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Chapter 1
Introduction

Li Hu and Zhiguo Zhang

Abstract As measurements of real-time electrodynamics in the human brain is
evolving, a series of electroencephalogram (EEG) signal processing techniques
have been developed rapidly. This book is aimed to provide the conceptual, math-
ematical, and implementational knowledge from EEG neural basis to almost all
mainstream EEG signal processing and feature extraction methods in a comprehen-
sive, simple, and easy-to-understand way.

Keywords Electroencephalogram (EEG) · EEG signal processing · Feature
extraction · Methodology · Implementation

1.1 Historical Background

The last frontier of biological sciences—their ultimate challenge—is to understand
the biological basis of consciousness and the mental processes by which we per-
ceive, act, learn, and remember. Our brain is the key core within these processes. We
begin with the fact that the brain weighs approximately 2.5 pounds but costs nearly
40% to 60% of blood glucose (Squire and Zola-Morgan 1988) and a considerable
amount of oxygen equalling to what our muscles consumed during actions per day.
How is such disproportionate amount of energy consumed? The answer is that it is
used to produce electricity including synchronized and collective actions of small
and large groups of neurons linked by axonal and dendritic connections. Each
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neuron acts like a dynamically oscillating battery that is recharged in a continuous
manner (Steriade 1995). Those locally connected neurons recruit neurons in neigh-
borhood with a sequential production of electrical potentials. More than 140 years
ago, Richard Caton found the existence of such electrical activity of the brain (Caton
1875). His work is regarded as the first attempt at the electrophysiology of the brain
and marking the birth of the electroencephalogram (EEG) (Brazier 1961). In the
1920s, Hans Berger demonstrated that the EEG could be measured from the human
scalp without opening the skull (Berger 1929). The word electroencephalogram was
proposed for depicting brain electrical activity in human beings. In 1934, Adrian and
Mathews identified the “alpha rhythm” consisting of regular oscillations around
10 to 12 Hz. However, the neural sources of the alpha rhythm remained unclear until
43 years later, when Lopes da Silva et al. demonstrated that the alpha rhythm is
generated at different depths within the visual cortex in dog (Lopes Da Silva and
Storm Van Leeuwen 1977). Considering the intricacy of the underlying neural basis
and volume conduction, there is no surprise that the functional significance and
mechanisms of the EEG generation remained debatable for a long time. Based on the
current understanding, EEG is defined as the electrical activity, which is normally
recorded at the scalp of the human brain, generated by the firing of neurons within
the brain (Niedermeyer and Lopes da Silva 2005). To date, over 150,000 studies
using EEG techniques have been published, and the field still continues to grow
every year. Why is EEG so popular? As we currently know, cognitive, perceptual,
linguistic, emotional, and motor processes are really fast, which occur within tens to
hundreds of milliseconds. The high temporal resolution property of EEG makes it
well suited to capture these fast, dynamic, and temporally sequenced cognitive
events. For decades, measurements of real-time electrodynamics of the human
brain have evolved, thus contributing to the development of a series of EEG signal
processing techniques. Our goal in this book is to provide the conceptual, mathe-
matical, and implementational (e.g., via MATLAB programming) bases of both
EEG and EEG signal processing in a comprehensive, simple, and easy-to-
understand way.

1.2 Why to Write This Book?

Admittedly, there are good resources for generally learning EEG and relevant studies
(Regan 1989; Handy 2004; Luck and Kappenman 2011; Sanei and Chambers 2013;
Cohen 2014), as well as online tutorials (e.g., the EEGLAB website) that cover
introductions of using software tools and interpreting results from analyses. How-
ever, on one side, these resources are less practical for understanding the mathemat-
ical principles or possible pitfalls of these analyses and provide insufficient
instructions for users who want to implement the methods themselves or further
adapt to current existing methods. On the other side, there are resources containing
various background knowledge in mathematics or physics, which is difficult and
obscure for beginners, especially those without a mathematical or engineering
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background, to understand. Most of these resources are lack of practical implemen-
tation matters, such as how to perform statistics or how to deal with limited data, and
unavailable to learners without a formal mathematical training.

Therefore, we sought to offer breadth by covering a range of current mainstream
EEG signal processing and feature extraction techniques and depth by devoting
whole chapters to principles and implement strategies. Learners can go through this
book chapter by chapter and implement the examples in the programming materials
using the provided sample data, thus developing a better understanding of why and
how EEG signal processing is performed, how to interpret relevant results, and what
the methodological and practical issues of feature extraction analyses are.

1.3 Who Wrote It and Who to Use?

A terrific lineup of researchers who have rich experience in the related topics
contributed to all these chapters. They have a background of either psychology or
engineering, and all of them have worked in the interdisciplinary fields of EEG
signal processing for many years and have published many papers in well-regarded
and peer-viewed journals. These authors have a good understanding of EEG itself,
and meanwhile they also have a deep understanding of the signal processing
methods. To help learners understand and use the knowledge in the book, MATLAB
code and example data are attached in most chapters to provide demonstrations and
hands-on exercises for them.

We expect that this book can be well understood by and be beneficial for learners
at different levels, including cognitive neuroscientists, psychologists, and the like,
who are intelligent and motivated to understand and implement data analyses but
lack backgrounds in mathematics and engineering science to utilize the mathemat-
ically dense analysis resources or to read the raw computer code behind software
packages. Anyway, we hope that the book can make them better prepare for learning
new knowledge and skills that are not included in this book.

1.4 The Organization of the Book

The book is organized into four main sections. The first section contains three
chapters (i.e., Chaps. 2, 3 and 4) devoted to elaborate fundamental knowledge
about EEG. Chapter 2 mainly introduces the electrophysiological properties and
acquisition of EEG; Chap. 3 provides details of evoked potential (EP) / event-related
potential (ERP), which is extensively used in psychology, psychiatry, and neural
engineering; and Chap. 4 discusses how to design experiments to elicit EP/ERP for
specific research or clinical purpose. These three chapters are not only suitable for
beginning EEG researchers who are new to this field without any mathematics or
engineering science background but also for more advanced researchers who are
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familiar with the general knowledge but would like to develop a more sophisticated
perspective. Each chapter in this section will be most useful if read in its entirety.

The second section contains Chaps. 5 and 6 focused on the most common and
classical signal processing methods and routines for EEG. Chapter 5 gives a
complete description of preprocessing routines, while Chap. 6 introduces the clas-
sical and the most frequently used signal processing techniques for EEG: spectral
analysis and time-frequency analysis. These two chapters are preliminary but essen-
tial contents for EEG processing, and they are useful for beginners with a back-
ground of either brain science or engineering.

The third section is composed of a set of chapters (i.e., Chaps. 7, 8, 9, 10, 11, 12,
13 and 14) providing a comprehensive introduction of almost all mainstream signal
processing and feature extraction methods for EEG, including blind source separa-
tion (Chap. 7), microstate analysis (Chap. 8), source localization (Chap. 9), single-
trial analysis (Chap. 10), nonlinear neural dynamics (Chap. 11), connectivity anal-
ysis (Chap. 12), spatial complex network analysis (Chap. 13), and temporal complex
network analysis (Chap. 14). Researchers who are interested in one specific topic can
get useful information from the related chapter.

The fourth section (i.e., Chaps. 15, 16, 17, 18, 19 and 20) focuses on machine
learning (including deep learning) and statistical analysis for EEG. These contents
are essential in almost all EEG-related work, and they are normally used on EEG
features to examine differences of these features between conditions/cohorts or to
classify conditions/cohorts. Chap. 15 introduces basic concepts and classical algo-
rithms of machine learning, and Chap. 16 briefly introduces the applications of deep
learning on EEG. The purpose of Chap. 17 is to provide the basic idea about
statistics. Chapters 18 and 19 are, respectively, used to introduce simultaneous
EEG-fMRI processing in a multimodality setting and a useful EEG toolbox
(Letswave), both of which are currently the leading trends of EEG analyses. Lastly,
Chap. 20 summarizes the issues of current gap, trends, and future directions
about EEG.
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Chapter 2
EEG: Neural Basis and Measurement

Xiaolei Xia and Li Hu

Abstract This chapter aims to provide background knowledge about electroen-
cephalogram (EEG) origin and measurement. First, a brief introduction of neural
basis of EEG is summarized. Then, issues about volume conduction and source
estimation of EEG are discussed. Finally, the fundamentals of EEG measurement
and the methods for improving performance of EEG measurement are provided.

Keywords Electroencephalogram · Neural basis · Electrocorticogram · Local field
potential · Measurement

2.1 Neural Basis of EEG

Based on the current understanding, electroencephalogram (EEG) is defined as the
electrical activity, which is generated by the firing of neurons within the human
brain, and normally recorded at the brain scalp (Niedermeyer and Lopes da Silva
2005). It is commonly recognized that the EEG originates from summed synchro-
nized synaptic activities in populations of cortical neurons, with a main contribution
from pyramidal cells (Avitan et al. 2009; Holmes and Khazipov 2007; Kandel et al.
2013; Lopes da Silva 2009). Cortical neurons in the central nervous system (CNS)
are electrically excitable cells, that is, the information transmitted and processed in
these neurons is realized by electrochemical signaling, via specialized connections
called synapses (Hildebrandt et al. 2008). Apart from the cell body, a typical neuron
possesses several dendrites and an axon. The dendrites, extruding from the cell body,
are primarily responsible for providing a large receptive area for synaptic input, thus
receiving the electrical input to the cell body. The single axon, which arises from the
cell body, mainly takes charge of the transmission of action potential, and provides
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contacts with other nerve cells by the synapses, where signals are sent from the axon
of one neuron to a dendrite of another (Squire 2008).

Most of the EEG signals are originated from cortical neurons, and there are two
main types of electrical activities associated with cortical neurons, that is, action
potentials and postsynaptic potentials (Rowan and Tolunsky 2003). The
action potentials are discrete voltage spikes, which induce a brief local current
(less than 10 ms) in the axon with a very limited potential field. In contrast,
the postsynaptic potentials, which are voltages aroused by the binding of neuro-
transmitters to their receptors on the membrane of the postsynaptic neuron, are
considerably longer (50–200 ms) in duration and greater in potential field, thus
being considered as the primary contributors of EEG (Niedermeyer and Lopes da
Silva 2005; Rowan and Tolunsky 2003).

The relationship between the cortical processing within the brain (microcosmic)
and the electrical activity measured at the scalp (macroscopic) is not formatted in a
straightforward manner. Cortical neurons that generate electrical fields measured at
the scalp, must meet several conditions as following (Niedermeyer and Lopes da
Silva 2005): (1) these cortical neurons are close to the scalp in distance; (2) the
quantity of these cortical neurons should be large enough; (3) and these cortical
neurons must be synchronously activated with a certain geometric configuration.

The pyramidal neurons, which are the main composition of cerebral cortex and in
close proximity to the scalp, are highly polarized with the major orientation perpen-
dicular to the cortical surface (Kandel et al. 2013). Therefore, the cortical pyramidal
neurons are the primary generators of the scalp EEG (Niedermeyer and Lopes da
Silva 2005).

2.1.1 Volume Conduction and Source Estimation

A current dipole causes currents to flow through the surrounding conductive medium
(e.g., brain tissues) towards measurement surface (e.g., scalp). This is called volume
conduction. The range of volume conduction depends on the current dipole and the
conductive medium (Kajikawa and Schroeder 2011; Linden et al. 2011). Since
these dipoles are not all the same and different biological tissues (e.g., brain,
cerebrospinal fluid, skull, and scalp) have different conductivities, the extent of
volume conduction could be remarkably diverse.

The voltage fluctuation measured from the scalp by electrodes reflects the total
activities of all charged ions within the brain. Since there are many dipoles in the
brain, and each dipole will influence the charge in almost all directions, the voltage
fluctuation measured at any electrode on the scalp will be the sum of activities
generated from many neural sources. This is known as spatial smearing of the signal
and considered to be a by-product of the volume conduction (Freeman 1980;
Jackson and Bolger 2014), which largely determines the spatial resolution of EEG.
Specifically, no matter how many electrodes are used in an EEG recording system,
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the spatial resolution of EEG remains very poor, since the voltage fluctuations of any
two adjacent points on the scalp could be quite similar.

