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a b s t r a c t 

EEG signals exhibit commonality and variability across subjects, sessions, and tasks. But most existing EEG studies focus on mean group effects (commonality) by 
averaging signals over trials and subjects. The substantial intra- and inter-subject variability of EEG have often been overlooked. The recently significant technological 
advances in machine learning, especially deep learning, have brought technological innovations to EEG signal application in many aspects, but there are still great 
challenges in cross-session, cross-task, and cross-subject EEG decoding. In this work, an EEG-based biometric competition based on a large-scale M 

3 CV (A Multi- 
subject, Multi-session, and Multi-task Database for investigation of EEG Commonality and Variability) database was launched to better characterize and harness the 
intra- and inter-subject variability and promote the development of machine learning algorithm in this field. In the M 

3 CV database, EEG signals were recorded from 

106 subjects, of which 95 subjects repeated two sessions of the experiments on different days. The whole experiment consisted of 6 paradigms, including resting- 
state, transient-state sensory, steady-state sensory, cognitive oddball, motor execution, and steady-state sensory with selective attention with 14 types of EEG signals, 
120000 epochs. Two learning tasks (identification and verification), performance metrics, and baseline methods were introduced in the competition. In general, the 
proposed M 

3 CV dataset and the EEG-based biometric competition aim to provide the opportunity to develop advanced machine learning algorithms for achieving 
an in-depth understanding of the commonality and variability of EEG signals across subjects, sessions, and tasks. 
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. Introduction 

Since the discovery of electroencephalography (EEG) by Hans Berger
n 1924 ( Berger, 1929 ), EEG has evolved for use in a wide range of ap-
lications ( Alotaiby et al., 2014 ; Cahn and Polich, 2006 ; Dietrich and
anso, 2010 ; Wolpaw et al., 1991 ) for almost one hundred years. Typ-

cally, event-related potentials (ERPs) study focuses on the significant
ommon or mean effects of a cohort, in which the intra- and inter-subject
ariability are treated as noise and are filtered out by averaging over
rials and subjects ( Seghier and Price, 2018 ). Hence ERPs have been
idely used for investigating the neurological functions of sensory, mo-

or, and cognitive processes ( Kappenman et al., 2021 ). However, the
onventional practice of ERP analysis takes the mean value of the EEG
ignals across trials and/or subjects to achieve a higher signal-to-noise
atio, but the group-level commonality may not have a reliable effect on
he individual level ( Boshra et al., 2019 ; Fröhner et al., 2019 ; Hu et al.,
022 ; Infantolino et al., 2018 ). 

The intra- and inter-subject variability pose a great challenge to
he individual level explanation and decoding of the EEG signal. Mul-
iple factors may contribute to intra- and inter-subject variability, in-
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luding different brain structures among subjects, non-stationarity of
rain activity, neural processing for different tasks, and some un-
nown factors ( Wei et al., 2021 ). With the availability and affordabil-
ty of computational power, the recently significant technological ad-
ances in machine learning, especially deep learning, have brought
echnological innovations to EEG signals application in many aspects
 Craik et al., 2019 ). In clinical and psychiatric studies, machine learn-
ng technique has pushed EEG-based diagnosis, prognosis, risk stratifi-
ation, or treatment monitoring toward a more individualized approach
 Olbrich and Conradi, 2016 ). In the application of brain-computer in-
erface (BCI), intention-encoded EEG can be decoded for the direct in-
eraction between the brain and a computer by single-trial decoding
 Pfurtscheller and Neuper, 2001 ; Wolpaw et al., 2000 ). For system secu-
ity, EEG-based biometrics become attractive to the research community
or personal identification and verification. 

However, the lack of generalizability to different subjects and dif-
erent sessions limited the use of EEG-based machine learning methods
n clinical and psychiatric applications ( Sui et al., 2020 ; Fisher et al.,
018 ). For example, a BCI decoder usually works well in a single per-
onal session, but performs poorly over time or even fails to be applied
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Table 1 

Open access EEG databases with characteristics of multi-session, multi-subject, or multi-task. 

Database # Channels Equipment # Sessions # Subjects # Tasks Main Usages 

Cho et al. (2017) 64 ActiveTwo/Biosemi 1 52 Rest, MI Motor-BCI 
Goldberger et al. (2000) 64 BCI2000 1 109 Rest, MI, ME Motor-BCI 
Brunner et al., 2008 22 Unknown 2 9 MI Motor-BCI 
Zheng et al., 2019 62 EPOC/ Emotiv 4 15 Watch movie clips Emotion Recognition 
Korczowski et al. (2019) 32 g.USBamp/ Gtec 3 50 P300 P300-BCI 
Lee et al. (2019) 62 BrainAmp/ BrainProduct 2 54 Rest, MI, P300, SSVEP BCI inefficiency 
Jeong et al. (2020) 60 actiCHamp/ BrainProduct 3 25 11 different upper-extremity 

movement tasks 
Motor-BCI 

Kappenman et al., 2021 30 ActiveTwo/ Biosemi 1 40 Rest, N170, MMN, N2pc, 
N400, P3, LRP and ERN 

ERP studies 

Langer et al. (2017) 128 Geodesic Hydrocel system 2 126 Passive: Rest, P-SS, NS, 
Active: CCD, SL, A-SS 

Information processing in 
the developing brain 

Gaspar et al. (2011) 128 ActiveTwo/ Biosemi 10 5 ERPs (faces and noises) ERP reliability 
Kumar et al. (2021) 128 GES400/ EGI 2-5 30 OB, FUW, IBA, MMI, PA, 

SSVEP, PAV 
personal identification 

Arnau-Gonzalez et al. (2021) 14 EPOC/ Emotiv 3 21 Rest, AS, VC x and VF x personal identification 
M 

3 CV (2022) [this work] 64 BrainAmp/ BrainProduct 2 106 (95 for 
2 sessions) 

Rest, VEP, AEP, SEP, SSVEP, 
SSAEP, SSSEP, P300, ME, 
and SSVEP-SA 

Intra- and inter-subject 
variability and cross-task 
analysis 

∗ Abbreviations: Rest – Resting-state, MI – Motor Imagery, ME – Motor Execution, LRP – Lateralized Readiness Potential, ERN – Error-related Negativity, P-SS - 
Passive Surround Suppression, NS - Natural Stimuli, CCD - Contrast Change Detection, SL - Sequence Learning, A-SS – Active Symbol Searching, OB – OddBall, FUW 

– Familiar and Unfamiliar Words, IBA- Imagining Binary Answers, PA – Passive Audio, PAV – Passive Audio-Visual, AS – Affective Stimulus VCx and VFx – Visual 
Evoked Potentials Evoked by Check-board and Flash, VEP – Visual Evoked Potential, AEP – Auditory Evoked Potential, SEP – Somatosensory Evoked Potential, SSVEP 
– Steady-State Visual Evoked Potential, SSAEP – Steady-State Auditory Evoked Potential, SSSEP – Steady-State Somatosensory Evoked Potential. 
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o another subject ( Krusienski et al., 2011 ; Satti et al., 2010 ). Although
here are meaningful studies concerning cross-session and cross-subject
ransfer learning for BCI, the theory of common feature space construc-
ion in BCI applications is still being studied ( Autthasan et al., 2022 ;
otte and Guan, 2011 ; Rodrigues et al., 2019 ). Similarly, severe over-
tting was observed in the application of EEG-based biometrics in the
ithin-session recognition. 

In summary, the traditional ERP analysis and statistical test methods
elp us identify the group-level commonality of EEG, while the recently
eveloped machine learning techniques provided us with a way to fur-
her explore the individual-level variability of EEG. However, the lack
f generalizability across subjects, sessions, and tasks is still a major
hallenge for machine learning in neuroimaging. A large-scale multi-
ubject, multi-session, multi-task EEG database is highly deserved to
upport this branch of research. Hence, in this study, we established an
 

3 CV (Multi-subject Multi-session Multi-task Commonality and Vari-
bility) EEG database to support cross-subject, cross-session, and cross-
ask EEG studies. 

The M 

3 CV database contains 14 types of EEG tasks in 6 experiment
aradigms from 106 healthy young adults, in which 95 subjects com-
leted two experimental sessions repeated on different days. To record
he EEG data for as many tasks as possible within the limited recording
ime and to ensure the data quality of each task, we designed the ex-
eriments based on suggestions from five experts in neuroscience and
sychology (see Acknowledgments). 

The experimental paradigms in each session included the following
ix paradigms with 14 tasks of EEG signals (bolded text). 

• Paradigm 1: Resting-state with eye closed and eye open ( EC and EO ,
each lasting for 2 min). 

