
  

 

  

Abstract— Independent Component Analysis (ICA) has 

became the most popular method to remove eye-blinking 

artifacts from electroencephalogram (EEG) recording. For long 

term EEG recording, ICA was commonly considered to costing 

a lot of computation time. Furthermore, with no ground truth, 

the discussion about the quality of ICA decomposition in a 

nonstationary environment was specious. In this study, we 

investigated the “signal” (P300 waveform) and the “noise” 

(averaged eye-blinking artifacts) on a cross-modal long-term 

EEG recording to evaluate the efficiency and effectiveness of 

different methods on ICA eye-blinking artifacts removal. As a 

result, it was found that, firstly, down sampling is an effective 

way to reduce the computation time in ICA. Appropriate down 

sampling ratio could speed up ICA computation 200 times and 

keep the decomposition performance stable, in which the 

computation time of ICA decomposition on a 2800 s EEG 

recording was less than 5 s. Secondly, dimension reduction by 

PCA was also a way to improve the efficiency and effectiveness 

of ICA. Finally, the comparison by cropping the dataset 

indicated that performing ICA on each run of the experiment 

separately would achieve a better result for eye-blinking 

artifacts removal than using all the EEG data input for ICA. 

I. INTRODUCTION 

Eye-movement related artifacts are undesired signals that 
may introduce changes in the measurements and affect the 
signal of interest in recordings of EEG. Among them, Eye-
blink caused the largest distortions, mainly because of the 
movement of the eyelids across the surface of the eyes [1]. In 
recent decades, ICA has replaced other methods as the most 
popular method for eye-blinking artifacts removal [2]. 
Furthermore, the ICA based automatic artifact removal 
methods and standardized preprocessing toolbox [3, 4]. Onton 
et al. [5] applied ICA for brain source separated.  However, 
because there is no ground truth about the “noise” and “signal” 
in EEG recording [6], the discussion about the effect of ICA 
artifact removal was specious. Whether a more conservative 
or aggressive strategy should be adopted for ICA artifact 
removal is still under debate among different research groups. 
In addition, eye-blinking artifacts are probably the easiest 
artifacts to identify, because of its large amplitude and 
belonging to spatially stereotyped artifact with the fixed 
topographic pattern [7]. While, non-stereotyped artifact would 
probably largely increase the number of “temporally 
independent” source in ICA, which leads separating into a 
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finite number of component activities in an uncontrollable way 
[7].  

Considering that the same brain neural mechanism will 
behave similarly in different EEG experiments, cross-modal 
experiments design can lead to more essential explorations of 
the brain neural mechanism [8-10]. While, ICA was usually 
applied for artifact removal in some relatively simple 
experiment design. The performance of ICA in a cross-modal 
long-term EEG recording has not been well studied. Firstly, 
the cross-modal experiment normally will lead to a long-term 
EEG recording. ICA is considered to costing a lot of 
computation time. This problem would be more prominent 
with the increasing time points. The methods of speeding up 
ICA computation is desired. Secondly and more importantly, 
the cross-modal long-term EEG recording leads the ICA 
decomposition into a nonstationary situation [11, 12]. The 
stationary assumption of the brain state, which would be kept 
in a relatively simple short-term experimental design, would 
be violated in cross-modal long-term EEG recording. On the 
one side, whether the eye-blinking “noise” kept in the same 
pattern is still unknown. On the other side, the different modal 
in experiment design will definitely lead to the change of 
“signal” in EEG recording. Furthermore, fatigue and the 
change of attention can cause the non-stationarity of the brain 
state. 

In this study, the EEG data was recorded from 23 subjects 
with rich types of experimental paradigms, including resting 
state with eye open and closed, transition and steady state 
visual, auditory and vibrotactile stimulation, and Brain 
Computer Interface (BCI) related P300, Steady State Visual 
Evoked Potential (SSVEP) and Sensory Motor Rhythm (SMR) 
experiment. Several methods were proposed for speeding up 
ICA computation. 1) Down sampling is the simplest way to 
reduce the time point of the data input for ICA acceleration. 
Empirically, it is recommended to have at least 25 ×
(number of channel)2  time points for a reliable ICA 
decomposition [13], which obviously would be not hold since 
the sampling rate is not considered. Therefore, how much 
down sampling ratio can speed up ICA and keep the 
performance not degraded needs to be investigated. 2) 
Dimension reduction with PCA is another method for ICA 
acceleration. Artoni et al. [14] claimed that applying PCA 
prior to ICA can adversely affect both the dipolarity and 
stability of independent component extracted from high-

Gan Huang, Zhenxing Hu, Li Zhang, Linling Li, Zhen Liang,  and 
Zhiguo Zhang are with the at the School of Biomedical Engineering, Health 

Science Center, Shenzhen University, Shenzhen, 518060, China (email to 

huanggan1982@gmail.com; zgzhang@szu.edu.cn) 
 

Removal of eye-blinking artifacts by ICA in cross-modal long-term 

EEG recording 

Gan Huang, Member, IEEE, Zhenxing Hu, Li Zhang, Linling Li, Zhen Liang, Zhiguo Zhang 

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 217

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 12,2021 at 17:50:10 UTC from IEEE Xplore.  Restrictions apply. 