It is of great importance to estimate the underlying neural sources through a
certain voltage distribution recorded from the scalp, which is called the inverse
problem of EEG. To note, since a given scalp voltage distribution could be generated
from an unlimited number of possible neural sources, there is no single and unique
solution for the source estimation, which is well-known as the “ill-posed” or
“underdetermined” problem.

To date, two main approaches could provide a deep insight into the progress of
signal transmission from the brain to the surface electrodes on the scalp, including
the computer simulation and the experimental manipulation on epilepsy patients
through surgery (Jackson and Bolger 2014). Compared to the surgery manipulation
on patients, the computer simulations are much more flexible to estimate EEG neural
sources. Particularly, to adopt several equivalent dipolar current sources representing
the EEG, scalp voltage distribution has been shown to be efficient and useful for
source estimation. However, the head models used in most simulation work are quite
simplified, which cannot well represent the real human brain. In light of the poor
spatial resolution of EEG, it is recommended to conduct the source estimation
combining with other high spatial resolution techniques, e.g., the magnetic reso-
nance imaging (MRI). In fact, the combination of high-density EEG recordings with
volume conductor models derived from the MR images has been proved to enhance
the accuracy of the source estimation, especially adopted in the non-spherical parts
of the head (Fuchs et al. 2007). In comparison, the surgery manipulation on the real
brain in epilepsy patients could lead to biased results with a much more limited and
lower external validity, as the single-point current source injected into the epilepsy
patients is quite different from the electrical activation within a real brain of healthy
controls in most cases (Jackson and Bolger 2014).

2.1.2 EEG, ECoG, and LFP

Historically, electroencephalogram (EEG) has been referred to a recording of fluc-
tuating electrical waveforms at the scalp. Electrocorticogram (ECoG) has been
referred to a similar recording obtained directly from the cortex, and the local field
potential (LFP; also known as intracranial EEG) has been referred to a recording
from a small-sized electrode inserting in the brain (Fig. 2.1). All of them are main
recordings of postsynaptic potentials from different numbers of neuronal
populations (Buzsáki et al. 2012).

As one of the oldest techniques, EEG is widely used in current neuroscience
studies (Niedermeyer and Lopes da Silva 2005; Nunez and Srinivasan 2006). Since
EEG is recorded by several single electrodes on the scalp and integrated over a large
area (10 cm2 or more), it could be regarded as a spatiotemporally smoothed version
of LFP (Buzsáki et al. 2012). Due to the effects of volume conduction, signal
transmitted from the current source to the recording electrode is normally attenuated
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and distorted. As a result, the relationship between EEG and the firing patterns of the
contributing neurons is unclear in most cases (Nunez and Srinivasan 2006).

Notably, ECoG is getting more and more popularly applied in clinical settings
and animal studies (Engel et al. 2005). By recording potentials directly from the
surface of the cortex, the distortion of signals through the skull and other interme-
diate tissue is avoided. In the meantime, the spatial resolution of the recorded electric
field can be substantially improved (e.g., <5 mm2) by using closely spaced subdural
grid or strip electrodes (Bazhenov et al. 2011).

In contrast to EEG and ECoG, which mainly record electrical activity at the
superficial layer of the cortex, LFP mainly samples electrical activity at the deeper
layers within the cerebrum. By inserting delicate microelectrodes (made by metal,
glass, or silicon probes) into the brain, LFP records a wideband signal (direct current
to 40 kHz) from a small neuronal volume (Buzsáki et al. 2012). It should be noted
that the wideband signal contains both postsynaptic potentials and action potentials.
Therefore, the recordings of action potentials from neuronal populations are usually
called multiunit recordings (MURs), and the recordings of postsynaptic potentials
from neuronal populations are commonly referred to as LFP (Luck 2014). The
spatial resolution of LFP is very high, since the distance between the recording
sites and sources is really short and microelectrodes have minimal impact on brain
tissues. Thus, it is possible that almost all electrical activities of neuronal populations

Fig. 2.1 The figure shows the differences of electrode placements among three types of electrical
recording techniques, with the EEG electrodes placed on the scalp, the ECoG electrodes on the
cortical surface, and the LFP/MUR electrodes inside the cortex, respectively
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in a small volume can be precisely recorded, when the density of recording sites is
large enough (Buzsáki et al. 2012). Additional information about the intracellular
dynamics can also be inferred from the extracellular potentials (Buzsáki et al. 2012;
Gold et al. 2006; Henze et al. 2000).

2.2 EEG Measurement

To obtain a high quality of EEG signals, EEG measurement system should consist of
several necessary elements, including the electrodes with conductive media, ampli-
fiers with filters, analog-to-digital (A/D) converter, and recording device (Teplan
2002). Specifically, the microvolt signals recorded from electrodes at the scalp were
transformed by amplifiers into signals within a proper range of voltage. Then, signals
were transformed by converter from an analog format to a digital one and finally
stored via the recording device.

2.2.1 Recording Electrodes

2.2.1.1 Electrode Type

In general, electrodes can be classified into three types according to their different
roles in the recording (i.e., active, reference, and ground electrodes). The voltage of
each single EEG electrode can be regarded as potential changes over time between
the active electrode (A) and the reference electrode (R) (Teplan 2002). Theoretically,
the reference electrode should be set at the remote position, with an absolute
potential of zero. Thus, the potential variability between A and R (equals to A - R)
can largely reflect the electrical activity near A. Actually, such a perfect reference
electrode does not exit, and the reference site is not electrically neutral in most cases.
Consequently, the potential difference between an active electrode and a reference
electrode reflects the electrical activity at both sites. The ground electrode is mainly
used for reducing the noise produced by the connection to the ground circuit. Most
EEG recording systems consist of several active electrodes, one reference electrode,
and one ground electrode.

The EEG recording electrodes play important roles in obtaining high-quality data.
However, there are many types of electrodes, and each type has different character-
istics (Teplan 2002). The most commonly used electrodes are Ag-AgCl electrodes,
which are mainly made of silver covered with a thin coating of silver chloride.
Generally, Ag-AgCl electrodes are applicable and suited in most situations, as this
type of electrode can accurately record minimal changes in potentials due to its good
electrical properties (Kutas 1997; Luck 2014; Picton et al. 1995; Picton et al. 2000;
Rosler et al. 1995).
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To obtain good electric conductivity and low contact impedance, the conductive
medium (gel or saline) is necessary to fill the space between the electrodes and the
scalp in most cases. The gel will build a more stable conductive connection
between the electrode and the scalp than the saline, which is quite helpful to reduce
artifacts generated from movements and skin surface. However, it takes a long time
to apply the gel on the scalp and is difficult to clean up. On the contrary, the saline
is more convenient for use but less stable in maintaining conductive connection.

The conventional wet electrodes (those electrodes with gel or saline as conductive
medium) have several limitations in EEG data acquisition. First, skin preparation
(e.g., skin exfoliation) is needed to reduce the impedance at the electrode-scalp
junction. The procedure is uncomfortable or even painful for some subjects. More-
over, it may cause allergic reaction and infection (Picton et al. 2000). Second, it
should be cautious about the consumption of gel, as overflow of gel may generate
short circuit between two near electrodes to affect signal transduction (Lin et al.
2011). Third, the gel residuals are hard to clean up. To solve these problems, several
kinds of dry electrodes have been developed in recent years (Fonseca et al. 2007;
Griss et al. 2001; Griss et al. 2002; Chiou et al. 2006; Kim et al. 2009; Lin et al. 2011;
Matthews et al. 2007; Matthews et al. 2008; Ruffini et al. 2006). Most of them were
made by the microelectromechanical systems technique, and others were made by
fabric-based or foam-based materials. These dry electrodes have shown satisfactory
performance in EEG recording and may be more popularly applied in the future
(Baek et al. 2008; Beckmann et al. 2010; Gruetzmann et al. 2007; Hoffmann and
Ruff 2007; Lin et al. 2011; Zhang and Tao 2008).

2.2.1.2 Electrode Number

In some cases, except of reference and ground electrodes, a single active electrode is
adequate in some clinical applications. However, for most EEG/ERP studies, it is
necessary to record EEG signals from multiple active electrodes at different sites
simultaneously. According to the topographies obtained from the multielectrode
EEG recording, we can decompose a piece of data into different components,
optimize the feature extraction of EEG, and identify some possible artifacts (Picton
et al. 2000).

How many electrodes should be used in routine EEG recordings? Some
researchers proposed that the number of recording sites is dependent on the spatial
frequencies presented in the scalp recordings (Srinivasan et al. 1998); others
suggested that recording from 32 active electrode sites is appropriate for most
experiments (Luck 2014). Indeed, the use of high-density electrode arrays can
improve the spatial resolution, such as the multichannel configurations comprised
up to 256 active electrodes (Teplan 2002). However, recording from multiple
electrodes is more expensive and more time-consuming for data acquisition and
data analysis. It should be noted that the quality of EEG data is likely to be worse, as
the number of electrodes increases considering that it is more difficult to detect and
solve problems with more electrodes (Luck 2014).
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2.2.1.3 Electrode Placement

In 1958, a standard protocol for EEG electrode placement was formulated by the
International Federation in Electroencephalography and Clinical Neurophysiology
(Jasper 1958) and was continually revised by the American Electroencephalographic
Society later (Acharya et al. 2016; American Clinical Neurophysiology 2006; Knott
1993). It is called the International 10–20 System, which is widely used for defining
electrode placement.

This system contains standardized locations of 75 electrodes on the scalp
(Fig. 2.2). The benchmarks are first defined in the system (i.e., the nasion, inion,
and two preauricular points). Locations of other electrodes can be determined
according to those datum points. The electrodes are placed at 10% and 20% points
along lines of latitude and longitude, and this is the reason why the system is
called the 10–20 system. The name of each electrode contains two parts, that is,
one or two letters and a number. The letter represents the general brain region of the
electrode (Fp, frontal pole; F, frontal; C, central; P, parietal; O, occipital; and T,
temporal). The number stands for the distance from the midline; the larger the
number is, the greater distance it is from the midline (electrodes on the midline are
labeled with a “z” for zero). Odd numbers are used at the left hemisphere, and even

Fig. 2.2 International 10–20 System for electrode placement
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numbers are used in the right hemisphere (left and right side is from the point of view
of a subject).

2.2.1.4 Impedances

High impedance can distort the EEG signals and introduce more noise. Most
commercial EEG recording devices are equipped with impedance monitors. In
order to decrease signal distortions, impedances at each electrode-scalp interface
should be less than 10 K Ohms (Picton et al. 2000). The tolerance for high
impedance becomes greater when amplifiers have high-input impedances and
good common mode rejection (Taheri et al. 1994). Practically, impedance of the
whole circuit comprised of two electrodes is measured, but built-in impedance
checks usually display results already divided by two. It is desirable to control of
all impedances after finishing each single measurement (Teplan 2002).

2.2.1.5 Reference Electrode

Several different locations, which can be used as reference for EEG recording, are
reported in literature, such as the vertex (Cz), C7, linked-ears, linked-mastoids,
ipsilateral-ear, contralateral-ear, and tip of the nose (Teplan 2002). In fact, any single
site can be used as the reference during data acquisition, as researchers can always
re-reference data offline. Notably, reference-free techniques and infinity reference
are also commonly used in literature, including the common average reference,
weighted average reference, and source derivation (Yao 2001; Yao et al. 2005).

2.2.2 Amplifiers and Converters

The amplifiers of the EEG recording system pick up electric voltage from electrodes
and amplify the microvolt signals until they are compatible with A/D converters.
Then the converters transform these signals from analog to digital form. To achieve
this, amplifiers should satisfy several specific requirements. For example, they
should provide selective amplification and rejection, that is, to amplify the physio-
logical signal and to reject superimposed noise. Furthermore, the amplifiers should
protect both subjects and equipment from damages. The basic requirements that a
biopotential amplifier has to satisfy include (Nagel 2000):

1. The physiological process to be monitored should not be influenced in any way
by the amplifier.

2. The measured signal should not be distorted.
3. The amplifier should provide the best possible separation of signal and

interferences.
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4. The amplifier has to offer protection for the subject away from any hazard of
electrical shock.

5. The amplifier itself has to be protected against the damages possibly resulted from
high-input voltages, which occur during the application of defibrillators or elec-
trosurgical instrumentation.