• Paradigm 2: Transient-state sensory with visual, auditory, and so-
matosensory stimulation ( VEP, AEP , and SEP , each having 60 trials)

• Paradigm 3: Steady-state sensory with steady-state visual, auditory,
and somatosensory stimulation ( SSVEP 1 min, SSAEP 2 min, and
SSSEP 2 min) 

• Paradigm 4: P300 with oddball experiment ( target P300 with 30
trials, and nontarget P300 with 570 trials) 

• Paradigm 5: Motor execution with the movement of right foot, right
hand, and left hand ( FT, RH , and LH , each having 80 trials) 
2 
• Paradigm 6: SSVEP with selective attention ( SSVEP-SA, six classes,
each class having 12 trials, each trial lasting for 10 s) 

When retrieving existing open-access EEG databases ( Table 1 ), we
ound few databases with multi-task and multi-session EEG signals. The
umber of subjects in most databases was less than 50. With some spe-
ific research objectives, the number of tasks was typically only one or
 small number. Multi-session EEG recordings are even harder to collect
ecause it is more difficult to require all subjects to repeat the experi-
ent after a certain period. We also found that existing databases with

ome attributes of multi-task or multi-session were mainly used for reli-
bility analysis, BCI, and EEG-based personal identification. Reliability
nalysis ( Gaspar et al., 2011 ) focused on the cross-session reproducibil-
ty of EEG signals, which plays a fundamental role in EEG research.
CI studies ( Brunner et al., 2008 ; Goldberger et al., 2000 ; Jeong et al.,
020 ; Korczowski et al., 2019 ; Kumar et al., 2021 ; Lee et al., 2019 )
ften require the development of cross-session and cross-subject trans-
er learning algorithms. EEG-based personal identification techniques
 Arnau-Gonzalez et al., 2021 ; Kumar et al., 2021 ) use EEG features to
dentify certain persons among a large number of samples, which should
e robust across tasks and sessions. In addition, SEED IV ( Zheng et al.,
019 ) has four sessions of EEG data for EEG-based emotion studies,
anger et al. (2017) presented a dataset combining electrophysiology
nd eye-tracking intended as a resource for the investigation of in-
ormation processing in the developing brain, and Kappenman et al
 Kappenman et al., 2021 ) developed ERP Core with six tasks for ERP
eaching studies. 

Compared with the existing biometrics, such as iris, fingerprint, and
ace, the security of EEG signal could potentially provide a more se-
ure biometric method as it is confidential, hard to mimic, and almost
mpossible to steal ( Chan et al., 2018 ; Bidgoly et al. 2022 ; Gui et al.,
015 ). The research on EEG-based biometrics has received increased at-
ention in recent years ( Wang et al., 2020 ; Chan et al., 2018 ; Debie et al.,
021 ; Jin et al., 2021 ; Marcel and Millan, 2007 ). However, there are
any challenges such as temporal permanence and robustness to mental

tate changes in an EEG-based biometric system ( Cahn and Polich, 2006 ;
a Rocca et al., 2013 ; Maiorana, 2021a ; Maiorana and Campisi, 2018 ).
t the same time, there is no open EEG-based biometric competition.
he lack of a unified test benchmark and platform hinders the develop-
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Fig. 1. Illustrations of the experimental paradigm of the M 

3 CV database. 

m  

l
 

s  

m  

S

2

2

 

p  

G  

w  

r  

n  

o  

t  

a
 

C  

A  

s  

t  

p

2

 

o  

1  

a  

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ent of this field. To this end, we decided to open the M 

3 CV dataset to
aunch an EEG-based biometric competition. 

The remainder of the rest of this paper is organized as follows. Ses-
ion II introduces the M 

3 CV dataset. The details of the EEG-based bio-
etrics competition are presented in Section III. Results are provided in

ection IV. The discussion and conclusion are given in Section V. 

. M 

3 CV dataset 

.1. Subjects 

A total of 106 healthy subjects from Shenzhen University partici-
ated in this experiment. Of these, 95 subjects (Age: 21.3 ± 2.2 years;
ender: 73 males) participated in two sessions of the experiment, which
ere scheduled on different days, the between-session time is in the

ange of 6 days to 139 days, with a mean of 20 days. All subjects had
ormal hearing, normal or corrected-to-normal vision, and no history
f neurological injury or disease (as indicated by a self-report). During
he experiment, the subjects were seated in comfortable chairs and kept
bout one meter from the screen. 

Ethical approval of the study was obtained from the Medical Ethics
ommittee, Health Science Center, Shenzhen University (No. 2019053).
ll subjects were informed of the experimental procedure, and they
igned informed consent documents before the experiment, in which
hey agreed to make their data open to access for research aim on the
remise of concealing their personal information. 

.2. Experimental paradigm 

Fig. 1 shows that the whole experiment was arranged in two sessions
n separate days. The entire experiment with 6 paradigms, 15 runs, and
4 tasks was completed within 2 h (around 50 min of recording time
nd 70 min for experiment preparation and rest between the consecutive
uns). 

The description of the 6 experimental paradigms is given below: 

(1) Resting-state : Runs 01 and 14 were resting-state EEG signals
with eyes-closed (EC), while Runs 02 and 15 were resting-state
EEG signals with eyes-open (EO). Each lasting for 1 min. Instead
3 
of the fixation cross on the screen, the subject was asked to keep
their eyes fixed on the LED (staying off) during the resting state
with their eyes open. In the eyes-open run, the subjects were re-
quired to keep their eyes fixed in front and blink as little as pos-
sible. 

(2) Transient-state sensory : EEG elicited by visual, auditory, and
somatosensory stimuli were recorded in Runs 04 and 11. For
each run, 30 trials of VEP, AEP, and SEP were arranged in ran-
dom order. Each stimulus lasted 50 milliseconds, and the inter-
stimulus interval (ISI) was set at 2–4 s. On average, each run
lasted 4.5 min. 

(3) Steady-state sensory : A train of visual, auditory, and somatosen-
sory stimuli were released in Runs 05, 09, and 12 respec-
tively. Considering the different frequency responses of differ-
ent modality stimuli, and the higher signal-to-noise ratio of
SSVEP compared to SSAEP and SSSEP, the stimulation fre-
quencies and recording times were different. They were 10 Hz
( Herrmann, 2001 ) and 1 min for SSVEP in Run 05, 45.38 Hz
( Galambos et al., 1981 ) and 2 min for SSAEP in Run 09, and
22.04 Hz ( Snyder, 1992 ) and 2 min for SSAEP in Run 12. 

(4) Visual Oddball : A visual oddball experiment was arranged in
Run 07 with the red square as the target stimuli and a white
square as the nontarget stimuli on the screen. Each square lasted
80 ms with the ISI 200 ms. Six hundred trials of stimuli were
arranged in 2 min, in which target stimuli had a possibility of
5% (30 trials of target stimulation and 570 trials of nontarget
stimulation). The subjects were asked to count the number of red
squares and report after the run so that their attention would
remain on the screen. 

(5) Motor Execution : Executed movement was performed in Runs
03, 06, 10, and 13. During these runs, the subjects were instructed
to respond to a visual cue by gripping their left hand (LH) or
right hand (RH), or by lifting their right ankle (FT) for a dura-
tion of 3 s, i.e., until the cue offset. No feedback was provided
during the online recording. To ensure their motor areas were
being fully activated, the subjects were required to perform the
real executed movements of FT, RH, and LH at a rate of twice per
second or faster, at approximately 80% of their maximum vol-



G. Huang, Z. Hu, W. Chen et al. NeuroImage 264 (2022) 119666 

Table 2 

Description of 14 types of EEG tasks recorded in the M 

3 CV database. 

No. Name Paradigm Run Duration Trigger Description 

1 EC 1 01, 14 2 min S 1 Resting state with eyes closed 
2 EO 1 02, 15 2 min S 2 Resting state with eyes open 
3 VEP 2 04, 11 60 trials S 3 Visual evoked potential 
4 AEP 2 04, 11 60 trials S 4 Auditory evoked potential 
5 SEP 2 04, 11 60 trials S 5 Somatosensory evoked potential 
6 SSVEP 3 05 1 min S 23 Steady-state visual evoked potential 
7 SSAEP 3 09 2 min S 24 Steady-state auditory evoked potential 
8 SSSEP 3 12 2 min S 25 Steady-state somatosensory evoked potential 
9 Target P300 4 07 30 trials S 9 Epochs with target stimuli in P300 experiment 
10 Nontarget P300 4 07 570 trials S 10 Epochs with nontarget stimuli in P300 experiment 
11 FT 5 03, 06, 10, 13 80 trials S 6 Right ankle movement 
12 RH 5 03, 06, 10, 13 80 trials S 7 Right hand movement 
13 LH 5 03, 06, 10, 13 80 trials S 8 Left hand movement 
14 SSVEP-SA 6 08 12 segments/2.5 min S 11–S 16 (cue) 

S 17–S 22 (begin) 
Steady-state visual evoked potential with selective 
attention 
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f  
untary contraction, while keeping their upper body still. There
was no external tool, like a metronome or hint on the screen,
to remind the subject, because it may have produced unneces-
sary evoked potential as an external stimulus. During the experi-
ment, the experiment monitored the movements of the subjects.
If the subjects did not move fast enough or were found that their
body moved simultaneously, the experimenter would abandon
the recording of the current run, correct the subject’s movement
and let them practice several more trials. The experimenters con-
tinuously monitored whether the movements of the subjects met
these standards and corrected them when necessary. To minimize
the intra- and inter-subject variability, we tried to ensure the con-
sistency of the movements for all subjects. Hence, the executed
movement was used instead of motor imagery in classical BCI ex-
periments, and no feedback or training was given to the subjects.