  

density EEG data, but there are no direct evidence shew 
influence of dimension reduction by PCA before ICA to the 
eye-blinking noise removal and EEG signal preservation. 3) 
Cropping the dataset is another method to reduce the time 
points input for ICA acceleration [15] In the nonstationary 
environment with cross-modal long-term EEG recording, it is 
still unknown the performance of ICA with all cross-modal 
EEG data input is better, or the result from single run of 
experiment is better. In the following the proposed three 
methods (down sampling, PCA and cropping) were 
investigated for ICA eye-blinking artifacts removal. The 
efficiency of these methods for ICA acceleration was 
evaluated by comparing the computation time for ICA 
decomposition with different parameters. And the 
effectiveness of these methods in the nonstationary 
environment is evaluated with investigation of the “signal” 
(P300 waveform) and the “noise” (averaged eye-blinking 
artifacts) [16]. 

II.  METHODS 

A. Experiment design 

In this study, a cross-modal long-term EEG recording 
dataset with 23 healthy participants were analyzed. EEG signal 
were collected via 64 electrodes based on international 10-20 
system and the EEG amplifier (BrainAmp, Brain Products 
GmbH, Germany) with the sampling rate of 1000 Hz. Channel 
FCz was set to be reference. The experiment includes several 
types of EEG paradigm arranged in 15 runs, which includes 1) 
resting state with eyes closed in run01 and run14, eyes open in 
run02 and run 15; 2) visual, auditory and somatosensory 
evoked potential with transient state in run04 and run11, and 
steady state in run05, run 09 and run12;  3) Brain Computer 
Interface related paradigm P300 in run07, SSVEP in run08, 
and SMR in run03, run 06, run 10 and run13. The whole 
experiment would take around 2 hours with almost 50 minutes 
of EEG recording.  

For simplicity, ICA was applied on all runs, but the results 
were compared on run02, run07, run15. For resting state with 
eye open in run02 and run15, the participant was asked to open 
their eyes for 1 minute and keep their eyes gazing at the front 
and try to blink as less as they can. For P300 paradigm in run07, 
visual oddball experiment with the red square as the target 
stimuli and white square as the nontarget stimuli was displayed 
on the screen. Each square lasts 80ms with the ISI 200ms. 600 
trials of the stimuli in all was arranged in a 2 minutes EEG 
recording. Target stimuli came with the possibility of 5%. The 
participant was asked to count the number of red square and 
report in the end of the run to make he/her keep attention on 
the screen. For data preprocessing of the P300 Signal, the EEG 
signal was firstly re-referenced to TP9 and TP10, and then 
band-pass filtered with 0.1-30Hz, finally segmented from -
500ms to 1000ms with the target stimulus. 

B. Procedures for eye-blinking artifacts removal 

An overview of the ICA procedures for eye-blinking 
artifacts removal used in the current study is shown in Fig. 1. 
For each subject, the ICA procedure was performed in the 
following steps. Firstly, the raw EEG signal were filtered with 
0.01-200 Hz band-pass filter. And then, the proposed down 
sampling, PCA and cropping methods were applied before the 
computing the ICA weights and sphere matrix. After the ICA 

matrix were calculated with the logistic infomax ICA 
algorithm [17]. The eye-blinking components were identified 
manually with a conservative strategy, in which the 
components would be removed with clear artifact and no or 
very little signal. Then the ICA weights and sphere matrix 
were transferred to the raw EEG signal and the identified 
components were removed by subtracting the projection of the 
artifactual components from the original data of the subject. 
Here, the following three methods for ICA acceleration were 
applied before the computation of ICA, which are down 
sampling, PCA and cropping. 

• Down sampling the dataset to accelerate the ICA matrix 

calculation, in which we applied the different ratio of 

down sampling with 100, 500, 1000 and 2000 as 

compared with the result of no down sampling. 