The input signal to the amplifier consists of five components (Nagel 2000; Teplan
2002): the desired biopotentials, undesired biopotentials, a power line interference
signal of 50/60 Hz and its harmonics, interference signals generated by the tissue/
electrode interface, and noise. A good-quality amplifier should reject a large pro-
portion of the signal interferences. The desired biopotential is called the differential
signal, since the voltage is quite different between the two measuring electrodes of
the differential amplifier. The line frequency interference signal is commonly
referred to as the common-mode signal, as the voltage between the two input
electrodes is almost the same. The extent to reject the common-mode signal is a
vital performance characteristic of a biopotential amplifier. The ratio of the gain of
differential mode over the gain of the common mode is referred to as the common-
mode rejection ratio. In order to acquire high-quality data, the common-mode
rejection used in an EEG recording system should be at least 100 dB.

The amplifier gain is a ratio calculated by dividing the output signal by the input
signal. In order to provide best signal quality and proper voltage level for further data
processing, the amplifier should provide a gain of 100–50,000 (considering the
highest gain may not be the best option, combination of more parameters is
demanded, e.g., the range of the A/D converter, sampling rate, noise) and maintain
the best possible signal-to-noise ratio (Nagel 2000; Teplan 2002). In order to reduce
the impact of electrically noisy environment, differential amplifiers should have high
common-mode rejection ratios (at least 100 dB) and high input impedance (at least
100 M Ohms) (Nagel 2000; T. W. Picton et al. 2000; Teplan 2002).

In general, the amplifier contains an analog (hardware) filter unit. It is necessary
to carry out a high-pass filtering to decrease potentials at low frequencies coming
from bioelectric flow (e.g., breath) (Teplan 2002). Correspondingly, the half-
amplitude cutoff frequency of the analog filter unit usually lies between 0.1 and
0.7 Hz. In addition, a low-pass filter is needed to ensure that the signal is band
limited. The cutoff frequency for low-pass filtering depends on the highest frequency
of interest. It should be noted that if the cutoff frequency of a low-pass filtering is
greater than one half of sampling rate, the signal would be distorted, which is called
aliasing. Thus, the sampling rate should be large enough, at least double of the
highest frequency of interest. However, it doesn’t mean that a large sampling rate is
always the better option, considering that the sampling rate is proportional to the size
of the obtained data and the time of further data processing. In general, a sampling
rate of between 250 Hz and 1000 Hz is sufficient, and there is no need to record signal
faster than 1000 Hz in EEG data acquisition.

After being processed by the amplifier, analog signals of each channel are
repeatedly sampled at a fixed time interval and turned into a digital form by an
A/D converter. The A/D converter is connected to a recording system, in which all
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data can be saved. The resolution of the A/D converter is the number of levels that
are discriminated over a particular range, usually expressed as a power of 2 (bits)
(Picton et al. 2000). Generally, the resolution of the A/D converter should be at least
12 bits (discerning 4096 value levels) (Teplan 2002). It is necessary to have a greater
precision for an A/D converter if there is a large DC shift (Picton et al. 2000). In fact,
voltage resolution over 20 bits is recommended. With this resolution, we can filter
the low frequencies offline with a digital filter, instead of filtering the low frequen-
cies using an analogy filter during data acquisition. If the resolution is less than
20 bits, a high-pass filter with a half-amplitude cutoff between approximately 0.01
and 0.1 Hz should be used to avoid going beyond the limit of the system (Luck
2014).

In the past, a typical EEG recording system contained an amplifier unit and a
separate A/D converter unit. Nowadays, these two units are integrated together, and
there is usually only one single analog filter in most cases (i.e., antialiasing filter).
This is a good progress since digital filters are superior to analog filters. In other
words, it is always better to filter offline rather than online if the recording system
meets requirements.

After data being stored, digital filtering (offline) can be a useful tool to improve
the signal-to-noise rate of the data. There are a lot of options related to the filter
methods, from the traditional linear filtering to the novel nonlinear filtering methods.
The choice of filter depends on the objectives set on the signal processing. Usually,
the finite impulse response (FIR) filters can be a good choice, because they would
not distort wave phases (Teplan 2002). A good filter should be designed to have little
impact on the signal properties.

2.2.3 Artefacts

The data obtained from EEG recording system is composed of the EEG signal and a
variety of noises. All of these non-EEG signals are referred to as artifacts. In contrast
to EEG signals, artifacts usually have higher amplitudes and different morphologies.
The artifacts in an EEG recording can be divided into two categories, either subject-
related or technique-related (Teplan 2002). Subject-related artifacts are undesired
physiological signals that may vastly distort the EEG data, including electromyo-
gram (EMG), electrocardiogram (ECG), and artifacts caused by minor body move-
ments, eye movements, and sweating. Technique-related artifacts are electrical
signals caused by the surrounding environment, including power line interference
(50/60 Hz), impedance fluctuation, cable movements, broken wire contacts, too
much electrode paste/jelly or dried pieces, and low battery.

Some artifacts are tiny and steady (e.g., ECG), but others are large and transient
(e.g., blinks). There are two main kinds of techniques for removing artifacts in the
data processing (Luck 2014). For large and transient artifact, it can be easily detected
and removed through discarding the contaminated EEG epochs (i.e., artifact rejec-
tion). For small and constant artifact, it is recommended to estimate the influence of
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these artifacts on the EEG/ERPs and use correction procedures (e.g., independent
component analysis, ICA) to remove the artifacts from the EEG data (i.e., artifact
correction). In addition, some useful solutions to reduce these artifacts could be done
during data acquisition (see Sect. 2.2.4). For example, the technique-related noise
may be reduced by EEG recording system through passive shielding and active
electrode system (Jackson and Bolger 2014).

2.2.4 Suggestions on EEG Measurement

The EEG system records electrical activity generated from both the brain and other
noise sources. To obtain data with high quality, some suggestions are provided
below to reduce the disturbance of noise, thus improving performance of EEG
measurement.

2.2.4.1 Recording Environment

Special shielded chambers are helpful to reduce the impact of electric background
(especially alternating current line interference at 50/60 Hz), with other electronic
devices far away from the shielded area (e.g., the amplifiers connected to alternating
current power). However, these electrically isolated chambers are not always nec-
essary, if you have an active electrode system. By placing the amplifier close to the
electrodes, the active electrode systems can amplify the signal before transducing it
along an unshielded wire, which greatly decreases the electrical noise introduced
from the surrounding recording environment (Jackson and Bolger 2014; Luck 2014;
MettingVanRijn et al. 1996). If you don’t have neither a shielded chamber nor an
active electrode system, you can use the notch filter to reduce the electrical noise at a
narrow frequency band around 50/60 Hz.

If a video displayer is used in your experiments, the distance between the
displayer and the subject should be far enough (100–200 cm is recommended)
(Luck 2014). The chair is better to be angle-adjustable so that subjects can adjust
themselves to a comfortable position. It is better to use DC-powered lights instead of
AC-powered lights in the EEG recording room, as the battery-powered LED lights
can decrease the electrical noise. The temperature of recording room should be
suitable and controllable, so an air conditioner is needed. It is even better to use a
sound-attenuating chamber to shield acoustic noise. Additionally, it is advised to
keep the EEG recording environment the same for all subjects unless the environ-
ment itself is a designed independent variable in the experiment.

2.2.4.2 Parameters of EEG Recording System

The advised parameters of EEG recording system are provided as follows:
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1. Electrode type. Ag-AgCl disc electrodes with conductive paste are
recommended. Dry electrodes will be a promising substitute in the future,
although they may not be as stable as the wet electrodes.

2. Electrode number. 32–64 active electrodes are recommended in most cases.
3. Electrode placement. The International 10–20 System is the only recommended

choice.
4. Reference electrode. Considering that the EEG data can be re-referenced offline,

any single site could be used as the reference electrode during EEG recording, as
long as the electrical circuit is well-connected.

5. Amplifier and converter. An amplifier with high input impedance (at least 100 M
Ohms) and high common-mode rejection ratio (at least 100 dB) is recommended,
whereas the converter with a voltage resolution over 20 bits is optimal.

6. Analog filter. If the voltage resolution of the converter is high enough, we do not
advise to apply any analog filter during EEG data acquisition, as it is superior to
filter the data offline using digital filters instead. If you don’t have a high-
resolution converter, a high-pass filter with a half-amplitude cutoff between
approximately 0.01 and 0.1 Hz is recommended during data acquisition.

7. Sampling rate. A sampling rate between 250 Hz and 1000 Hz is sufficient in most
cases.

2.2.4.3 Subjects

To obtain data with satisfactory quality, it is important to choose the right represen-
tative samples with appropriate spectrum of demographic characteristics and other
factors (Teplan 2002). What’s more, most EEG experiments tend to be long and
boring; it is very important to keep your subjects relaxed and enjoyed and focus his
attention on the task during data collection (Luck 2014). If your subjects lack
motivation or get bored, their performance could be affected and probably become
worse, with possible muscle or movement artifacts introduced. Some suggestions are
provided to avoid the problem as follows (Luck 2014):

1. Chatting with the subject during the preparation is highly recommended. Given
that the preparation of EEG experiments is usually time-consuming, it is better for
you to have a good conversation with the subject on topics about the work,
hobbies, and sports of the subject’s interest. By doing so, the subject will feel
relaxed and trusted and be more likely to do a good performance during the
experimental task. The conversation can also provide a good chance to note the
subjects about some essential information for completing the experiment, such as
how to fulfill the task in a right way, how to control the eye blinks, and other
relevant matters.

2. The duration of blocks of trials should be reasonable. No one can maintain his
attention for a long time; thus the whole task should be divided into several
blocks, with a short rest after each block. In most experiments, a typical block
lasting for 5–7 minutes and separated by a short rest for 1–2 minutes, is optimal
and recommended.
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Chapter 3
Electroencephalography, Evoked
Potentials, and Event-Related Potentials

Xuejing Lu and Li Hu

Abstract This chapter aims to provide background knowledge necessary to under-
stand electroencephalography (EEG) technique and its applications. First, the infor-
mation about how EEG, evoked potentials (EPs), and event-related potentials
(ERPs) are generated and obtained are summarized. Next, a brief overview of EPs
and ERPs is provided, and classical EP and ERP components that are applied in
clinical and neuroscience studies are also described, with an emphasis on different
sensory modalities through which the stimuli are presented. Finally, the pitfalls and
promise in EP and ERP studies are discussed.

Keywords Electroencephalography (EEG) · Evoked potentials (EPs) · Event-
related potentials (ERPs)

3.1 Spontaneous EEG Activity

The recordings of the spontaneous electrical activity, called spontaneous EEG
activity, exhibit certain characteristic waveforms that dominate in a wide range of
frequencies, and are normally applied in various clinical diagnoses (e.g., epilepsy,
coma, and brain death) (Hughes 1994). The spontaneous EEG activity is normally
classified according to the frequency bands. Empirically, spontaneous EEG activity
is divided into five frequency bands (Fig. 3.1): delta (δ, < 4 Hz), theta (θ, 4–8 Hz),
alpha (α, 8–13 Hz), beta (β, 13–30 Hz), and gamma (γ, > 30 Hz). The rhythmic
activity at each of these frequency bands characterizes with a certain distribution
over the scalp and a certain biological significance. For instance, the alpha waves are
normally measured from the occipital region of cortex in an awake person with the
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eyes closed, and attenuate with eyes opening or mental activity. In addition, with the
increase of frequency, the EEG rhythms are prone to be characterized with a lower
amplitude (Hughes 1994).

3.2 Evoked Potentials and Event-Related Responses

When a stimulus associated with specific sensory, cognitive, or motor event occurs,
it disturbs the spontaneous EEG activity. Although such neural responses are
embedded within the EEG, it is possible to extract these responses from the
spontaneous EEG by means of a simple averaging technique or more sophisticated
techniques, such as single-trial analysis and time-frequency analysis. Specifically,
the averaged responses are called event-related potentials (ERPs) to denote the fact
that they are electrical potentials and related to the particular events.