(6) SSVEP with selective attention : Six white squares flashed si-
multaneously at different frequencies in Run 08. First, the target
square turned red for 200 ms. After 500 ms, all squares with the
frequency of 7 Hz, 8 Hz, 9 Hz, 11 Hz, 13 Hz, and 15 Hz began
to flash and lasted 10 s. The subject was asked to focus on the
target square during the 10 s by covert visual attention with a
fixation on the middle of the screen. In total, there were 12 trials
arranged in Run 08. For each session of the experiment, they were
instructed to perform 6 types of experimental paradigms, which
were arranged in 15 runs, in which 14 tasks with rest, sensory,
cognitive, and motor-related EEG signals were listed in Table 2 . 

.3. Experimental platform 

The continuous EEG signals were recorded using an EEG amplifier
BrainAmp, Brain Products GmbH, Germany) and multichannel EEG
aps (64 Channel, Easycap). The signals were recorded at a sampling
ate of 1000 Hz by 64 electrodes, placed in the standard 10–20 posi-
ions. The electrodes FCz and AFz served as reference and ground, re-
pectively. Before data acquisition, the contact impedance between the
EG electrodes and the cortex was calibrated to be lower than 20 k Ω to
nsure the quality of EEG signals during the experiments. 

An Arduino Uno platform was programmed to release the visual, au-
itory, and somatosensory stimuli in tasks 2 and 3, which communicated
ith the Matlab program (The MathWorks Inc., Natick, USA) on a PC

hrough a serial port. 

• Visual stimuli for VEP and SSVEP were delivered by a 3 W light-
emitting diode (LED) with a 2 cm diameter circular light shield,
which was placed in the center of the visual field of view 45 cm
away from the subjects’ eyes. The mean LED intensity was 1074 Lux
as measured by a light meter (TES-1332A, TES). 

• Auditory stimuli for AEP and SSAEP were presented via a Nokia
WH-102 headphone. 1000 Hz pure tone was applied for the stimuli.
4 
The intensity was set at a comfortable level (75 dB SPL on average)
for all subjects as measured by a digital sound level meter (Victor
824, Double King Industrial Holdings Co., Ltd. Shenzhen, China). 

• Somatosensory stimuli for SEP and SSSEP were generated by a
1027 disk vibration motor. Since there was no effective tool to mea-
sure the output intensity of the vibrator directly, we have to report
the detail of the product parameters with the rated power of 3 W,
the efficiency of 80%, and dimensions of 10mm 

∗ 2.7mm). 

For the other tasks, A 24.5-inch screen (1920 ∗ 1080) with a 240-
z refreshing rate (Alienware AW2518H, Miami, USA) was used to
resent the visual stimuli or cues by programmed using Psychtoolbox-3
 http://psychtoolbox.org/ ) in Matlab. The red and white squares were
elivered in a sequence at the center of the screen with a black back-
round for visual oddball. Three white squares were also used in the
otor execution paradigm to indicate the movement. Six white squares
ashed simultaneously at different frequencies to deliver the stimulus

n SSVEP with selective attention paradigm. The size of the square was
et to be 300 ∗ 300 pixels in these paradigms. 

.4. EEG signal pre-processing 

The data pre-processing pipeline on the M 

3 CV database is illus-
rated in Table 3 . The raw EEG signals were recorded with BrainVision
ore data format (each recording consisting of a .vhdr, .vmrk, .eeg file
riplet), which were managed with Brain Imaging Data Structure (BIDS)
 Gorgolewski et al., 2016 ; Pernet et al., 2019 ). For each recording, the
ad channels were interpolated first. Channel FCz (the reference) was
dded back, and channel IO was removed. Then all signals were filtered
y a 0.01–200-Hz band-pass filter and a 50-Hz notch filter. A 2-order
utterworth zero-phase filter was applied in the above two steps of filter-

ng. After re-referencing to TP9/TP10, artifacts produced by eye blinks
r eye movements were identified and removed manually by Indepen-
ent Component Analysis (ICA) ( Huang et al., 2020 ). 

During the signal preprocessing, we interpolate bad channels for 22
ubjects and one subject was removed due to strong 10 Hz artifacts
mong the 95 subjects who complete the two sessions. For Motor ex-
cution, preventing the interference of EMG artifacts caused by the ac-
ual movement was crucial during our data collection, especially in the
ovement paradigm. Firstly, we asked the subject to keep their torso

till in both foot and hand movements. That is also the reason why we
et right foot movement instead of two-foot movement in the experi-
ent design. Secondly, the experimenters continuously monitored the

ubjects’ movement and online EEG display to ensure the quality of data
ollection. Thirdly, since the amplitude of EMG single is much higher
han the EEG signal, the contamination of EMG artifacts is highly visi-
le. Also, we did not see strong EMG artifacts during the signal prepro-
essing. Furthermore, no strong EMG artifact is observed in the time-
requency analysis. The main EEG responses came from C3, C4, and Cz

http://psychtoolbox.org/
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Table 3 

Pipeline for EEG pre-processing. 

Software Matlab 2018b & Letswave7 (Letswave.cn) 

Band-pass filtering Butterworth filter, 0.01-200 Hz, 4 th order, 24 dB/octave, zero-phase 
Notch filtering Butterworth filter, 49-51 Hz, 4 th order, 24 dB/octave, zero-phase 
Channel interpolation Bad channels were identified manually and interpolated with the mean value of the three surrounding 

channels 
Re-reference Re-reference to the mean value of TP9 and TP10 
Artifacts removal by ICA Eye movement related ICA components were identified by visual inspection of their scalp topographies, 

time courses, and spectra. 

Fig. 2. Time domain EEG results for (A) VEP, (B) AEP 2, (C) SEP in paradigm 2 and (D) P300 in paradigm 4. 
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t 𝜇 and 𝛽 band. The 𝛾 band response was much smaller, which was the
ain frequency band for EMG artifacts. 

It should be mentioned that we did not perform bad epoch rejection
n pre-processing. The machine learning task is different from conven-
ional ERP analysis. The robustness to the outlier is also an important
eature of the machine learning algorithm. Besides, the criteria for re-
ecting epochs were different across research groups, thus affecting the
epeatability of the algorithm. 

.5. Basic EEG signal visualization 

To show the basic characteristic of EEG signals in M 

3 CV, we per-
orm time domain analysis on ERP signals, Frequency domain analy-
is on resting-state EEG and steady-state evoked potentials, and time-
requency domain analysis on motor-related signals. 

.5.1. Time domain analysis 

The ERPs of VEP, SEP, AEP, and target and non-target P300 were
nalyzed in the time domain. A Butterworth bandpass filter with 0.5 – 30
z was applied to the preprocessed EEG signal. It should be noted that

he 0.5-30Hz bandpass filter was used only for ERP data visualization,
nd the data set provided in the biometrics competition was filtered
ith a 0.01 - 200Hz bandpass filter. After segmentation and averaging,
aseline correction was performed from − 0.5 to 0 s to obtain the ERP
or each subject. 

For time-domain analysis. The grand-averaged waveforms of VEP,
EP, SEP, and target- and nontarget-P300 are shown in Fig. 2 (A–D),
ith the topographies at their corresponding peaks. The response of VEP
5 
ainly concentrated on the occipital area. AEP and SEP shared a similar
2/P2 waveform in the central area. A classical N75-P100-N135 com-
lex is not seen here, which is typically observed from pattern-reversal
EP, for which high-contrast, black-and-white checkerboards are used
s stimuli. As the vibrator was placed on the subject’s left hand, the
2 response of SEP showed a response from the contralateral primary

ensory area. The topographies for the P2 components from AEP and
EP are quite similar. In the oddball experiment, the target P300 re-
ponse was mainly concentrated on the channel POz at around 300 ms.
y comparison, the nontarget response mainly came from the occipital
rea because the visual stimuli were used in the oddball experiment. 