• PCA to reduce the dimension of the ICA input to decrease 

the computation load, in which we applied the different 

dimension for PCA with 50, 40 and 30 as compared with 

the result of no dimension reduction. 

• Cropping the dataset to one run to the ICA matrix 

calculation. In this study, run02, run07 and run15 were 

used separately to calculate the ICA matrix, as compared 

with the ICA result from the whole dataset (marked as 

“all”). 

C. Evaluation procedures 

To compared the efficiency and effectiveness of the three 
different methods in ICA-based eye-blinking artifacts removal, 
we mainly investigated the computation time of ICA and the 
change of “noise” and “signal” after ICA artifact removal.  

Firstly, the computation time of calculating ICA weights 
and sphere matrix was compared with different parameters 
setting in the three proposed methods. All the results were 
obtained in the environment of Matlab 2018b, Windows 10 
with an 8-core 3.60Hz Intel Core i9-9900KF CPU and 64 GB 
RAM. Secondly, averaged waveform of the time-locked blink 
activities were treated as the “noise” to evaluate the effect of 
eye-blinking artifacts removal, in which the peak of eye-
blinking signal were marked as the zeros point, with the 

 
Fig.1 Diagram of the procedures applied for eye-blinking artifacts 

removal in this study. 

218

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 12,2021 at 17:50:10 UTC from IEEE Xplore.  Restrictions apply. 



  

preprocessing of 0.1 - 10Hz bandpass filter, and segmentation 
from -1 s to 1 s and averaging. Thirdly, P300 results from the 
main channel Pz and the frontal channel Fp1 were used for 
observing the “signal” distortion in the three proposed 
methods with different parameters.  

III. RESULTS 

A. Computation time for ICA calculation 

Table I illustrated the computation time in the calculation of 
ICA weights and sphere matrix with different parameters in 
the three proposed methods.  

For down sampling, with no down sampling (marked as 
“ds1”), segmentation in preprocessing would reduce the 
dataset with 2.82 ± 0.12 × 106  points (equal to 47 ± 2 
minutes) for the raw EEG recording into 9.38 ± 0.12 × 105 
points. It took more than 800 seconds to obtain the ICA matrix 
for the raw data. Down sampling could greatly reduce the time 
for the ICA matrix computation, but the computation time does 
not proportional with the down sampling ratio. With down 
sampling ratio 1000, it took 4.3 ± 1.4 seconds in average to 
finish the ICA computation, which is almost 200 times faster 
than the computation time in the case of no down sampling. 
But further acceleration effect was limited with down 
sampling ratio 2000.  

For PCA dimension reduction, the size of entries was 
63 × 63 = 3936 for each time point with 63 components, 
which would be decreased with the number of components in 
PCA at the rate of square. But the computation time did not 
decrease proportional with the number of entries. It even 
decreased slower than the decreasing of components in PCA.  

For cropping, the time points of the dataset were fixed, 
which were 60000 in run02 and run15, and 120000 in run07 
for all subjects. In results, the computation time is 77.8 ±
12.4 seconds for run02, 82.32 ± 10.25 seconds for run15, 
and 146.4 ± 33.4 seconds for run07.  

B. Waveforms of eye blinking artifacts 

The waveforms of eye-blinking artifacts after ICA with 
different parameters in the proposed methods was shown in 
Fig. 2. It was shown that, no method could remove the eye-
blinking artifacts completely. For the grand averaged eye-
blinking signal, the residual peak still could be observed from 
Fig. 2(a) to Fig. 2(i).  

For down sampling, the result in Fig. 2(a-c) showed that 
ICA worked well even in the quite some aggressive down 
sampling ratio, like 1000, in which the number of data time 
points is even much less than the number of elements in weight 

matrix. The performance of ICA began to degrade with the 
extreme down sampling ratio 2000.  

For PCA dimension reduction in Fig. 2(d-f), lower 
dimension components in PCA led to a better artifacts control 
for the eye blinking artifacts, which could be observed clearly 
in run02 (Fig. 2(d)).  

For cropping, the results in Fig. 2(g-i) showed the 
performance of ICA on run02, run 07 and run 15 with different 
input data for ICA decomposition. The best results on each run 

 
Fig. 2 Grand-average waveform of the time-locked averaged eye 

blink artifacts at electrode Fp1 after artifact removal of ICA with 

down sampling (a-c), PCA (d-f) and cropping (g-h) in run02 

(resting state with eye open), run07 (P300) and run15 (resting state 

with eye open). 

 
Fig.3 Grand-average ERP waveform at electrode Fp1 (a, c and e) 

and Pz (b, d and f) in run07 (P300) with the corresponding 

topographies at 200 ms (g) and 327 ms (h). 