The early parts of brain responses are traditionally believed to be evoked by the
presentation of a stimulus and to reflect brain activity that restrictedly relates to the
basic sensory processing of the stimulus in the human brain (Callaway et al. 1978).
From this perspective, researchers used the term “evoked potentials (EPs)” to refer to
the measures of brain responses elicited by an external stimulus. However, accumu-
lating evidence suggests that when time-locked to the psychological events, some of
the brain responses, especially for those in late latencies, are more likely to reflect the

Fig. 3.1 Rhythmic EEG activity patterns. The rhythmic EEG activity is often divided into bands by
frequency. Empirically, spontaneous EEG activity is divided into five frequency bands: delta (δ, <
4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), beta (β, 13–30 Hz), and gamma (γ, > 30 Hz)
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cortical processing of psychological activities rather than simple sensory processes.
In other words, the recorded brain responses, commonly referred as “event-related
potentials”, displayed a stable time relationship to a definable event, rather than just
the evoked activity reflecting sensorimotor processes (Garnsey 1993; Niedermeyer
and Lopes da Silva 2005; Rugg and Coles 1995). For these reasons, the ERP
technique is popularly employed by physiologist, psychologist, and physicians for
multiple applications (Begleiter et al. 1967; Deletis and Sala 2008; Gonzalez et al.
2009; Duncan et al. 2009).

3.3 An Overview of EPs and ERPs

As stated in the previous section, EEG is a very spatially coarse measure of brain
activity with very low signal-to-noise ratio (SNR), and it cannot be used in its raw
form to measure most of the neural processes that relate to a specific event or task.
Fortunately, the event-related responses time-locked to the stimulus can be extracted
from the continuous EEG data by means of a simple averaging technique
(Pfurtscheller and Lopes da Silva 1999; Mouraux and Iannetti 2008). The time-
locked brain responses represent as either phase-locked or non-phase-locked to the
presentation of a stimulus. Since they are phase-locked to the stimulus onset, they
can be easily observed in the time domain after averaging across several trials,
known as ERPs. In contrast, if they are non-phase-locked to the stimulus onset,
they would become invisible in the time domain by directly averaging across several
trials. These non-phase-locked responses are called event-related oscillations
(EROs), which represent the specific frequency changes of the ongoing EEG
activities. EROs may appear either as a transient increase (event-related synchroni-
zation, ERS) or a transient decrease (event-related desynchronization, ERD) in
synchrony of the underlying neuronal populations (Pfurtscheller and Lopes da
Silva 1999; Mouraux and Iannetti 2008). In this chapter, we focus on the phase-
locked EPs and ERPs.

How are ERPs generated? Some researchers showed that ERPs appear to be an
additional activity and independent of the ongoing spontaneous EEG activity
(Niedermeyer and Lopes da Silva 2005; Jervis et al. 1983; Schroeder et al. 1995),
leading to the evoked model (Sauseng et al. 2007). Others, on the other hand,
demonstrated that ERPs are generated (or partially generated) by the reorganization
of phases of the ongoing EEG rhythmic activity (phase reset), leading to the phase
reset model (Makeig et al. 2002; Min et al. 2007; Sauseng et al. 2007). Up to the
present, researchers continue the debate about the neural fundamental of ERPs,
either evoked model or the phase reset model. Min et al. (2007) observed that both
partial phase reset and partial additive power contribute dynamically to the genera-
tion of ERPs and the pre-stimulus brain state exerts a prominent influence on event-
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related brain responses, suggesting that the combination of these two models may be
a reasonable and comprehensive way to explain the generation of ERPs.

How to obtain an ERP and locate its neural generators? In most cases, the
magnitude of ERPs (on the order of microvolts) is often several factors smaller
than the magnitude of the background EEG activity (on the order of tens of
microvolts) (Hu et al. 2010; Rugg and Coles 1995). Therefore, the identification of
ERPs relies on signal processing methods for enhancing the SNR. One of the most
widely used approaches to enhance SNR is the across-trial averaging in the time
domain (Dawson 1951, 1954). Averaged ERPs often comprise monophasic deflec-
tions which are characterized by their polarity, latency, amplitude, and scalp distri-
bution (Callaway et al. 1978; Mouraux and Iannetti 2008). The neural generators of
each deflection of ERPs can be inferred from the scalp distribution using either the
dipole source model (Valeriani et al. 2001) or the distributed source model (Michel
et al. 2001). However, determining source locations from the scalp topography is a
typical ill-posed inverse problem (Grech et al. 2008), where a large number of source
configurations can be explained by a given scalp topography. Thus, additional
assumptions (e.g., the number of dipole sources or spatial constraints from func-
tional magnetic resonance imaging) are needed to obtain a unique solution. For this
reason, the obtained source locations may be heavily biased by the assumptions,
leading to limited applications (Mouraux and Iannetti 2008).

3.4 Common EP and ERP Components

3.4.1 Auditory Evoked Potentials

The presentation of an auditory stimulus evokes potentials generated in the cochlea.
The first set of auditory responses occurs within a few milliseconds of a sudden
sound onset, reflecting the flow of information from the cochlea through the
brainstem and into the thalamus (see Fig. 3.2). Given the origin of these signals
deep inside the brain, and the response typically shows small voltages (about 0.5 μV
in amplitude), averaging thousands of trials is required to obtain clear brainstem
auditory evoked potentials (BAEPs). These auditory brainstem responses are typi-
cally labeled with Roman numerals (waves I–VI) and probably represent the acti-
vation of acoustic nerve (wave I), cochlear nuclear nuclei (wave II), superior olives
(wave III), lateral lemniscus tracts and nuclei (wave IV), and inferior colliculi (wave
V). Wave VI presumably arises from the medial geniculate body but is not consid-
ered clinically useful (Guerreiro and Ehrenberg 1982). BAEPs are highly automatic
and relatively unaffected by sleep, anesthesia, and even sufficient doses of barbitu-
rates to induce coma (Goldie et al. 1981). Therefore, BAEPs can be used to assess
the integrity of the auditory pathways, especially for newborns and infants. It is an
extraordinary tool for early identification of hearing impairment or hearing loss,
aiding in the early intervention.
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The BAEPs are followed by the mid-latency responses (MLRs; defined as
responses between 10 and 50 ms), which probably arise at least in part from the
medial geniculate nucleus and the primary auditory cortex, and the long-latency
responses, which typically begin with the P50 (known as P1), N100 (known as N1),
and P160 (known as P2) (Luck 2005). However, the term “long-latency responses”
is confusing to some extent, because these responses are with long latencies in
relation to mid-latency responses but with relatively short latencies when compared
to high-level cognitive components such as P300 and N400. Therefore, some
researchers also use the term “mid-latency” to describe evoked potential components
occurring between 50 and 200 ms (Roth et al. 1980; Boutros et al. 2006).

The auditory N1 wave with a peak latency between 50 and 150 ms is one of the
most prominent components during an auditory task. It has several distinct sub-
components that sum together to form the N1 peak, including a set of specific
subcomponents that associated with the physical and temporal aspects of the stim-
ulus and general state of the subject and a set of subcomponents which are not
necessarily elicited by an auditory stimulus but depending on the conditions in
which the stimulus occurs (Näätänen and Picton 1987). The auditory N1 is sensitive
to attention (Woldorff et al. 1993), which can be manipulated by varying the task
relevance of events or by inducing expectations that an event occurs at a particular
time point (Lange 2013).

Fig. 3.2 Typical sequence of auditory evoked components. The waveform elicited by an auditory
stimulus is shown over a period of time to demonstrate the auditory brainstem responses (waves I–
VI), the mid-latency responses, and the long-latency responses
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A repetitive nontarget stimulus can elicit an N2 deflection. When deviant stimuli
are occasionally presented within the repetitive train, a larger N2 amplitude is
evoked in response to the deviants. This effect can be divided into three subcompo-
nents – N2a, N2b, and N2c. The N2a is an automatic effect that occurs mainly for
auditory mismatches, even if they are task-irrelevant, which is more commonly
known as the auditory mismatch negativity (MMN). Specifically, MMN is generated
by a relatively automatic response to an auditory stimulus that differs from the
preceding stimuli, that is, an infrequent change in homogeneous repetitive stimuli
even in the absence of attention (Näätänen et al. 2007). Moreover, the MMN is also
elicited by changes such as grammar violations or sound omission (Yabe et al.
1997). Although the MMN is considered an attention-independent process, emerg-
ing evidence suggests that the MMN can be modulated by attention (Sussman 2007).
Nevertheless, because of its relatively high automatic nature, the MMN has been
used to assess processing in individuals with difficulties in speaking or in making
behavioral responses.

3.4.2 Visual Evoked Potentials

Typically, the first major visual ERP component is the P1 wave (see Fig. 3.3).
However, sometimes the P1 is preceded by the C1 component, with an onset latency
of 40–70 ms and peak latency of 60–100 ms. The C1 component is highly sensitive
to basic visual stimulus parameters, such as contrast and spatial frequency, and it
appears to be generated in the area V1 (primary visual cortex; Brodmann’s area
17, striate cortex). Evidence showing that C1 is generated in the striate cortex within
the calcarine fissure comes from studies demonstrating that the C1 reverses in
polarity for upper vs. lower visual field stimulation (Jeffreys and Axford 1972).

Fig. 3.3 Typical visual
evoked components,
including P1, N1, P2, N2,
and P3 components
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This reversal corresponds to the retinotopic organization of the striate cortex, in
which the lower and upper visual hemifields are mapped in the upper and lower
banks of the calcarine fissure. When the C1 wave is positive, it sums together with
the P1 component, creating a single positive-going wave. Consequently, a distinct
C1 wave is not usually observed unless upper-field stimuli are used to generate a
negative C1 wave, which can easily be distinguished from the positive P1 wave
(Luck 2005).

Visual P1 is maximal at lateral occipital electrode sites and onsets 60–90 ms
poststimulus with a peak between 100 and 130 ms. Unlike the C1 component, the P1
component does not show a polarity reversal for upper vs. lower visual field
stimulation. Although no clear consensus has yet been reached regarding the exact
location of its sources, it is believed that the P1 component is mainly generated in
extrastriate visual areas (Di Russo et al. 2002). On the other hand, like the C1 wave,
the P1 wave is sensitive to variations in stimulus parameters and can be modulated
by selective attention (Hillyard et al. 1998) as well as by the individual’s state of
arousal (Vogel and Luck 2000).

Following the P1 wave is the visual N1 wave, which is highly refractory. In other
words, if a visual stimulus is presented at a certain location preceded by another
stimulus at the same location at a short delay, the response to the second stimulus is
greatly reduced. This effect can be accounted for by a model in which the neural
populations that generate the N1 become refractory after their responses. According
to this model, the ability of neurons to produce additional responses is diminished
immediately following a response, from which point it gradually recovers. Like
auditory N1, there are several visual N1 subcomponents. The earliest N1
subcomponent peaks at 100–150 ms poststimulus at anterior electrode sites, and
there appear to be at least two posterior N1 components that peak at 150–200 ms
poststimulus, arising from parietal cortex and lateral occipital cortex, respectively. It
has shown that all three N1 subcomponents are influenced by spatial attention
(Hillyard et al. 1998). In addition, the lateral occipital N1 subcomponent appears
to be larger when subjects are performing discrimination tasks than when they are
performing detection tasks, which has led to the proposal that this subcomponent
reflects some sort of discriminative processing (Vogel and Luck 2000).

3.4.3 Laser Evoked Potentials

Brief radiant heat pulses, generated by infrared laser stimulators, excite selectively
Aδ and C fiber free nerve endings located in the superficial layers of the skin
(Bromm and Treede 1984; Carmon et al. 1976). Such stimuli elicit a number of
brain responses that can be detected in the human EEG (Carmon et al. 1976). Laser
evoked potentials (LEPs) are related to the activation of type-II A-mechano-heat
nociceptors (Treede et al. 1998) and spinothalamic neurons located in the
anterolateral quadrant of the spinal cord (Treede et al. 2003). They comprise a
number of waves that are time-locked to the onset of the stimulus. As shown in
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Fig. 3.4, the largest response is a negative–positive vertex potential, that is, the N2
and P2 waves, peaking at approximately 200 and 350 ms when stimulating the hand
dorsum (Bromm and Treede 1984). This complex is preceded by a smaller negative
wave, that is, the N1 wave, which overlaps in time and space with the larger,
subsequent N2 wave. The N1 is described as having a distribution maximal over
the central or temporal region contralateral to the stimulated side (Kunde and Treede
1993; Treede et al. 2003; Cruccu et al. 2008). In order to isolate the N1 wave from
the N2 wave, the N1 is usually detected at the contralateral central electrode (C3 or
C4) referred to a frontal midline electrode (Fz or Fpz), an EEG montage that is also
recommended for recording LEPs in clinical settings (Hu et al. 2010; Valentini et al.
2012). Several studies have shown that the N1, N2, and P2 waves reflect a combi-
nation of cortical activities originating from the primary and secondary somatosen-
sory cortices, insula, and anterior cingulate cortex (ACC) (Garcia-Larrea et al. 2003;
Cruccu et al. 2008).