.5.2. Frequency domain analysis 

For the task of resting-state with eye closed and eye open, the EEG
ignals were firstly re-referenced to a common average reference after
reprocessing. Welch’s method with a 2-s window and 50% overlap was
pplied. After transforming the total power level into decibels and aver-
ging, the frequency domain responses for resting-state EEG with eye
losed and eye open were obtained for each subject. The processing
ipeline for EEG signals from steady-state sensory and SSVEP with se-
ective attention tasks was similar. But no re-reference was performed,
nd TP9/TP10 was still used as the reference. FFT was applied instead of
elch’s method to obtain a sharp frequency response for SSVEP, SSAEP,

SSEP, and six classes of SSVEP-SA signals. 
For frequency domain analysis of the resting-state EEG with EC and

O ( Fig. 3 A), the difference was concentrated on the occipital area. With
he increase in frequency, the amplitude of the EEG response decreased
t a rate of approximately 1/freq for both EC and EO. The main differ-
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Fig. 3. Frequency domain EEG results for (A) Resting-state EEG with eye closed and eye open, (B) Steady-state Evoked potential with SSVEP, SSAEP, and SSSEP, 
and (C) SSVEP with selective attention. 
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nce between EC and EO was the three peaks that appeared in sequence
round 10 Hz, 20 Hz, and 30 Hz. For the first peak in the interval of
-12 Hz, the main response was in the occipital area, the frequency
ower at Cz (0.45 dB) is larger than C3 (0.17 dB) and C4 (0.21 dB) in
he condition of EO, while the frequency power at Cz (-1.05 dB) would
e smaller than C3 (-0.88 dB) and C4 (-0.73 dB) in the condition of
C. The topographies for the second peaks in the interval of 18-22 Hz
ad a similar shape, while the difference mainly came from the magni-
ude. For SSEP analysis in Fig. 3 B, the brain areas and frequency band
f the induced SSEP were different for visual, auditory, and somatosen-
ory stimuli, which were around 10 Hz at the occipital area for SSVEP,
round 45 Hz at the frontal-central area for SSAEP, and around 22 Hz at
he primary sensory area for SSSEP. Fig. 3 C shows how attention mod-
lated the foundation frequency (black triangles) and their harmonic
gray triangles) responses at different frequency points. With selective
ttention, the target frequency (downward-pointing triangles) responses
ere larger than those at other nontarget frequencies (upward-pointing

riangles). 

.5.3. Time-frequency domain analysis 

For the motor execution tasks, since the EEG responses were complex
n different time intervals and frequency bands, a continuous wavelet
ransform was applied for the time-frequency domain transform, in
hich the complex Morlet wavelet was used with the central frequency
.5 Hz and bandwidth 1 Hz. Considering the computation complexity,
he EEG signal was downsampled to 200 Hz to reduce the time for com-
utation. After the continuous wavelet transform, the time-frequency
esponse was further downsampled to 50 Hz to reduce the storage space
n the hard disk and computer memory. 

Time-frequency analysis was performed for the motor task because
oot and hand movements led to rich neural oscillation changes in dif-
erent time-frequency-spatial regions. Fig. 4 gave a comprehensive il-
ustration of these changes caused by these three types of movements,
hich are FT, RH, and LH. Further, no strong EMG artifact is observed

n the time-frequency analysis. The main EEG responses came from C3,
4, and Cz at 𝜇 and 𝛽 band. The 𝛾 band response was much smaller,
hich was the main frequency band for EMG artifacts. 

The corresponding topographies from six regions of interest (ROI)
re detailed below. 
6 
• ROI #1 (from 0.1 to 0.3 s, 2 to 7 Hz): The response in this region
was due to Motor-related Cortical Potential (MRCP), which is a su-
per low-frequency negative shift in EEG recording. MRCP may come
earlier than the movement because the cortical processes are em-
ployed in the planning and preparation of movement. Hence, MRCP
can be used for predicting the movement in BCI applications. In this
experiment, subjects did not know which movement and when they
were going to execute. Hence the MRCP response came out after the
zero point. The brain area of its response was the same as the motor
area of the corresponding action. 

• ROI #2 (from 1 to 3 s, 9 to 13 Hz): The ERD response from the 𝜇
rhythm oscillation was observed in this region. By carefully compar-
ing the responses of RH and LH, we found that the ERD phenomenon
happened in motor areas of both left and right hemispheres. But the
ERD in the contralateral brain area was larger than that in the ipsi-
lateral brain area. 

• ROI #3 (from 1 to 3 s, 20 to 30 Hz): The ERD response from the 𝛽
rhythm oscillation was also well reported for motor-based BCI ap-
plication. Similar to ROI #2, the ERD phenomenon happened in the
motor areas of both the left and right hemispheres for RH and LH.
The interhemispheric difference was mainly located in the parietal-
central area in ROI #2 and located in the frontal-central area in ROI
#3. 

• ROI #4 (from 1 to 3 s, 55 to 90 Hz): During the movement, high 𝛾
oscillation also showed an interhemispheric difference for RH and
LH. But the magnitude was weaker than that of ROI #2 and ROI #3.
We found that the magnitude change in ROI #4 was ERD for both
RH and LH, which was ERS for FT. But the magnitude was quite
small for the high-frequency EEG recording. 

• ROI #5 (from 4 to 4.5 s, 12 to 14 Hz): After the movement, 𝜇 rhythm
ERS phenomenon occurred in the corresponding motor area for FT,
RH, and RL. With the large sample size in our dataset, some more
detailed results can be observed. For example, the 𝜇 rhythm ERS for
FT occurred earlier at a higher frequency band (around 12.5 Hz, and
4.2 s) than ERS for RH and LH (around 9 Hz, and 5 s). 

• ROI #6 (from 4 to 4.5 s, 20 to 30 Hz): 𝛽 rhythm ERS phenomenon
was seen in this region. We found that from 3.7 to 4.2 s, the 𝜇 rhythm
ERD and 𝛽 rhythm ERS occurred simultaneously for RH and RL. The
𝜇 rhythm ERS and 𝛽 rhythm ERS did not occur at the same time for
RH and LH, but occurred at almost the same time interval for FT. 
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Fig. 4. Time-frequency domain EEG results for motor execution task for FT (right angle movement), RH (angle hand), and LH (left hand movement) at channels Cz, 
C3, and C4. The topographies of the mean magnitude from the six typical regions are illustrated for three types of movements. 
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. EEG-based biometrics 

.1. Literature review 

Several studies have reported that EEG-based identification and ver-
fication systems are capable of high recognition accuracy ( Kong et al.,
019 ; Koike-Akino et al., 2016 ). However, many of them have not been
valuated under more rigorous conditions, such as testing in a database
ith large population sizes, across sessions, and across tasks, which were
etailed as follows: 

• Uniqueness: Although many studies have revealed the uniqueness
of EEG signals and their ability to discriminate between subjects,
the tested databases normally have a small population size of fewer
than 50 subjects ( Delpozo-Banos et al., 2018 ; Arnau-Gonzalez et al.,
2021 ; Chen et al., 2016 ). For employing EEG as a biometric trait, it
must be tested on a larger database. 

• Permanence: EEG signals could be different in days even for the
same task, which poses a major challenge to decoding subject iden-
tity ( La Rocca et al., 2013 ; Maiorana et al., 2016 ; Maiorana and
Campisi, 2018 ). Further, in single-session settings, machine learning
algorithms may recognize the special electrode situation and prepro-
cessing parameters rather than the EEG-based personal trait. 

• Robustness: For the same session, EEG signals could vary signifi-
cantly under different tasks or experimental conditions. A good bio-
metric system should be robust to the above conditions ( Wang et al.,
2019 ; Maiorana, 2021a ; Kumar et al., 2021 ; Kong et al., 2018 ), oth-
7 
erwise, an enrolled subject may be rejected or misidentified by the
system when they are under different mental states. 

According to the three points mentioned above, we did a short
eview of the existing studies on multi-session and multi-task EEG-
ased biometrics as shown in Table 4 . Compared with our proposed
atabase, the population size of these studies is quite small, especially
or La Rocca et al. (2013) and Zeynali and Seyedarabi (2019) . As
or feature extraction, hand-crafted features, such as AR, MFCC, and
SD, are still the dominant choice while only Maiorana (2020) and
umar et al. (2021) applied deep learning methods. In terms of perfor-
ance metrics, the recognition accuracy and the equal error rate were

he most used metric for identification tasks and verification tasks, re-
pectively ( Arnau-Gonzalez et al., 2021 ; Kumar et al., 2021 ). It should
e noted that these studies were performed on multi-session and multi-
ask EEG databases, but only Kumar et al. (2021) applied cross-session
nd cross-task evaluation to their proposed algorithm. 