 

 
Fig.4 Peak amplitude of grand-average eye-blinking artifacts 

(orange line) at electrode Fp1 during the interval of -50ms to 50ms 

and grand-average ERP waveform (blue line) at electrode Fp1 

during the interval of 180ms to 220ms for (a) down sampling, (b) 

PCA and (c) cropping. 

Table 1. The computation time of calculating the ICA weights and 

sphere matrix with different parameters in the three methods. 

down sampling 

ds ratio 1 100 500 1000 2000 

Time (s) 802.4 ± 76.0 40.4±14.3 10.0±1.8 4.3±1.4 3.9±0.9 

 

PCA 

dim 63 50 40 30 

Time (s) 802.4 ± 76.0 710.1±84.1 635.4±84.1 585.3±84.1 

 

Cropping 

run all 02 07 15 

Time (s) 802.4 ± 76.0 77.8±12.4 146.4±33.3 82.3±10.3 
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were always achieved with the input of themselves. It is out of 
our expectation that no cropping method did not necessarily 
lead to the best results. Quite the opposite, its results would be 
the worst in some case, as is shown in Fig. 2(g) on run02. 
Waveforms of P300.  

C. Waveform of P300 

The grand-average waveforms of P300 (run07) were 
illustrated in Fig. 3(a, c and e) for channel Fp1 and Fig. 3(b, d 
and f) for channel Pz, with the corresponding topographies at 
200ms and 375ms were shown in Fig. 3(g-h). The typical P300 
waveform could be observed at channel Pz, which was less 
sensitive to the eye-blinking artifacts. Hence all methods with 
different parameters produced similar results on channel Pz. 
The frontal channels Fp1 was influenced by ICA greatly. The 
signal distortion could be observed around 600-800ms, since 
the subjects would habitually blink in this time interval after 
the target stimuli. In addition to this, a strong rhythm activity 
with 5Hz and its harmonic frequencies could be observed in 
FP1, which is caused by the fixed stimuli with 200ms ISI. The 
peak appears at around 200ms with its topography in Fig.3(g).  

For further comparison, the peak amplitude of the “signal” 
(the peak amplitude in Fig. 2(b) from -50 ms to 50 ms) and 
“noise” (Fig. 3 (a) from 180 ms to 200 ms) on channel Fp1 
were shown in Fig. 4. All the results indicated that the better 
methods for eye blinking “noise” removal would also preserve 
the EEG “signal” to a greater degree.       

IV. CONCLUSION 

In this study, we evaluated the efficiency and effectiveness 
of three methods in ICA with cross-model long-term EEG 
recording. Because of no ground truth for the “signal” and 
“noise” in EEG signal, the discussion about the quality of ICA 
decomposition for eye-blinking artifacts removal in a 
nonstationary environment becomes specious. In this work, 
the P300 signal and the averaged eye-blinking signal were 
treated as “signal” and “noise” correspondingly for the 
investigation. The main focus was on the ICA acceleration and 
the performance in the non-stationary environment. In result, 
all the proposed three methods could speed up the computation 
of ICA.  

For down sampling, a close to 200 times speed up was 
achieved with the down sampling ratio 1000, in which the time 
for ICA decomposition on a 2800 s EEG recording was less 
than 5 s with the performance not degraded. With the down 
sampling ratio 1000, the sampling rate is reduced to 1 Hz, 
which is lower than the typical frequency range of eye-
blinking artifacts (1 - 4Hz). The number of time points is much 
lower than the lower limit given by the empirical formula (at 
least 25 × (number of channel)2 time points in Ref. [13]). 
It should be noted that here the performance of ICA was 
evaluated on eye-blinking artifacts removal. 

For PCA, the acceleration effect is not as significant as 
down sampling. But out of our expectation, the performance 
of ICA decomposition would be better with less principle 
components for ICA input. With the same length of time points, 
lower number of principle components may give a better 
decomposition for less parameter estimation. It should be 
noted that with the same ICA weight matrix the results were 
inconsistent across different experiment runs (Fig. 2(d-f)), 

which indicates the non-stationarity of the eye-blinking 
artifact.  

Cropping is another efficient way for ICA acceleration. 

The computation time of ICA with 1 minute’s data input would 

achieve 10 times speed up of ICA decomposition. No cropping 

with the whole dataset as the ICA input may not achieve a 

better performance for eye-blinking artifacts removal. The 

run-specific ICA is recommended for only one experiment 

paradigm is investigated but need to be further validated. For 

cross-modal study, no cropping is still suggested for a unified 

signal preprocessing. 
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