While the N2 and P2 waves are characterized by a high SNR (with a peak-to-peak
amplitude of several tens of microvolts when averaging 20–30 trials) (Carmon et al.
1980; Iannetti et al. 2005), the N1 wave has a smaller SNR and is thus more difficult
to be detected. This difficulty is not only due to the fact that the N1 wave is generated
by neural activities of smaller magnitude than those underlying the N2 and P2 waves
(Treede et al. 2003; Cruccu et al. 2008), but also due to the fact that the N1 and N2
waves overlap in time and space with opposite polarities (Kunde and Treede 1993)
and to the fact that temporal electrodes are often contaminated by artifacts related to
the activity of the temporalis muscle. Therefore, the vast majority of physiological
(Iannetti et al. 2003) and clinical (Treede et al. 2003) LEP studies conducted in the
past decades have relied uniquely on measures of the N2 and P2 waves to investigate
the nociceptive system. In recent years, a growing number of studies have started to
explore experimental modulations of the latency and amplitude of the N1 wave and
to characterize its functional significance (Legrain et al. 2002; Iannetti et al. 2008;

Fig. 3.4 An illustration of
ERPs (N2 and P2 waves)
evoked by nociceptive
somatosensory inputs (i.e.,
laser stimuli) obtained at Cz
electrode (reference to
average)
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Mouraux and Iannetti 2009; Lee et al. 2009; Ellrich et al. 2007; Schmahl et al. 2004).
Indeed, there is experimental evidence indicating that the N1 wave represents an
early stage of sensory processing more directly related to the ascending nociceptive
input (Lee et al. 2009), while the later N2 and P2 waves appear to reflect neural
activities largely unspecific for the sensory modality of the eliciting stimulus
(Mouraux and Iannetti 2009). For all these reasons, a more systematical examination
of N1 has been recommended to enhance the sensitivity of LEPs in clinical appli-
cations (Cruccu et al. 2008; Treede et al. 2003).

When taking an extensive inspection to the LEP responses in the time domain, a
small but clear contribution of somatosensory-specific activities to the very late part
of the LEP is evident (Mouraux and Iannetti 2009; Liang et al. 2010). Although
being anecdotally observed but overlooked for years by various EEG studies, such a
distinct and prominent component has been successfully identified and extracted
from the LEP waveforms, labeled as P4 (Hu et al. 2014). The P4 wave is character-
ized by lower SNR, smaller amplitude, and longer latency. Specifically, when
elicited by hand stimuli, the P4 wave is maximal on the central–parietal electrodes
contralateral to the stimulated side (Cc referenced to Fz), displayed as a positive
amplitude with latency ranging from 390 to 410 ms. In contrast, when elicited by
foot stimuli, the P4 wave is centrally distributed, with a maximum amplitude
between Cz and Pz electrodes and a latency ranging from 430 to 450 ms (Hu et al.
2014). Notably, there is a tight physiological link between the neutral activities
subserving the P4 and the N1 waves, as the peak latency and amplitude of P4 wave
are heavily dependent on those of the N1 wave. Accordingly, compelling evidence
has demonstrated that the P4 wave could share common neural sources with the N1
wave (Hu et al. 2010; Valentini et al. 2012; Hu et al. 2014), which has been regarded
as the most crucial component of the LEPs related to the incoming somatosensory
input (Lee et al. 2009; Mouraux and Iannetti 2009). Overall, aside from the former
three main components in the LEP waveform, the P4 wave, which is generated
(at least partly) from primary somatosensory cortex, has been recognized as the
fourth separated component, reflecting a unique function of nociceptive information
processing.

LEPs are considered as the best tool for assessing function of nociceptive
pathways in physiological and clinical studies (Bromm and Treede 1991; Iannetti
et al. 2001; Cruccu et al. 2008). LEPs can reflect the conduction abnormalities in the
nociceptive pathways, from periphery to cortex, if lesions impinge any point in the
spinothalamic system and the laser stimulus is applied to the corresponding cutane-
ous territory (Cruccu et al. 2008). At the peripheral level, LEPs can be used to assess
the “small fiber disease” that is characteristic of loss in temperature and pain
sensitivity and autonomous peripheral nerve function. The abnormality of LEPs
often represents as the attenuation in amplitude or delay in latency or absence of
responses in serious conditions (Agostino et al. 2000; Kakigi et al. 1991b; 1992).
The latency and amplitude changes of LEPs were observed to correlate with the loss
of Aδ fiber in sural nerve biopsy, and a complete loss of LEP responses peripheral
neuropathies may indicate impairment of both Aδ and C fibers (Kakigi et al. 1991b;
Treede et al. 2003). At the spinal cord level, LEPs can provide a functional
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assessment of spinal lesions. Previous studies showed that abnormality of LEPs was
correlated with a variety of spinal lesions in patients with syringomyelia, arteriove-
nous malformations, and inflammatory myelopathies (Bromm et al. 1991; Treede
et al. 2003; Kakigi et al. 1991a; Treede et al. 1991). At the brainstem level, LEPs
may be abnormal (absence of responses, attenuation in amplitude, or delay in
latency) because of lesions of the lower lateral brainstem (Treede et al. 2003). This
is typically observed in Wallenberg’s syndrome (also as known as lateral medullary
syndrome), where pain and temperature sensation may be disturbed (Kanda et al.
1996). At the cortical level, lesions in the frontoparietal operculum (secondary
somatosensory cortices or insula) were correlated with a reduction of pain sensitivity
(Greenspan et al. 1999), thus contributing to abnormality of LEPs. For this reason,
LEPs are also useful in patients with cortical lesions (Treede et al. 2003).

3.4.4 Somatosensory Evoked Potentials

Somatosensory evoked potentials (SEPs) are cortical and subcortical responses
following the presentation of an electrical stimulation of large myelinated fibers
(Aβ) (Cruccu et al. 2008) in the peripheral nerve (Devlin et al. 2006). The evoked
tactile sensation is detected by these Aβ fibers, which ascend in the ipsilateral dorsal
columns to the brainstem. This tactile information is then projected directly to the
contralateral thalamus and terminated in the ventral posterior lateral nucleus (the
primary somatosensory cortex, SI) (Kandel et al. 2000) and other somatosensory-
related brain regions, which subserves mechanoreception (e.g., tactile recognition
and vibration detection) (Treede 2007).

When imposing the electrical stimulation on the tibial nerve (normally using
bipolar transcutaneous electrodes where cathode is placed midway between the
medial border of the Achilles tendon and the posterior border of the medial malleolus
and anode about 3 cm distal), the evoked tibial nerve SEPs can be recorded from the
peripheral to cortical levels, including peripheral (N8), lumbar (N22), subcortical
(P30), and cortical (P39) (Cruccu et al. 2008). At the cortical level, SEPs are usually
recorded at the Cz electrode referred to a frontal midline electrode (Fz or Fpz). While
the tibial nerve SEPs at the cortical level comprise a number of waves (P39–N50–
P60) that are time-locked to the onset of the stimulus (see Fig. 3.5), only the P39 has
definitely clinical value (Cruccu et al. 2008; Mauguiere et al. 1999). In contrast,
when delivering the electrical stimuli to the median nerve (the recording anode
should be located at the wrist crease and the cathode some 2 cm proximal), the
evoked median nerve SEPs are recommended to be recorded from the peripheral
(Erb’s point) channel (N9), cervical channel (N13), parietal channel (P14 and N20)
and frontal channel (P14, P20 and N30), respectively (Cruccu et al. 2008). Specif-
ically, the electrodes at peripheral Erb’s point must be placed within the angle
formed by the posterior border of the clavicular head of the sternomastoid muscle
and the clavicle, 2–3 cm above the clavicle (Erb’s point). For cervical electrode, the
anterior neck at the level of the glottis (Gl), which is commonly located over the 6th

32 X. Lu and L. Hu

http://en.wikipedia.org/wiki/Adolf_Wallenberg


(Cv6) or 7th (Cv7) cervical spinous process, is recommended as the recording
reference. Additionally, the parietal scalp electrodes are placed at CP3 and CP4
and are designated as Pc (contralateral to stimulation) and Pi (ipsilateral to stimula-
tion). Finally, the frontal scalp electrode should be located at the site Fz of the 10–20
system, or alternatively at F3–F4 (contralateral to stimulation). The above electrode
locations are highly recommended for standard clinical recordings, thus minimizing
stimulus artifact and ensuring high-quality data. One point should be emphasized
that the later waves in SEPs are less reliable and probably affected by mental
condition or cognitive status. Therefore, the obtained results should be interpreted
with caution.

Because of the definable latency and amplitude of SEPs for a quantitative
comparison throughout a procedure (Minahan 2002), SEPs are commonly used to
examine the functional integrity of somatosensory pathways, from the peripheral
sensory nerves to the sensory areas of the brain (Blum and Rutkove 2007). The
abnormalities of SEP responses provide solid evidence for an impairment of the
somatosensory system (Cruccu et al. 2008); thus SEPs have been widely used in
both clinical diagnosis (Aminoff et al. 1988; Yiannikas and Vucic 2008; Zeman and
Yiannikas 1989) and intraoperative neurophysiological monitoring (Minahan 2002;
Luk et al. 2001; Hu et al. 2003; Nuwer 1998; Deletis and Shils 2002; Devlin et al.
2006).

Since electrical stimulation excites Aβ mechanoreceptors, SEPs are usually used
to assess the function somatosensory pathways in both the peripheral and central
nervous systems (Kraft et al. 1998; Cruccu et al. 2008). Similar with LEPs, the
abnormality of SEPs often characterizes as the significant prolongation of inter-peak
intervals or absence of obligate responses in serious conditions (Kraft et al. 1998). At
the peripheral level, SEPs would be useful in diagnosing the peripheral nerves where

Fig. 3.5 A typical SEP
waveform, which showed a
cortical complex (P39–
N50–P60, tibial nerve
stimulus), reflected the brain
responses evoked by the
electrical somatosensory
stimulus
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severe disease occurs. The abnormality of SEPs has been previously reported in a
variety of peripheral nerve disorders, including inflammatory
polyradiculoneuropathies (Parry and Aminoff 1987), infectious disorders (Moglia
et al. 1991), and toxic neuropathies (Krarup-Hansen et al. 1993). At the spinal cord
level, when the disorders affected the ascending pathways of the spinal cord, which
conduct tactile information, the abnormality can be recorded by SEPs over the spinal
cord. For example, SEPs have been previously used to assess the impairments,
which are caused by spinal cord tumors, in the somatosensory pathways (Livshits
et al. 1992). In addition, SEPs can help delineating the boundaries of physiological
unaffected neural tissue, such as syringomyelia (Anderson et al. 1986), thus assisting
the therapeutist in surgery. At the brainstem level, SEPs are abnormal when lesions
in the brainstem that involves the lemniscal pathways (Cruccu et al. 2008). At the
cortex level, impairing the somatosensory pathways in the brain may cause the
abnormality of SEPs. For example, tibial nerve SEPs could be abnormal in patients
with multiple sclerosis (Davis et al. 1985; de Pablos and Agirre 2006; Loncarevic
et al. 2008), represented as the prolongation of peak latencies and reduction or
absence of peak amplitudes of SEPs (Kraft et al. 1998).

Importantly, SEPs are often used in the operating room for intraoperative mon-
itoring in order to prevent neurological damage, to follow up physiological changes,
and to locate the central sulcus (Deletis and Shils 2002; Cruccu et al. 2008). The real-
time recording of SEPs during the intraoperative monitoring of spinal cord surgery
would detect the temporary malfunctioning, which is caused by the prolonged
insufficient blood supply to the spinal cord or mechanical compression, at an early
stage, thus preventing irreversible spinal cord damage (Rossi et al. 2007;
Wiedemayer et al. 2002).