.2. Learning task 

Based on the M 

3 CV database, the EEG-based biometric competition
as launched by focusing on the problems of personal identification
nd verification ( Fig. 5 ). The contestant needs to train the classification
odel for the biometric system with the enrollment dataset. After the
odel has been trained, the contestant would be asked to complete the

ollowing two classification tasks: (1) Identification : Determine whether
 given EEG signal comes from the enrollment set, and further determine
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Table 4 

Literature review on multi-session and multi-task EEG-based biometrics study. 

Previous work # Subjects # Sessions #Tasks Feature Classifier Performance metric 

La Rocca et al. (2013) 9 2 EC, EO AR LDC ACC 
Zeynali and Seyedarabi, 2019 ) 7 1-3 Rest, LT, MT, GFR, VC PSD, AR, DWT, LEE, SE SVM, NB ACC, F1- score, AUC 
Maiorana et al. (2016) 50 3 EC, EO AR, PSD L1, L2 & CS ACC 
Delpozo-Banos et al. (2018) 15 2 VEP, MT PSD NB, LDC ACC, FAR, GAR 
Maiorana, 2020 ) 45 5 EC, EO, MI, MT, VS, SI AR, MFCC CNNs & RNNs Rank-1 IR 
Arnau-Gonzalez et al. (2021) 21 3 Rest, AS, MC, VC x, and VF x AR, MFCC, PSD HMM ACC, AUC, EER 
Kumar et al. (2021) 30 2-5 OB, FUW, IBA, MMI, PA, SSVEP, PAV PSD ix-vector ACC, EER 
M 

3 CV (2022), [this work] 106 2 EC, EO, EP, SSVEP, SSAEP, SSSEP, 
P300, ME and SSVEP-SA 

AR, MFCC, PSD SVM, L2 Score 

∗ Abbreviations: LT – Letter Task, MT – Math Task, GFR – Geometric Figure Rotation, DWT – Discrete Wavelet Transform, VC – Visual Counting, LEE – Log Energy 
Entropy, SE – Sample Entropy, NB – Naïve Bayes, LDC – Linear Discriminant Classifier, AUC – Area Under the Curve, FAR – False Acceptance Rate, GAR – Genuine 
Acceptance Rate, Rank-1 IR – Rank1 Identification Rate, EER – Equal Error Rate, AR – Auto-Regressive, MFCC – Mel-Frequency Cepstrum Coefficients. VS – Visual 
Stimuli, HMM – Hidden Markov Models. Some abbreviations were omitted, which were already described in Table 1 . 

Fig. 5. The architecture of the EEG-based biometric system with the learning task of personal identification and verification. 
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he subject ID if the epoch is not judged as from an intruder and (2) Ver-
fication: Determine whether a given EEG signal comes from a certain
ubject. 

.3. Baseline model 

.3.1. Feature extraction 

According to the literature review, three types of commonly used
eatures were selected for EEG-based biometrics based on the EEG signal
re-processing: 

(1) Power Spectral Density (PSD): To estimate the power spectrum
of each channel for each epoch, we used the Welch periodogram
algorithm. Specifically, we divided the whole 4s epoch into 1s
segments with 0.5s overlap, then we averaged the FFT of each
segment using a hamming window. The PSD spectrum from 2 to
45 Hz was evenly divided into 12 frequency bands, then the band
power of these frequency bands was extracted. 

(2) Mel Frequency Cepstral Coefficients (MFCCs): MFCCs are one of
the most common features of speech recognition, and have been
recently applied to the biometric analysis of EEG data ( Arnau-
Gonzalez et al., 2021 ; Maiorana, 2020 ). MFCCs are extracted
from the mel-filtered spectrum amplitudes s m using log compres-
sion and discrete cosine transform, defined as 

c i = 

√ 

2 
M 

M ∑
m=1 

log ( s m ) cos 
(m − 0 . 5 

M 

𝜋i 
)
, (1)

here L is the number of preserved cepstral coefficient, c i is the 𝑖 -th
epstral coefficient, with 𝑖 = 1 , 2 , 3 , … , 𝐿 . 𝑀 is the number of triangular
8 
and-pass filters in a mel-scaled filter bank and 𝐿 is the number of the
rst cepstral coefficients used to obtain signal representation. In this
tudy, M = 18 and L = 12 were employed. 

(1) Autoregressive Coefficient (AR): AR features are commonly used
for EEG-based identification and verification ( Maiorana and
Campisi, 2018 ). In this study, AR features were extracted from
each epoch from a 12-th order autoregressive model created by
solving the Yule-Walker equations. Thus 12 AR coefficients were
extracted for each EEG channel. 

.3.2. Classification 

In the biometric system, the verification task is a one-to-one classi-
cation problem and the identification task is a one-to-N classification
roblem. With the existence of the intruders, identification becomes a
ne-to-(N + 1) classification problem. Considering the extensibility of the
nrollment set, using N one-to-one weak classifiers from each subject to
ompose a one-to-N classifier is a practical way for the biometric system.
he method can effectively avoid the retraining of the whole classifier
fter the enrolling of new subjects. 

In this study, one-to-one classifiers, including the similarity-based
ethod based on Euclidean distances (L2) and the One-class Support
ector Machine (SVM), were applied as the baseline classifiers for both
erification and identification tasks in the subsequent analysis for sim-
licity. More specifically, after extracting features, an L2-based or SVM
lassification model was trained by epochs from each subject in the en-
ollment set. 

In the verification task, the corresponding classifier would confirm
he subject ID claimed by test epochs when the acquired score was
reater than the rejection threshold 𝛿. In an offline system, this thresh-
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ld was varied to obtain the equal error rate ( 𝐸 𝐸 𝑅 ), which was a com-
only used threshold-independent measure in biometric verification

asks ( Bidgoly et al., 2022 ), defined as the intersection point of false
cceptance rate ( 𝐹 𝐴𝑅 ) curve and false rejection rate ( 𝐹 𝑅𝑅 ) curve. In
n online system, the threshold has to be pre-determined, which was
ormally decided by obtaining EER on the training set ( Marcel and Mil-
an, 2007 ; Kang et al., 2018 ). 

In the identification task, the intruder test was performed firstly, in
hich the test epoch was fed into each subject’s classification model to
enerate a score, when the maximal score obtained from all subjects’
odels was below the threshold, the test epoch was judged as an in-

ruder. For the L2-based model, the rule of judging the test epoch as an
ntruder was defined by Eq. (2) 

max 
𝑖 
{ 𝑑 ( 𝑦 𝑖 , 𝑁 𝑁 ( 𝑦 𝑖 ) ) 

𝑑 ( 𝑧, 𝑦 𝑖 ) } < 𝛿 (2) 

here 𝑁 is the number of subjects in the enrolled set, 𝑧 is the test
poch, 𝑦 𝑖 is the nearest epoch of 𝑧 from all epochs of i th subject with
 = 1 , 2 , 3 , … , 𝑁 , 𝑁 𝑁 ( 𝑦 𝑖 ) is the nearest epoch of 𝑦 𝑖 from all epochs of i th
ubject, 𝛿 is the rejection threshold determined by 𝐸 𝐸 𝑅 . The subject
D would be assigned based on the maximum score from all subjects if
he test epoch 𝑧 passed the intruder detection. For an SVM-based clas-
ifier, the likelihood is applied instead of the distance in the L2-based
lassifier. 

.4. Performance metrics 

To evaluate the performance of the different biometrics mod-
ls, Accuracy ( 𝐴𝑐 𝑐 ), Equal Error Rate ( 𝐸 𝐸 𝑅 ), 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ,
𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 , 𝐹 1 − 𝑠𝑐 𝑜𝑟𝑒 , 𝑇 𝑡𝑟𝑎𝑖𝑛 𝑇 𝑡𝑒𝑠𝑡 , and the final leaderboard 𝑆𝑐𝑜𝑟𝑒 were
pplied as performance metrics. 

For offline evaluation, 𝐴𝑐 𝑐 , as the recognition accuracies, is the most
ommonly used for the identification task. For the verification task,
 𝐸 𝑅 , as the equal error rate of False Acceptance Rate ( 𝐹 𝐴𝑅 ) and False
ejection Rate ( 𝐹 𝑅𝑅 ), is the most commonly used ( Maiorana, 2021b ;
idgoly et al., 2022 ; Kang et al., 2018 ). With the growth of the rejec-
ion threshold in the classifier model, 𝐹 𝐴𝑅 ( 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ) increases
nd 𝐹 𝑅𝑅 ( 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ) decreases, 𝐸 𝐸 𝑅 is defined as the intersection
oint of the 𝐹 𝐴𝑅 and 𝐹 𝑅𝑅 curve ( Wu et al., 2018 ; Yingnan et al., 2019 ).
ence, for offline evaluation, 𝐸 𝐸 𝑅 is not only used to determine the re-

ection threshold during the training phase, but also used as the metric
o evaluation the performance of the biometric algorithm. 

