrated in blue curves. As is shown in Fig. 2a, the simulated 
raw signal is firstly online filtered by 2-order 8-12Hz bandpass 
Butterworth filter. Then the positive zero crossing point is 
detected to get the time point of simulated signal with the 
phase of 3𝜋/2 (blue dot in Fig. 2a). Thirdly, a certain time lag, 
as 𝜙 = 10ms here, is added to phase estimation (red dot in Fig. 
2a) and generate a feedback stimulus sequence, which is used 

 

Figure 2.  The simulation results of the phase-locked feedback 

system with external stimulus at phase index (time lag) 𝜙 = 10ms. (a) 

The schema of the output signal modulation. The black dots indicates 

the positive zero-crossing point. The red dots indicates the actual 
stimulation point. (b) The modulation effect of the system in phase 

space. The red dots indicates the stimulation point. The angle of the blue 

arrow indicates the angle change of the system. The red line indicates 
the orbit redius change of the system. (c) The ouput signal of the system. 

The red dash line indecates the amplitude of the output signal without 

stimulating. 

 

 

Figure 3.  The simulation results of the phase-locked feedback 

system with external stimulus at phase index (time lag) 𝜙 = 80ms. (a) 

The schema of the output signal modulation. The black dots indicates 
the positive zero-crossing point. The red dots indicates the actual 

stimulation point. (b) The modulation effect of the system in phase 

space. The red dots indicates the stimulation point. The angle of the blue 
arrow indicates the angle change of the system. The red line indicates 

the orbit redius change of the system. (c) The ouput signal of the system. 

The red dash line indecates the amplitude of the output signal without 

stimulating. 

Figure 2.   

 
Figure 4.  The simulation results of the phase-locked feedback system with external stimulus as time lag 𝜙 increasing from 0 to 200ms. (a) The 

modulation effect of the system in phase space, with phase index (time lag) of 10ms, 45ms, 80ms, 115ms, 150ms and 185ms, respectively (left to right). 

(b) Power spectra of the system regulated by impulse delivered at different values of 𝜙. (c) The amplitude modulation function against the phase index 

(time lag) 𝜙. The black dash line indicates the frequency and power without external stimulus. 

 

455

Authorized licensed use limited to: National University of Singapore. Downloaded on July 05,2021 at 05:01:41 UTC from IEEE Xplore.  Restrictions apply. 



  

to control the impulse to achieve feedback stimulation. With 
the external stimulus, the system would take less than one 
second into a stable state, in which the power of the oscillation 
is increased and the frequency of the oscillation is also 
increased (Fig. 2c). By investigating the phase portrait in Fig. 
2b, it is found that the external stimulus creates the radius of 
the trajectory increasing (𝛥𝑟 > 0), hence the power of the 
oscillation increasing ( 𝑃 ↑ ). Furthermore, the external 
stimulus also causes the change of instantaneous phase angle. 
The increased phase angle (∆𝜃 > 0) makes the frequency of 
the oscillation increasing (𝐹 ↑). 

Fig. 3 shows the dynamic of the system modulated by the 
external stimulus with time lag 𝜙 = 80ms. As is shown in Fig. 
3a, the whole processing is similar as it is in Fig. 2a. But the 
time lag 𝜙 increases from 10ms to 80ms. In result, the power 
of the oscillation is decreased and the frequency of the 
oscillation is also decreased (Fig. 3c). Due to the stimulus in 
different phase (Fig. 3b), it is found that the external stimulus 
creates the radius of the trajectory decreasing (𝛥𝑟 < 0), hence 
the power of the oscillation decreasing (𝑃 ↓). Furthermore, the 
external stimulus also causes instantaneous phase angle 
change. The decreased phase angle ( ∆𝜃 < 0 ) makes the 
frequency of the oscillation decreasing (𝐹 ↓).  

Fig. 4 shows the joint amplitude-frequency modulation 
effect. With the time lag 𝜙 increasing from 0 to 200ms, the 
peak-frequency decreased and presents a clear periodic (Fig 
4b) and the power shows a sinusoidal-like with the time lag 𝜙 
(Fig 4c). The phase portrait with time lag 𝜙 =
10, 45, 80,115, 150, and 185ms is illustrated in Fig. 4a. The 
change of power and frequency mainly depends on 
instantaneous change of the trajectory radius 𝑟  and phase 
angle 𝜃 by the external stimulus. If the change of angle ∆𝜃 >
0, corresponds to the increasing of frequency for output signal. 
On the contrary, if ∆𝜃 < 0, the frequency of output signal is 
decreased. If the change of trajectory radius 𝛥𝑟 > 0 , 
corresponds to the increasing of amplitude for output signal. 
On the contrary, if 𝑟 < 0, the amplitude of output signal is 
decreased. 

IV. CONCLUSION 

In this paper, a limit cycle model has been established for 
EEG alpha oscillation simulation. The dynamic behavior in 
the simulation is consistent with the real online EEG 
modulation results [13], which indicates that the proposed 
limit cycle model can well describe the dynamic mechanism 
of phase-locked feedback stimulation. The repeated external 
stimulus at specific phase make the simulated alpha wave 
stabilize in a new trajectory. The change of the trajectory 
radius leads to the modulation of amplitude. Meanwhile, the 
angular velocity is constant in the proposed system, the 
change of instantaneous phase by external stimulus would lead 
to the modulation of peak-frequency eventually. 

The neural dynamic study of the phase-locked feedback 
system in this work deepens our understanding on the 
mechanism of brainwave entrainment with the external 
stimulus. The proposed two-dimensional limit cycle model, 
allows us thoroughly explore the influence of different factors 
on the effect of EEG modulation, and what kind of dynamic 
structure would have a joint amplitude-frequency modulation 
phenomenon. Based on these investigations, a new EEG 

modulation protocol can be further developed.  
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