3.4.5 Steady-State Evoked Potentials

Evoked potentials can be generated as a result of physical stimulation not only by an
isolated, discrete stimulus that is presented at a relatively slow rate (i.e., a transient
response) but also by a train of stimuli presented at a fast, fixed rate. Because the
responses to such periodic stimuli can be very stable in amplitude and phase over
time, those responses are referred as the steady-state evoked potentials (SSEPs),
indicating that the neural system is in a steady state (Regan 1966). In addition, due to
the fast stimulation rate, hundreds of trials can be collected in a very short period of
time. As a result, steady-state ERPs are commonly used in the diagnosis of sensory
disorders.

SSEPs are thought to result from an entrainment or resonance of a population of
neurons responding to the stimulus at the frequency of stimulation or from the linear
superposition of independent transient responses elicited by the fast repetition of the
sensory stimulus (Herrmann 2001; Bohorquez and Ozdamar 2008). In other words,
SSEPs are typically identified in the frequency domain as peaks appearing at the
frequency of the repeated stimulus and/or at harmonics of that frequency. From this
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perspective, different SSEP frequencies can be used to tag the different sensory
inputs constituting a multimodal stimulus and, thereby, isolate the neural activity
related specifically to each stream of sensory input (Nozaradan et al. 2012).

For auditory modality (see Fig. 3.6), a clear spectral peak appearing at 40 Hz was
frequently reported in steady-state auditory evoked potentials (SSAEPs) (Bohorquez
and Ozdamar 2008; Zhang et al. 2013). The SSAEPs evoked by stimulation of 40 Hz
could be largely explained by the linear sum of transient auditory evoked potentials
(AEPs), e.g., auditory brainstem response and MLRs. Compared with AEPs that lack
frequency specificity, SSAEPs can be recorded in response to amplitude- and/or
frequency-modulated tones. Such response follows the envelope of a complex
stimulus, such as periodic modulation, or turning on and off, of a tone. Due to its

Fig. 3.6 A comparison between transient AEPs in response to a signal tone (top left) and SSAEPs
in response to a train of tones presented at a rate of 40 Hz (top right). The waveforms (recorded at
electrode Fz) obtained following transient and 40 Hz periodic stimulation are displayed. The
SSAEPs, synchronized to 40-Hz auditory stimulation, were clearly presented using a 35–45 Hz
bandpass filter (bottom panel). (Adapted with permission from Zhang et al. (2013))
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frequency-specific nature, SSAEPs are clinically used to predict hearing sensitivity
in patients of all ages (O’Donnell et al. 2013).

For other modalities, such as visual modality, periodic visual stimuli (e.g.,
flickers, reversing checkerboards, and moving gratings) can elicit steady-state visual
evoked potentials (SSVEPs), which is typically generated in the V1 of visual cortex.
SSVEPs are useful for both cognitive (e.g., visual attention and working memory)
and clinical studies (e.g., aging, depression, anxiety, and schizophrenia). Recently,
SSVEPs have been applied to SSVEP-driven brain–computer interface (BCI) system
(Norcia et al. 2015; Vialatte et al. 2010). For nociceptive somatosensory modality,
when rapid periodic thermal stimuli (i.e., trains of identical infrared laser pulses) are
delivered to the dorsum of one’s hand or foot, such selective activation of skin
nociceptors can also evoke SSEPs, which are maximal at the scalp vertex and
symmetrically distributed over both hemispheres, suggesting a radial source origi-
nating from midline brain structures (Mouraux et al. 2011; Colon et al. 2012).

3.5 Pitfalls and Promise in EP and ERP Studies

With the advanced technology development of electrical engineering, computer, and
signal processing in the 1980s, EEG and ERPs were becoming popular in both basic
and clinical studies. In particular, with the advent of techniques such as positron
emission tomography (PET, a technique using a computerized radiographic tech-
nique to examine the metabolic activity in the brain) (Depresseux 1977; Leenders
et al. 1984) and functional magnetic resonance imaging (fMRI, a technique to study
brain function mainly related to changes in cerebral flow and cerebral blood oxy-
genation) (DeYoe et al. 1994; Villringer and Dirnagl 1995), EEG and ERP tech-
niques are becoming more and more popular as an important complement to PET
and fMRI techniques, as they can provide excellent temporal resolution. However,
when using EEG and ERP techniques in examining the functional changes of the
human brain, we need to pay attention to their advantages and limitations.

EEG is a direct measurement of neuronal activity with a sampling frequency as
high as dozens of kHz (e.g., short-latency SEPs) (Ozaki et al. 1998; Inoue et al.
2001), thus resulting in extremely high temporal resolution (only a tenth of a
millisecond). On the other hand, the spatial resolution of the EEG technique is
poor and undefined. The limited spatial resolution is mainly caused by three factors:
(1) the skin, skull, and meningeal layers interposed between the brain and the
recording electrodes distort and exert a spatial low-pass filtering on neuronal elec-
trical currents (volume conduction) (Nunez and Srinivasan 2006); (2) the recorded
scalp signals have a spatial resolution in the order of centimeters (even using
128 channels EEG); and (3) the ill-posed property of the inverse problem when
estimating the EEG/ERP sources from scalp recordings (Schroeder et al. 1995). For
all these reasons, the discrimination between distinct but spatially neighboring
neural sources is difficult, even not impossible.
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Comparing to other neuroimaging techniques, which are used to investigate the
brain function (e.g., PET and fMRI), EEG is much cheaper, since the equipment is
relatively cheaper and the disposable supplies required for conducting an experiment
are less. Moreover, in contrast to other electrophysiological techniques, EEG tech-
nique is noninvasive. For this reason, EEG recordings can be collected from subjects
easily and repeatedly. Please note that both microelectrode recording (MER, a
technique to record the electrophysiological activity, i.e., action potentials, from
single neuron or several neurons) (Hua et al. 2000) and electrocorticography (ECoG,
a technique to record the brain electrophysiological activity, i.e., postsynaptic
potentials, by placing electrodes under the surface of the scalp and skull directly
on the brain surface) (Kuruvilla and Flink 2003) are invasive.

As mentioned earlier, a large amount of neural activities cannot be measured at
the scalp. If the generated electrical fields are “close field,” thus forming tangential
dipoles, EEG recorded at the scalp is not sensitive to these dipole fields. Even if
those neurons generate an “open field” (dipole that are oriented perpendicular to the
scalp electrodes), electrical activity may not be recorded by scalp EEG electrodes as
neurons may be insufficiently synchronous both in time and in orientation. For
example, the orientations of neurons in the thalamus are arranged in such a way
that no electrical field can be detected outside itself (Nunez and Srinivasan 2006).
Electrical activity in sulci, where opposite dipoles cancel out with each other because
of the opposing cortical surfaces, cannot be detected using EEG technique in most
cases. The resultant sensitivity contributes to the truth that some important neural
activities cannot be detected using EEG technique. However, it also leads to the
simplification of EEG recordings that can be easily analyzed and evaluated, which
can be considered as an advantage of EEG technique per se.

References

Agostino R, Cruccu G, Romaniello A, Innocenti P, Inghilleri M, Manfredi M. Dysfunction of small
myelinated afferents in diabetic polyneuropathy, as assessed by laser evoked potentials. Clin
Neurophysiol. 2000;111:270–6.

Aminoff MJ, Olney RK, Parry GJ, Raskin NH. Relative utility of different electrophysiologic
techniques in the evaluation of brachial plexopathies. Neurology. 1988;38:546–50.

Anderson NE, Frith RW, Synek VM. Somatosensory evoked potentials in syringomyelia. J Neurol
Neurosurg Psychiatry. 1986;49:1407–10.

Begleiter H, Porjesz B, Gross MM. Cortical evoked potentials and psychopathology. A critical
review. Arch Gen Psychiatry. 1967;17:755–8.

Blum AS, Rutkove SB. The clinical neurophysiology primer. Totowa: Humana Press; 2007.
Bohorquez J, Ozdamar O. Generation of the 40-Hz auditory steady-state response (ASSR)

explained using convolution. Clin Neurophysiol. 2008;119:2598–607.
Boutros NN, Trautner P, Korzyukov O, Grunwald T, Burroughs S, Elger CE, Kurthen M, Rosburg

T. Mid-latency auditory-evoked responses and sensory gating in focal epilepsy: a preliminary
exploration. J Neuropsychiatry Clin Neurosci. 2006;18:409–16.

Bromm B, Treede RD. Nerve fibre discharges, cerebral potentials and sensations induced by CO2
laser stimulation. Hum Neurobiol. 1984;3:33–40.

3 Electroencephalography, Evoked Potentials, and Event-Related Potentials 37



Bromm B, Treede RD. Laser-evoked cerebral potentials in the assessment of cutaneous pain
sensitivity in normal subjects and patients. Rev Neurol (Paris). 1991;147:625–43.

Bromm B, Frieling A, Lankers J. Laser-evoked brain potentials in patients with dissociated loss of
pain and temperature sensibility. Electroencephalogr Clin Neurophysiol. 1991;80:284–91.

Callaway E, Tueting P, Koslow SH, National Institute of Mental Health (U.S.). Clinical Research
Branch. Event-related brain potentials in man. Academic: New York; 1978.

Carmon A, Mor J, Goldberg J. Evoked cerebral responses to noxious thermal stimuli in humans.
Exp Brain Res. 1976;25:103–7.

Carmon A, Friedman Y, Coger R, Kenton B. Single trial analysis of evoked potentials to noxious
thermal stimulation in man. Pain. 1980;8:21–32.

Colon E, Legrain V, Mouraux A. Steady-state evoked potentials to study the processing of tactile
and nociceptive somatosensory input in the human brain. Neurophysiol Clin. 2012;42:315–23.

Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RD,
Garcia-Larrea L. Recommendations for the clinical use of somatosensory-evoked potentials.
Clin Neurophysiol. 2008;119:1705–19.

Davis SL, Aminoff MJ, Panitch HS. Clinical correlations of serial somatosensory evoked potentials
in multiple sclerosis. Neurology. 1985;35:359–65.

Dawson GD. A summation technique for detecting small signals in a large irregular background. J
Physiol. 1951;115:2p–3p.

Dawson GD. A summation technique for the detection of small evoked potentials.
Electroencephalogr Clin Neurophysiol. 1954;6:65–84.

de Pablos C, Agirre Z. Trigeminal somatosensory evoked potentials in multiple sclerosis: a case
report. Clin EEG Neurosci. 2006;37:243–6.

Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal
cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol.
2008;119:248–64.

Deletis V, Shils JL. Neurophysiology in neurosurgery: a modern intraoperative approach. San
Diego: Academic; 2002.

Depresseux JC. The positron emission tomography and its applications. J Belg Radiol.
1977;60:483–500.

Devlin VJ, Anderson PA, Schwartz DM, Vaughan R. Intraoperative neurophysiologic monitoring:
focus on cervical myelopathy and related issues. Spine J. 2006;6:212S–24S.

DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P. Functional magnetic resonance imaging
(FMRI) of the human brain. J Neurosci Methods. 1994;54:171–87.

Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA. Cortical sources of the early
components of the visual evoked potential. Hum Brain Mapp. 2002;15:95–111.

Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Naatanen R, Polich J, Reinvang I, Van
Petten C. Event-related potentials in clinical research: guidelines for eliciting, recording, and
quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:1883–908.

Ellrich J, Jung K, Ristic D, Yekta SS. Laser-evoked cortical potentials in cluster headache.
Cephalalgia. 2007;27:510–8.

Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to
functional significance. Neurophysiol Clin. 2003;33:279–92.

Garnsey SM. Event-related brain potentials in the study of language. Hove: L. Erlbaum; 1993.
Goldie WD, Chiappa KH, Young RR, Brooks EB. Brainstem auditory and short-latency somato-

sensory evoked responses in brain death. Neurology. 1981;31:248–8.
Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological

monitoring during spine surgery: a review. Neurosurg Focus. 2009;27:E6.
Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V,

Vanrumste B. Review on solving the inverse problem in EEG source analysis. J Neuroeng
Rehabil. 2008;5:25.