For online evaluation, since 𝐸 𝐸 𝑅 is determined during the train-
ng phase, it could not be used as a performance metric for online
esting. Hence, the most common and traditional performance metrics,
𝑐 𝑐 , 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 , 𝑆 𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 , 𝑆 𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 , 𝐹 1 − 𝑠𝑐 𝑜𝑟𝑒 , 𝑇 𝑡𝑟𝑎𝑖𝑛 , and 𝑇 𝑡𝑒𝑠𝑡 are
pplied for both the identification task ( Fig. 6 A) and the verification
ask ( Fig. 6 B) ( Wang et al., 2019 ; Kong et al., 2019 ; Abolfazl et al.,
019 ). It should be noticed the definition of 𝐴𝑐 𝑐 , 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 , 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ,
𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 , and 𝐹 1 − 𝑠𝑐 𝑜𝑟𝑒 would be different between the multi-class

dentification task in Fig. 6 A and two-class verification task in Fig. 6 B.
 𝑡𝑟𝑎𝑖𝑛 and 𝑇 𝑡𝑒𝑠𝑡 represent the time of traing and testing. In this study,
 𝑡𝑟𝑎𝑖𝑛 represents the time of training the classifier by the epochs from
ub11-Sub18 separately. 𝑇 𝑡𝑒𝑠𝑡 represents the time of testing all epochs of
ub11-Sub20. All the test are run on the computer with CPU i9-9900KF
nter(R) Core(TM). 

To avoid information leakage, the performance metrics of 𝐴𝑐 𝑐 ,
 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 , 𝑆𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 , and 𝐹 1 − 𝑠𝑐 𝑜𝑟𝑒 are only calculated in
he mock online test. For the real online competition, the evaluation of
hese metrics needs the true labels from the testing set. Hence, only the
eaderboard score, as the weighted sum of 𝐴𝑐 𝑐 in the identification and
erification task ( 𝐴𝑐 𝑐 𝐼 and 𝐴𝑐 𝑐 𝑉 ) in Fig. 6 C, was reported for online sub-
ission, which is provided by the platform of Kaggle. The leaderboard

core was used as the unique ranking in the competition to evaluate
he contestant’s overall performance in both tasks to decide the final
inner. 
9 
.5. Online competition 

.5.1. Dataset composition 

As is shown in Fig. 7 , the whole set for this competition was divided
nto three parts: Enrollment Set, Calibration Set, and Testing set (con-
aining 11 intruders). 

• Enrollment Set: it provides the 1 st session of EEG from 95 subjects.
The enrollment set is used for the contestants to train the biometric
model. 

• Calibration set: the EEG data of the 2 nd session from 20 subjects is
provided in the calibration set, which is used to help the contestants
get familiar with the data format, refine effective feature extraction,
and tune hyper-parameters of the machine learning model. The num-
ber of subjects in the calibration set is relatively small as compared
with the enrollment set and testing set. 

• Testing set: it is used to evaluate the performance of the algorithm in
the competition with the public and private leaderboards, for which
epochs belonging to public or private leaderboards are hidden. The
testing epochs come from the 2nd session of 86 subjects, among
which 11 subjects are treated as an intruder. 

.5.2. Organization of the competition 

The challenge has already been launched currently and would be
losed on Apr 30 th , 2023. Challengers were ranked based on the score
f recognition accuracy of their submission computed on the private
eaderboard. The platform Kaggle is used to hold the competition. Dur-
ng the challenge, contestants can submit their solutions on the Kaggle,
nd we provided the contestants with the score computed on the pub-
ic leaderboard. At the end of the challenge, contestants were ranked
ased on the score of these submissions computed on the private leader-
oard. Later submission is still allowed on the Kaggle platform for the
esearcher to evaluate their methods. 

.5.3. Competition platform 

Kaggle is an online community platform for data scientists and ma-
hine learning enthusiasts, which provides the world’s largest data sci-
nce community with powerful tools and resources. The link to the plat-
orm for our competition are as follows, 

• Kaggle: https://www.kaggle.com/competitions/eeg-biometric-
competition 

.5.4. Data and code availability 

The public dataset with the code of the baseline methods and an
xample submission file are available at 

• Kaggle: https://www.kaggle.com/competitions/eeg-biometric-
competition/data . 

.6. Benchmarks 

To have a comprehensive understanding of the challenges in the
EG-based biometrics competition, we divided the benchmark test into
hree levels. 

(1) Offline evaluation aims to reveal the challenge of the compe-
tition with the increasing population size and cross-session, and
cross-task; 

(2) Mock online test aims to evaluate the performances of different
baseline models without information leakage. 

(3) Online submission provides an example code and the baseline
score in the public. 

.6.1. Offline evaluation 

For offline evaluation, three analyses were performed to show the
hallenge of the increasing population sizes, cross-session, and cross-
ask tests in this EEG-based biometrics competition. These analyses were

https://www.kaggle.com/competitions/eeg-biometric-competition
https://www.kaggle.com/competitions/eeg-biometric-competition/data
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Fig. 6. Illustration of performance metrics for identification task, verification task, and leaderboard ranking. 
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erformed on the data from 20 subjects in the calibration set and enroll-
ent set, whose subject ID of the second session was known. To avoid

ny possible information leakage, all the analyses were limited to these
0 subjects, not any data and label information from the testing set has
een used. The intruder was not considered. The train/test pipeline and
erformance metric for these analyses were detailed as follows: 
10 
(1) Testing on increasing population sizes: To evaluate the influ-
ence of increasing population sizes on the performance of EEG-
based biometrics, we performed a within-task and cross-session
testing the number of subjects was increased from 2 to 20 with
the step of 2 subjects. To avoid training bias, subjects were ran-
domly selected 10 times for each number of subjects. The epochs
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Fig. 7. The segmentation of M 

3 CV for online competition. The whole set was divided into three parts: Enrollment Set, Calibration Set, and Testing set (containing 
11 intruders). 
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from different EEG tasks were used for the testing separately. For
each task, the data from the first session was used to train, and
the data from the second session was used to test. 

(2) Testing across tasks: To compare the performance between
within and cross tasks, we performed cross-session testing with
a population size of 20. EEG data of a particular task from one
session (session 1/session 2) was used to train the model, and
EEG data of another task from the other session (session 2/ses-
sion 1) was used to test. And then the training set and the testing
set would be exchanged Since AEP, SEP and VEP are in the same
runs, we treated them as one condition/task, EP (i.e., Evoked Po-
tential). Also, the term ME (Motor execution) was used to repre-
sent the LH, RH, and RF conditions. 

(3) Testing across sessions: To compare the performance between
within and cross sessions, we performed the within-task test with
a population size of 20. To make a fair comparison of the perfor-
mance between within-session and cross-session tests, the train-
ing set was the first half of the epochs in the first session, which
was the same for the within-session tests and cross-session tests.
For the within-session test, the testing set was the second half
of the epochs in the first session. For the cross-session tests, the
testing set was all epochs from the second session. 

In the offline evaluation, 𝐴𝑐 𝑐 was adopted as the performance met-
ic of the identification task, which is the larger the better, and 𝐸 𝐸 𝑅

as used for the verification task, which is the smaller the better
 Maiorana, 2021b ; Bidgoly et al., 2022 ; Kang et al., 2018 ). 

.6.2. Mock online test 

To evaluate the performances of different models without any infor-
ation leakage from the testing set, mock online test was performed on

he 20 subjects in the true calibration set and enrollment set. Similar to
he dataset composition of the online competition, we divided these 20
ubjects into the mock enrollment set, calibration set, and testing set. 

• The mock enrollment training set consisted of epochs from the first
sessions of the first 18 subjects (Sub001 - Sub018). 

• The mock calibration set consisted of epochs from the first sessions
of the first 10 subjects (Sub001 - Sub010). 

• The mock testing set consisted of epochs from the second session of
another 10 subjects (Sub011- Sub020), in which Sub019 and Sub020
were set as intruders. The epochs from the first session of Sub019 and

Sub020 were not used. b

11 
For mock online test, the performance metrics, Accuracy ( 𝐴𝑐 𝑐 ),
 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , 𝑆 𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 , 𝑆 𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 , 𝐹 1 − 𝑠𝑐𝑜𝑟𝑒 . 𝑇 𝑡𝑟𝑎𝑖𝑛 , 𝑇 𝑡𝑒𝑠𝑡 and the final
𝑐𝑜𝑟𝑒 were applied for both identification and verification tasks. As is

hown in Fig. 6 , 𝐴𝑐 𝑐 , 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 , 𝑆 𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 , 𝑆 𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 , and 𝐹 1 − 𝑠𝑐 𝑜𝑟𝑒

ere adopted to comprehensively evaluate the prediction result, which
s the larger the better. 𝑇 𝑡𝑟𝑎𝑖𝑛 and 𝑇 𝑡𝑒𝑠𝑡 were the evaluation of the time
onsumption for training and testing, which is the smaller the better.
ore specifically, 𝑇 𝑡𝑟𝑎𝑖𝑛 represents the training time of the classifier by

he epochs from Sub11-Sub18 in the first session. 𝑇 𝑡𝑒𝑠𝑡 represents the
esting for all epochs of Sub11-Sub20 in the second session. Finally, the
𝑐𝑜𝑟𝑒 is the overall accuracy considering both tasks, which decides the

anking of different baseline models in the mock online test, the larger
he better. 