Greenspan JD, Lee RR, Lenz FA. Pain sensitivity alterations as a function of lesion location in the
parasylvian cortex. Pain. 1999;81:273–82.

38 X. Lu and L. Hu



Guerreiro CA, Ehrenberg BL. Brainstem auditory evoked response: application in neurology. Arq
Neuropsiquiatr. 1982;40:21–8.

Herrmann CS. Human EEG responses to 1-100Hz flicker: resonance phenomena in visual cortex
and their potential correlation to cognitive phenomena. Exp Brain Res. 2001;137:346–53.

Hillyard SA, Vogel EK, Luck SJ. Sensory gain control (amplification) as a mechanism of selective
attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Biol Sci.
1998;353:1257–70.

Hu Y, Luk KD, Lu WW, Leong JC. Application of time-frequency analysis to somatosensory
evoked potential for intraoperative spinal cord monitoring. J Neurol Neurosurg Psychiatry.
2003;74:82–7.

Hu L, Mouraux A, Hu Y, Iannetti GD. A novel approach for enhancing the signal-to-noise ratio and
detecting automatically event-related potentials (ERPs) in single trials. NeuroImage.
2010;50:99–111.

Hu L, Valentini E, Zhang ZG, Liang M, Iannetti GD. The primary somatosensory cortex contributes
to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in
humans. NeuroImage. 2014;84:383–93.

Hua SE, Garonzik IM, Lee JI, Lenz FA. Microelectrode studies of normal organization and
plasticity of human somatosensory thalamus. J Clin Neurophysiol. 2000;17:559–74.

Hughes JR. EEG in clinical practice. Boston: Butterworth-Heinemann; 1994.
Iannetti GD, Truini A, Galeotti F, Romaniello A, Manfredi M, Cruccu G. Usefulness of dorsal laser

evoked potentials in patients with spinal cord damage: report of two cases. J Neurol Neurosurg
Psychiatry. 2001;71:792–4.

Iannetti GD, Truini A, Romaniello A, Galeotti F, Rizzo C, Manfredi M, Cruccu G. Evidence of a
specific spinal pathway for the sense of warmth in humans. J Neurophysiol. 2003;89:562–70.

Iannetti GD, Zambreanu L, Cruccu G, Tracey I. Operculoinsular cortex encodes pain intensity at the
earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in
humans. Neuroscience. 2005;131:199–208.

Iannetti GD, Hughes NP, Lee MC, Mouraux A. Determinants of laser-evoked EEG responses: pain
perception or stimulus saliency? J Neurophysiol. 2008;100:815–28.

Inoue K, Hashimoto I, Nakamura S. High-frequency oscillations in human posterior tibial somato-
sensory evoked potentials are enhanced in patients with Parkinson’s disease and multiple system
atrophy. Neurosci Lett. 2001;297:89–92.

Jeffreys DA, Axford JG. Source locations of pattern-specific components of human visual evoked
potentials. I. Component of striate cortical origin. Exp Brain Res. 1972;16:1–21.

Jervis BW, Nichols MJ, Johnson TE, Allen E, Hudson NR. A fundamental investigation of the
composition of auditory evoked potentials. IEEE Trans Biomed Eng. 1983;30:43–50.

Kakigi R, Shibasaki H, Kuroda Y, Neshige R, Endo C, Tabuchi K, Kishikawa T. Pain-related
somatosensory evoked potentials in syringomyelia. Brain. 1991a;114(Pt 4):1871–89.

Kakigi R, Shibasaki H, Tanaka K, Ikeda T, Oda K, Endo C, Ikeda A, Neshige R, Kuroda Y,
Miyata K, et al. CO2 laser-induced pain-related somatosensory evoked potentials in peripheral
neuropathies: correlation between electrophysiological and histopathological findings. Muscle
Nerve. 1991b;14:441–50.

Kakigi R, Shibasaki H, Ikeda T, Neshige R, Endo C, Kuroda Y. Pain-related somatosensory evoked
potentials following CO2 laser stimulation in peripheral neuropathies. Acta Neurol Scand.
1992;85:347–52.

Kanda M, Mima T, Xu X, Fujiwara N, Shindo K, Nagamine T, Ikeda A, Shibasaki H. Pain-related
somatosensory evoked potentials can quantitatively evaluate hypalgesia in Wallenberg's syn-
drome. Acta Neurol Scand. 1996;94:131–6.

Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York: McGraw-Hill Health
Professions Division; 2000.

Kraft GH, Aminoff MJ, Baran EM, Litchy WJ, Stolov WC. Somatosensory evoked potentials:
clinical uses. AAEM somatosensory evoked potentials subcommittee. American Association of
Electrodiagnostic Medicine. Muscle Nerve. 1998;21:252–8.

3 Electroencephalography, Evoked Potentials, and Event-Related Potentials 39



Krarup-Hansen A, Fugleholm K, Helweg-Larsen S, Hauge EN, Schmalbruch H, Trojaborg W,
Krarup C. Examination of distal involvement in cisplatin-induced neuropathy in man. An
electrophysiological and histological study with particular reference to touch receptor function.
Brain. 1993;116(Pt 5):1017–41.

Kunde V, Treede RD. Topography of middle-latency somatosensory evoked potentials following
painful laser stimuli and non-painful electrical stimuli. Electroencephalogr Clin Neurophysiol.
1993;88:280–9.

Kuruvilla A, Flink R. Intraoperative electrocorticography in epilepsy surgery: useful or not?
Seizure. 2003;12:577–84.

Lange K. The ups and downs of temporal orienting: a review of auditory temporal orienting studies
and a model associating the heterogeneous findings on the auditory N1 with opposite effects of
attention and prediction. Front Hum Neurosci. 2013;7:263.

Lee MC, Mouraux A, Iannetti GD. Characterizing the cortical activity through which pain emerges
from nociception. J Neurosci. 2009;29:7909–16.

Leenders KL, Gibbs JM, Frackowiak RS, Lammertsma AA, Jones T. Positron emission tomogra-
phy of the brain: new possibilities for the investigation of human cerebral pathophysiology. Prog
Neurobiol. 1984;23:1–38.

Legrain V, Guérit JM, Bruyer R, Plaghki L. Attentional modulation of the nociceptive processing
into the human brain: selective spatial attention, probability of stimulus occurrence, and target
detection effects on laser evoked potentials. Pain. 2002;99:21–39.

Liang M, Mouraux A, Chan V, Blakemore C, Iannetti GD. Functional characterisation of sensory
ERPs using probabilistic ICA: effect of stimulus modality and stimulus location. Clin
Neurophysiol. 2010;121:577–87.

Livshits AV, Sokolova AA, Margishvili MG. The dynamics of somatosensory evoked potentials in
patients with a spinal cord tumor. Zh Vopr Neirokhir Im N N Burdenko. 1992:19–21.

Loncarevic N, Tiric-Campara M, Mulabegovic N. Somatosensory evoked cerebral potentials
(SSEP) in multiple sclerosis. Med Arh. 2008;62:80–1.

Luck S. An introduction to the event-related potential technique. Cambridge: MIT Press; 2005.
Luk KD, Hu Y, Lu WW, Wong YW. Effect of stimulus pulse duration on intraoperative somato-

sensory evoked potential (SEP) monitoring. J Spinal Disord. 2001;14:247–51.
Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ. Dynamic

brain sources of visual evoked responses. Science. 2002;295:690–4.
Mauguiere F, Allison T, Babiloni C, Buchner H, Eisen AA, Goodin DS, Jones SJ, Kakigi R,

Matsuoka S, Nuwer M, Rossini PM, Shibasaki H. Somatosensory evoked potentials. The
International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol
Suppl. 1999;52:79–90.

Michel CM, Thut G, Morand S, Khateb A, Pegna AJ, Grave de Peralta R, Gonzalez S, Seeck M,
Landis T. Electric source imaging of human brain functions. Brain Res Brain Res Rev.
2001;36:108–18.

Min BK, Busch NA, Debener S, Kranczioch C, Hanslmayr S, Engel AK, Herrmann CS. The best of
both worlds: phase-reset of human EEG alpha activity and additive power contribute to ERP
generation. Int J Psychophysiol. 2007;65:58–68.

Minahan RE. Intraoperative neuromonitoring. Neurologist. 2002;8:209–26.
Moglia A, Zandrini C, Alfonsi E, Rondanelli EG, Bono G, Nappi G. Neurophysiological markers of

central and peripheral involvement of the nervous system in HIV-infection. Clin
Electroencephalogr. 1991;22:193–8.

Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn
Reson Imaging. 2008;26:1041–54.

Mouraux A, Iannetti GD. Nociceptive laser-evoked brain potentials do not reflect nociceptive-
specific neural activity. J Neurophysiol. 2009;101:3258–69.

Mouraux A, Iannetti GD, Colon E, Nozaradan S, Legrain V, Plaghki L. Nociceptive steady-state
evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J
Neurosci. 2011;31:6079–87.

40 X. Lu and L. Hu



Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review
and an analysis of the component structure. Psychophysiology. 1987;24:375–425.

Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of
central auditory processing: a review. Clin Neurophysiol. 2007;118:2544–90.

Niedermeyer E, Lopes da Silva FH. Electroencephalography : basic principles, clinical applications,
and related fields. Philadelphia: Lippincott Williams & Wilkins; 2005.

Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B. The steady-state visual evoked
potential in vision research: a review. J Vis. 2015;15:4.

Nozaradan S, Peretz I, Mouraux A. Steady-state evoked potentials as an index of multisensory
temporal binding. NeuroImage. 2012;60:21–8.

Nunez PL, Srinivasan R. Electric fields of the brain : the neurophysics of EEG. Oxford: Oxford
University Press; 2006.

Nuwer MR. Spinal cord monitoring with somatosensory techniques. J Clin Neurophysiol.
1998;15:183–93.

O’Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-
state response (ASSR): a translational biomarker for schizophrenia. Clin Neurophysiol.
2013;62:101–12.

Ozaki I, Suzuki C, Yaegashi Y, Baba M, Matsunaga M, Hashimoto I. High frequency oscillations in
early cortical somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol.
1998;108:536–42.

Parry GJ, Aminoff MJ. Somatosensory evoked potentials in chronic acquired demyelinating
peripheral neuropathy. Neurology. 1987;37:313–6.

Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57.

Regan D. Some characteristics of average steady-state and transient responses evoked by modulated
light. Electroencephalogr Clin Neurophysiol. 1966;20:238–48.

Rossi L, Bianchi AM, Merzagora A, Gaggiani A, Cerutti S, Bracchi F. Single trial somatosensory
evoked potential extraction with ARX filtering for a combined spinal cord intraoperative
neuromonitoring technique. Biomed Eng Online. 2007;6:2.

Roth WT, Horvath TB, Pfefferbaum A, Kopell BS. Event-related potentials in schizophrenics.
Electroencephalogr Clin Neurophysiol. 1980;48:127–39.

Rugg MD, Coles MGH. Electrophysiology of mind : event-related brain potentials and cognition.
Oxford: Oxford University Press; 1995.

Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R, Doppelmayr M. Are event-
related potential components generated by phase resetting of brain oscillations? A critical
discussion. Neuroscience. 2007;146:1435–44.

Schmahl C, Greffrath W, Baumgartner U, Schlereth T, Magerl W, Philipsen A, Lieb K, Bohus M,
Treede RD. Differential nociceptive deficits in patients with borderline personality disorder and
self-injurious behavior: laser-evoked potentials, spatial discrimination of noxious stimuli, and
pain ratings. Pain. 2004;110:470–9.

Schroeder CE, Steinschneider M, Javitt DC, Tenke CE, Givre SJ, Mehta AD, Simpson GV, Arezzo
JC, Vaughan HG Jr. Localization of ERP generators and identification of underlying neural
processes. Electroencephalogr Clin Neurophysiol Suppl. 1995;44:55–75.

Sussman ES. A new view on the MMN and attention debate. J Psychophysiol. 2007;21:164–75.
Treede RD. Das somatosensorische system. In: Robert F, Schmidt LF, editors. Physiologie des

menschen. Heidelberg: Springer; 2007.
Treede RD, Lankers J, Frieling A, Zangemeister WH, Kunze K, Bromm B. Cerebral potentials

evoked by painful, laser stimuli in patients with syringomyelia. Brain. 1991;114
(Pt 4):1595–607.