.6.3. Online submission 

For online submission, an example code was provided with dif-
erent extracted features (PSD, AR, MFCC) and classification (L2 and
VM), in which the optimal threshold was determined by making the
 𝐴𝑅 = 𝐹 𝑅𝑅 on the 20 subjects in the calibration set and enrollment
et, whose subject ID of two sessions was known. An example code
nd the submission file with the method of PSD + L2 with were provided
n the website of Kaggle ( https://www.kaggle.com/competitions/eeg-
iometric-competition/data ). 

To avoid the information leakage of the subject ID for the epochs
n the testing set, only the leaderboard 𝑆𝑐𝑜𝑟𝑒 of the total recognition
ccuracy was used to evaluate the performance, which can be obtained
rom the platform of Kaggle. We did not set multiple leaderboards for
he competition. As a unified and comprehensive index will make the
ompetition focused and competitive, the leaderboard 𝑆𝑐𝑜𝑟𝑒 was used
o evaluate the contestant’s overall performance in both identification
nd verification tasks to decide the final winner. 

. Benchmark results 

.1. Offline evaluation 

Since this section only aims to evaluate the performance degradation
esulting from larger population sizes, cross-session, and cross-task tests,
nly the MFCC feature and SVM classifier was adopted. The results for
he investigation of the uniqueness of individuals, robustness to mental
tate changes, and permanence over recording sessions of EEG-based
iometrics are shown in Fig. 8 (A–C) correspondingly. 

https://www.kaggle.com/competitions/eeg-biometric-competition/data


G. Huang, Z. Hu, W. Chen et al. NeuroImage 264 (2022) 119666 

Fig. 8. The influence of (A) increasing population sizes, (B) cross-task tests, and (C) cross-session tests on the performance degradation of EEG-based biometric 
systems. 𝐴𝑐 𝑐 is used to evaluate the performance in the identification task. The larger value of 𝐴𝑐 𝑐 indicates a better result. 𝐸 𝐸 𝑅 , as the equal error rate, is used to 
evaluate the performance in the verification task. The smaller value of 𝐸 𝐸 𝑅 indicates a better result. Chance levels in Fig. 8A and C are marked by black curves. 
The influence of increasing population sizes (A) and cross-task tests (B) were both evaluated in the data from the second session. These results were obtained on 20 
subjects in the enrollment set and calibration set. Left: identification results. Right: verification results. 
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Table 5 

Model evaluation for the combination of different features (PSD, MFCC, AR) and dif- 
ferent classifiers (L2 and SVM) on the mock online test. 

Performance 
Metric 

SVM L2 

PSD MFCC AR PSD MFCC AR 

Identification 𝐴𝑐 𝑐 0 . 461 0 . 437 0 . 284 𝟎 . 𝟓𝟑𝟏 0 . 410 0 . 373 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 0 . 458 0 . 439 0 . 346 𝟎 . 𝟓𝟒𝟒 0 . 416 0 . 404 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝟎 . 𝟓𝟗𝟔 0 . 670 0 . 589 0 . 570 0 . 427 0 . 412 
𝑆𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 0 . 933 0 . 930 0 . 910 𝟎 . 𝟗𝟒𝟏 0 . 925 0 . 924 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 0 . 517 0 . 530 0 . 436 𝟎 . 𝟓𝟓𝟕 0 . 421 0 . 408 

Verification 𝐴𝑐 𝑐 0 . 743 0 . 721 𝟎 . 𝟒𝟕𝟒 0 . 746 0 . 757 0 . 438 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 0 . 235 0 . 219 0 . 136 𝟎 . 𝟐𝟓𝟔 0 . 242 0 . 138 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 0 . 694 0 . 695 0 . 797 0 . 811 0 . 668 𝟎 . 𝟖𝟖𝟎 
𝑆𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 𝟎 . 𝟕𝟒𝟗 0 . 724 0 . 438 0 . 738 0 . 767 0 . 389 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 0 . 351 0 . 333 0 . 233 𝟎 . 𝟑𝟖𝟗 0 . 355 0 . 239 

Computation 
Time 

𝑇 𝑡𝑟𝑎𝑖𝑛 1 . 70s 1 . 36s 1 . 25s 0 . 75s 𝟎 . 𝟔𝟗 𝐬 0 . 71s 
𝑇 𝑡𝑒𝑠𝑡 1 . 46s 1 . 42s 𝟏 . 𝟒𝟎 𝐬 3 . 28s 3 . 22s 3 . 29s 

Leaderboard Metric 𝑆𝑐𝑜𝑟𝑒 0 . 712 0 . 690 0 . 453 𝟎 . 𝟕𝟐𝟏 0 . 718 0 . 431 

∗ PSD: Power Spectral Density, MFCCs: Mel Frequency Cepstral Coefficients, AR: Au- 
toregressive Coefficient, L2: Euclidean distances, and SVM: Support Vector Machine. 
𝐴𝑐 𝑐 , 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 , 𝑆 𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 , 𝑆 𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 , 𝐹 1 − 𝑠𝑐 𝑜𝑟𝑒 were applied to evaluate the recogni- 
tion efficiency for both identification and verification task which is the larger the better. 
𝑇 𝑡𝑟𝑎𝑖𝑛 and 𝑇 𝑡𝑒𝑠𝑡 were the time consumption for training and testing., which is the smaller 
the better. The leaderboard metric 𝑆𝑐𝑜𝑟𝑒 is the overall accuracy considering both tasks, 
which is the larger the better. The numbers in bold indicate the best results. 
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In terms of the uniqueness of individuals, it can be observed that the
ccuracy decreased for each task as the population sizes increased from
 to 20. The averaged recognition accuracy decreased from 0.81 to 0.34.
t should be noted that with the different population sizes, the chance
evels are different. With the population sizes rising to a larger scale
e.g., 106 subjects in our testing set), the identification problem for ma-
hine learning algorithms to identify one subject would be more chal-
enging. Since the verification task is a one-to-one matching problem,
ncreasing the population size will not lead to its performance degrada-
ion. 

Fig. 8B showed the robustness of EEG-based biometrics to mental
tate changes, in which the row represents the task used for training, and
he column represents the task used for testing. The blue square border
n the diagonal elements in Fig. 8B indicates the result of the within-
ask test, as compared with the result of the cross-task test in the off-
iagonal elements. In the left figure of Fig. 8B , the black square border
n the off-diagonal elements (where EP was used to train and SSSEP was
sed to test) shows a higher classification accuracy than the blue square
order (where EP was used to train and test) in the third row, which is
 . 44 versus 0 . 40 . There was a similar case for the verification task, when
SAEP was used to train, the best result was obtained when SSSEP was
sed to test. Except for these two, the best performance for other rows
as achieved at the diagonal line, in which the training task and the

esting task is the same. This result is consistent for both identification
nd verification tasks. Due to the unequal number of training samples
or each task, it’s unfair to compare the error rate across different rows.
he within-task and cross-task test results were obtained in cross-session
ettings. 

As for the permanence across recording sessions in Fig. 8C , the av-
raged 𝐸 𝐸 𝑅 increased from 0.16 to 0.31, and the average accuracy for
dentification decreased from 0.70 to 0.31. 

.2. Mock online test 

To make a comprehensive comparison of different methods without
nformation leakage, we hold the mock online test by using the first 20
ubjects in the enrollment set and calibration set to mock the online
iometric competition. Table 5 shows the model performances on the
ock online test for the combination of extracted features (PSD, MFCC,
R) and classification (L2 and SVM) methods. The value of 𝑆𝑐𝑜𝑟𝑒 , which
ecides the ranking on the mock leaderboard for six models, is also pro-
13 
ided. PSD + L2 provided the best result as 𝑆𝑐𝑜𝑟𝑒 = 0 . 721 . It can be ob-
erved that the precision for the verification task is quite low, which is
aused by the class imbalance in the mock online test. 

In terms of extracted features, the AR features have the worst perfor-
ance no matter which classifier was used. PSD features have a better or

imilar performance, as compared with more elaborated features such as
FCC across each metric. It is interesting to note that with the threshold

etermined by the equal error rate (i.e., 𝐹 𝐴𝑅 = 𝐹 𝑅𝑅 ) in an independent
raining set, the performance of MFCC and AR features are very differ-
nt on the metrics of specificity ( 1 − 𝐹 𝐴𝑅 ) and sensitivity ( 1 − 𝐹 𝑅𝑅 ).
specially, the specificity of the AR feature is 0 . 438 and 0 . 389 for L2
nd SVM classifiers, but the corresponding sensitivity is 0 . 797 and 0 . 880 ,
xhibiting strong instability for AR-based verification systems. 

In terms of classifier, the SVM classifier performed a little better than
2 classifier with the PSD and MFCC features. As for the time consump-
ion, since the L2-based classifier has to compare the new input with
ll points in the training set, its evaluation time 𝑇 𝑡𝑒𝑠𝑡 is slower than the
VM classifier. Since the training and testing time depend on the code,
he hardware, and the software environment, it’s difficult to make a rel-
tively consistent evaluation for online competition. 

.3. Online submission 

For the example submission, the PSD + L2 method obtained a 𝑆𝑐𝑜𝑟𝑒

f 0.4418 in public leaderboard. It should be noted that the method
ith a better result on the mock online test may not necessarily directly

ead to higher scores in the online submission. That is caused by the
ifferent samples used for training and testing. For the same reason, it
s also possible that the score varies from public leaderboard to private
eaderboard. 

. Discussion and conclusion 

.1. Challenges in EEG-based biometrics competition 

In the field of EEG-based biometrics, many studies have mentioned
hat their major limitation is lacking a database containing large popu-
ation sizes, recorded under different conditions and different sessions
 Wang et al., 2020 ; Chan et al., 2018 ; Delpozo-Banos et al., 2018 ). Based
n our proposed M 

3 CV database, we launch the EEG-based biometric
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ompetition. In view of the current development of EEG-based biomet-
ic technology, this competition proposes the following challenges for
achine learning algorithms from many aspects: 

1. Challenge with large population size : the population size of the
testing database is an important indicator of whether the current
EEG-based biometric technology can be practically applied. As illus-
trated in Fig. 8 (A), the identification accuracies decreased greatly
with the increase of the population size. The identification task on
the online competition with a population size of 106 would be more
challenging for the machine learning algorithm. 

2. Challenge for cross-session tests : a practical biometric system
should be robust to cross-session variability. However, as illustrated
in Fig. 8 (C), the machine learning model would easily achieve a
good performance in the within-session test but degraded severely
in the cross-session test. Hence, the cross-session test would be one
big challenge in this competition. 

3. Challenge for cross-task tests : similar to the cross-session tests, the
robustness of the biometric system to the cross-task variability is also
a challenge in this competition. For real application, the biometric
system should recognize the subject even when they are in different
mental states. 

4. Challenge for intruders : Whether the biometric system can prevent
an attack from intruders outside the enrollment set is determined by
the identification performance on an open set ( Kumar et al., 2021 ).
That would lead to very different strategies for the classifier design
in terms of machine learning techniques ( Gunther et al., 2017 ). 

To our best knowledge, no previous study has tested the permanence
nd robustness of EEG-based biometric features over 100 subjects in an
pen-set setting. Hence, the M 

3 CV database can facilitate the develop-
ent of advanced machine learning algorithms for EEG-based biomet-

ics. 
It should be mentioned that there are samples from the same sub-

ect in both the testing set and calibration set, which may lead to these
pochs in the testing set being easy to recognize. However, we chose this
cheme to construct the testing set and calibration set for two reasons.
irst, the large sample size is one of the major challenges for this com-
etition. We had to divide the dataset for calibration, which includes 20
ubjects in the competition. But if we did not use this part of subjects at
ll in the testing set, the number of subjects would be decreased by al-
ost 20%, which makes the competition less challenging. Second, this

ype of information leakage may also occur in practical applications.
nce the biometric model has been trained, users can use the biometric

ystem immediately. For using the system, it is not necessary for them
o re-wear the EEG cap. 

.2. From competition to real application 

Due to the limitations of the competition conditions, there may still
e some distance away from the real application. 

Firstly, the competition needs to have a unique ranking. Hence the
𝑐𝑜𝑟𝑒 was applied to comprehensively evaluate the contestant’s perfor-
ance in the identification and verification task to decide the final win-
er. However, the evaluation of a system’s performance should consider
ultiple aspects. On the calibration set, accuracy, precision, sensitivity,

pecificity, F1-score, 𝑇 𝑡𝑟𝑎𝑖𝑛 , and 𝑇 𝑡𝑒𝑠𝑡 have been proposed as performance
etrics for a comprehensive evaluation of the system. For the submis-

ion of each team, the error rate under different conditions can be calcu-
ated offline, but the computation complexity of training and testing is
ifficult to make a relatively consistent evaluation. Hence, it is required
or the contestants to report the time for training and testing, and their
ardware and software environment. 

Furthermore, the baseline models provided in the studies are all one-
lass classifiers (L2 and one-class SVM). If a new subject is added to the
nrollment set, the biometrics system just needs to add the model for
14 
he new coming subject alone. It doesn’t need to retrain the whole clas-
ifier model. We believe the multi-class classifier would achieve better
erformance in the competition. But one-class classifier would be more
ractical in the real application. 

.3. Intra- and inter-subject variability 

Intra- and inter-subject variability poses a great challenge for the
nterpretation and decoding of EEG signals ( Seghier and Price, 2018 ;

ei et al., 2021 ). Traditional ERP analysis and statistical test methods
ere typically used to analyze the group-level commonality of EEG sig-
als, while machine learning techniques are considered to be more pow-
rful in dealing with intra- and inter-subject variability. The dataset for
his competition is not only restricted to the study of EEG-based biomet-
ic algorithms but can also be used for other applications, such as cross-
ession reliability analysis of EEG signals from different tasks, transfer
earning in cross-subject, and cross-session BCI studies. Furthermore, the
ross-run and cross-trial variability within subject is also a meaningful
opic to study. The multi-run EEG recording, which included resting-
tate, transient-state sensory, and motor execution, made the M3CV
atabase useful in studies mentioned above. 

.4. Advanced machine learning methods 

To hold the competition, we only provide a few simplistic models
s the baseline to help the contestant to calibrate their work, no ad-
anced machine learning approaches have been applied in this study.
evertheless, different strategies have been proposed to deal with intra-

ubject variability caused by mental state changes and the influence
f external factors, such as varying electrode placement and electrical
mpedance. For example, some studies have started to explore the evi-
ence of task-independent person-specific signatures in EEG. Kong et al.
2019) have claimed that phase synchronization of EEG signals has
ask-free biometric properties but it lacked cross-session evaluation,
hile Valizadeh et al. (2019) conducted a cross-session evaluation

or various connectivity measures, only 5 participants were measured
wice . Besides, some advanced machine learning methods, such as
ow-rank learning ( Kong et al., 2018 ) and adversarial deep learning
 Ozdenizci et al., 2019 ) have also been applied to deal with mental state
hanges. Also, some strategies, such as multi-task learning ( Sun, 2008 )
nd instance-based learning ( Yang et al., 2022 ) have been proposed to
btain better cross-session results. 

Undoubtedly, deep learning is the biggest advance in machine learn-
ng in recent years, which has also been applied in the EEG-based
iometrics study ( Behrouzi and Hatzinakos, 2022 ; Jin et al., 2021 ;
ang et al., 2019 ; Maiorana, 2021b ). However, due to the lack of sup-

ort from large datasets, the generalizability of deep learning has always
een doubtable in this field. On the other hand, most of the newly pro-
osed ideas of transfer learning are based on the framework of deep
earning. Based on this competition on the M 

3 CV database, it is ex-
ected that some cross-session and cross-task deep learning methods
an emerge. Furthermore, it is also expected that these methods can not
nly work well in the field of EEG-based biometrics but also provide a
niversal solution in dealing with Intra- and inter-subject variability of
he EEG signals. 

. Conclusion 

The lack of a large-scale comprehensive EEG database, which con-
ains data recorded from multiple subjects in multiple sessions and over
ultiple tasks, limits our understanding of intra- and inter-subject vari-

bility and hinders the development of advanced machine learning al-
orithms. In this study, we established an M 

3 CV database with 106 sub-
ects, 2 sessions, and 6 tasks to reveal the commonality and variability
f cross-subject, cross-session, and cross-task EEG signals. Based on this
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3 CV dataset, a machine learning competition about EEG-based bio-
etrics was launched to help this field grow. Except for advancing the
evelopment of machine learning algorithms for EEG decoding (such as
iometrics and BCI), we believe the M 

3 CV database can help researchers
ain a deep understanding of the relationship between different types of
EG signals, such as resting state, motor, sensory-related, or cognitive-
elated EEG signals. 
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