Treede RD, Meyer RA, Campbell JN. Myelinated mechanically insensitive afferents from monkey
hairy skin: heat-response properties. J Neurophysiol. 1998;80:1082–93.

Treede RD, Lorenz J, Baumgartner U. Clinical usefulness of laser-evoked potentials. Neurophysiol
Clin. 2003;33:303–14.

3 Electroencephalography, Evoked Potentials, and Event-Related Potentials 41



Valentini E, Li H, Bhisma Chakrabarti YH, Aglioti SM, Iannetti GD. The primary somatosensory
cortex largely contributes to the early part of the cortical response elicited by nociceptive
stimuli. NeuroImage. 2012;59:1571–81.

Valeriani M, Le Pera D, Tonali P. Characterizing somatosensory evoked potential sources with
dipole models: advantages and limitations. Muscle Nerve. 2001;24:325–39.

Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on
essential paradigms and future perspectives. Prog Neurobiol. 2010;90:418–38.

Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional
neuroimaging. Cerebrovasc Brain Metab Rev. 1995;7:240–76.

Vogel EK, Luck SJ. The visual N1 component as an index of a discrimination process. Psycho-
physiology. 2000;37:190–203.

Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D. The impact of neurophysiological
intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg.
2002;96:255–62.

Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE. Modulation
of early sensory processing in human auditory cortex during auditory selective attention. Proc
Natl Acad Sci. 1993;90:8722–6.

Yabe H, Tervaniemi M, Reinikainen K. Temporal window of integration revealed by MMN to
sound omission. Neuroreport. 1997;8:1971–4.

Yiannikas C, Vucic S. Utility of somatosensory evoked potentials in chronic acquired demyelin-
ating neuropathy. Muscle Nerve. 2008;38:1447–54.

Zeman BD, Yiannikas C. Functional prognosis in stroke: use of somatosensory evoked potentials. J
Neurol Neurosurg Psychiatry. 1989;52:242–7.

Zhang L, Peng W, Zhang Z, Hu L. Distinct features of auditory steady-state responses as compared
to transient event-related potentials. PLoS One. 2013;8:e69164.

42 X. Lu and L. Hu



Chapter 4
ERP Experimental Design

Ruolei Gu

Abstract In this chapter, I describe the basic principles of designing an event-
related potential (ERP) experiment for psychology research and the rationales
behind these principles. I also explain the challenges that researchers often encounter
when trying to control potential confounding factors and keeping focus on the
psychological processes of interest. I provide general suggestions to resolve these
problems according to the literature together with my personal experience. Finally, I
introduce some well-known experimental tasks that have been proven to reliably
elicit specific ERP components. Researchers may consider developing their studies
based on the classic paradigms.

Keywords Event-related potential · Experimental design · Experimental
psychology · Cognitive process · Donders’s subtractive method

This chapter mainly concerns about the experimental design issues when applying
the event-related potential (ERP) method to investigate psychological processes.
Consequently, the opinions proposed in this chapter are heavily influenced by
experimental psychology, though I believe that they could also help ERP practices
in other areas. Pioneer researchers such as Hallowell Davis and Pauline Davis
mainly focused on using the ERPs as physiological indexes of sensory input (e.g.,
Davis 1939). To my knowledge, it was not until the mid-1960s that the ERP could be
successfully employed to reveal neural correlates of human cognition (Sutton et al.
1965; Walter et al. 1964). Since then, ERP has been utilized to examine a wide range
of topics (see the final part of this chapter). Given the popularity of ERP as a means
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to probe neural correlates of cognition, it is necessary to clarify the fundamental
principles of ERP experimental design. Otherwise, the theoretical significance of
ERP data for psychology research would be in doubt. Several guidelines and
committee reports provided by distinguished ERP experts have discussed these
principles from different aspects (e.g., Duncan et al. 2009; Keil et al. 2014; Pernet
et al. 2018; Picton et al. 2000), which have inspired the writing of this chapter.

The first question I suggest that a researcher should ask him/herself is whether
ERP is suitable for his/her research interests. Answering this question requires the
understanding of the pros and cons of the ERP method. As the readers have been
aware of, the main advantage of ERP is the exquisite temporal resolution compared
to most neuroimaging techniques. Consequently, the ERP is particularly useful when
researchers try to untangle multiple cognitive processes and their corresponding
neural signals in the time domain. For instance, researchers have debated on whether
the single- or dual-process model is more suitable to describe the mechanism of
recognition memory. Using ERP method, it has been found that parietal and
mid-frontal ERP correlates (which indicate the processing of recollection and famil-
iarity, respectively) emerge sequentially within hundreds of milliseconds, thus
supporting the dual-process model (see Rugg and Curran 2007, for a review). In
my opinion, an experienced ERP researcher would be particularly sensitive to
research topics that involve temporally adjacent cognitive processes.

Meanwhile, the coarse spatial resolution means that the application of ERP could
hardly be illuminating when researchers are interested in the activation pattern of a
specific brain region. To overcome this disadvantage, source analysis has been
rapidly developed, but its accuracy is inherently restricted considering that EEG
source localization is an ill-posed problem (Grech et al. 2008). Furthermore, it is
generally more difficult (though possible) to detect the activity of subcortical
structures beneath the cerebral cortex, given that the source contribution of a dipole
decreases as a function of its distance to the scalp surface. For an extreme example,
brain stem potentials usually require thousands of trials for averaging (Cohen et al.
2011). One should be cautious about this problem when he/she uses the ERP to
investigate human emotion and motivation, as they are closely associated with
subcortical limbic areas such as the amygdala and basal ganglia. Indeed, a large
body of ERP findings from emotion research indicates the cortical regulation of
limbic activity, rather than the emotional response per se (Hajcak et al. 2010).

When a researcher is confident that the ERP is his/her optimal choice, there are
three questions as follows: (1) Is the experimental design necessary and sufficient to
elicit the psychological processes of interest? (2) Could the experimental design be
reconciled with the recording and publication standards of the ERP? (3) Have
potential confounding factors been adequately considered and controlled? Please
see below for point-by-point interpretations of these questions.
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4.1 Experimental Design and Cognitive Processes

A basic assumption of cognitive psychology is that information processing relies on
internal (mental) representations (Münte et al. 2000). The construction, storage,
retrieval, and manipulation of these representations are called cognitive processes.
Based on the above understanding, a basic assumption of cognitive neuroscience is
that cognitive processes could be captured at the neural level. From this perspective,
ERP components are regarded as neural manifestations of specific cognitive pro-
cesses, with their characteristics (particularly amplitude and latency) reflecting
different aspects of those processes. For instance, P3 latency is widely considered
as a biomarker of stimulus- or response-processing time (Verleger 1997).

As Picton et al. (2000) pointed out: “the general working hypothesis is that
different cognitive processes are associated with different ERPs.” However, it is
often difficult to build one-on-one mappings between ERP components and cogni-
tive processes. For example, the N2 component has been suggested to reflect
numerous cognitive processes including error detection, conflict detection, response
inhibition, and action monitoring. Although researchers argue that the N2 could be
divided into subcomponents according to its scalp distribution, latency, and response
pattern, each subcomponent has still been linked with various cognitive processes
(for a review, see Folstein and Van Petten 2008). What makes it more complex is that
the processing of a stimulus (even a very simple one) employs multiple cognitive
processes in most cases, thus hindering the identification of the cognitive implication
of ERP variations in response to the stimulus. Therefore, the emergence of a specific
ERP component in grand-average waveforms should not be regarded as an evidence
that the cognitive process of interest has been indeed elicited (i.e., the problem of
reverse inference; see Poldrack 2006, 2008). Rather, the relationship between an
ERP component and its underlying cognitive process could only be guaranteed by
rigorous experimental designs.

In general, laboratory experiments manipulate psychological processes by mod-
ulating stimuli and task instructions. However, even researchers themselves may not
understand accurately the cognitive mechanisms involved in the processing of
specific experimental stimuli. Taking the relationship between facial stimuli and
N170 as an example, the N170 is prominent in response to facial expression
(especially human faces) but usually much smaller or even absent for non-face
visual objects (Bentin et al. 1996). Accordingly, it seems reasonable to infer that
the N170 reflects the process of face recognition. Nevertheless, whether the N170 is
face-specific has actually been in hot debate (Rossion and Jacques 2008). Many
researchers point out that faces could be different from other object categories in
various perceptual features including symmetry, visual complexity, familiarity, and
salience. It is thus possible that the processing of these features account for (at least
in part) the N170 difference between faces and non-face stimuli. Relevantly,
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regarding the high visual similarity between members of the face category, it is also
possible that a larger N170 is elicited by faces because of the smaller interstimulus
perceptual variance within this category (Thierry et al. 2007). From this perspective,
the N170 might not be selectively face-sensitive. Although these challenges seem to
be annoying, researchers could strengthen the reliability of their interpretations of
ERP results with appropriate experimental designs.

4.1.1 Stimulus Properties

Basically, experimental stimuli would better be in a perceptually simple and clear
form. Stimulus features (including its content, intensity, duration, and location)
associated with the research interest may be highlighted in some way; otherwise,
they should be appropriately controlled in the experiment. Here, “control” generally
means keep constant for each item within the same condition and across conditions.
When it is practically impossible to “keep constant” certain parameter, researchers
should try their best to reduce its variance within condition (unless it is purposely
varied, e.g., a range of contrast levels to avoid predictability) and check whether its
difference between conditions is statistically significant.

While visual stimuli lasting for tens of milliseconds are sufficient to induce
detectable fluctuations in ERP waveforms, researchers who are interested in con-
scious and deliberate stages of stimulus processing usually use longer durations
(e.g., 500–1500 ms). Visual stimuli (including pictures and words) are better placed
around the center of computer screen to minimize eye movement artifacts (unless
assessing the effects of peripheral visual stimuli). For picture stimuli, their obvious
properties such as size, luminance, and contrast should be controlled if not manip-
ulated; for word stimuli, these properties include the number of letters, phonemes
and syllables, word frequency, and possibly semantic structure. Finally, for auditory
stimuli, these properties include frequency, intensity (measured in decibels with the
reference level), pitch, and discrimination acuity (see Pernet et al. 2018, for details).
Basically, researchers are encouraged to select experimental stimuli from well-
established databases (e.g., pictures from the International Affective Picture System
[IAPS]) whenever possible, unless these databases are unsuitable for the
research aim.

While the above paragraph focuses on the physical properties of a stimulus, its
psychological properties might be modulated by task instruction. The instruction
should be unambiguous, easy to follow, and fit the cognitive level and education
level of participants. Stimulus meaning and response requirement should be
explained in detail, particularly those associated with the research interest. Experi-
menters should give further instructions if participants are unfamiliar with the device
for stimulus presentation or behavioral output (e.g., keyboard, button box, game
pad). Multimedia presentation of task instruction might be helpful, especially for
children. Participants could be provided with a small number of practice trials after
task instruction, and a performance threshold could be set before they are allowed to
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begin the formal experiment. They could also be questioned to ensure that they
understand the task as researchers expected. This point is particularly important
when the experiment involves a cover story. For instance, participants may be told
that they would finish the task together with other people, but the feedback “sent
from another participant” is actually produced by a computer randomly (e.g., Luo
et al. 2014). In this case, researchers should check (possibly after the experiment) if
participants believe in the cover story.

The strict control of stimulus parameters and task instruction is to avoid con-
founds and misinterpretations of ERP components. For this purpose, researchers
should make sure that “a given experimental effect has only a single possible cause”
(Luck 2004). Here, the “cause” refers to the experimental manipulation that is
expected to elicit the cognitive process of interest. When there is any uncontrolled
physical or psychological stimulus difference between conditions aside from the
experimental manipulation, it might induce additional cognitive processes that also
manifest on ERP signals. It is inappropriate to assume that a small difference is too
trivial to affect ERP results (Luck 2004). According to Steven Hillyard, the best way
to avoid physical stimulus confounds is to use exactly the same physical stimuli
across different conditions. This suggestion was named as “Hillyard principle” by
Steven Luck, who hung it on his laboratory wall as a slogan (Luck 2014). An
experiment that follows the Hillyard principle usually manipulates the meaning of
stimuli via task instruction. For instance, participants might be provided with an
asterisk (“�”) as outcome feedback during a gambling task. In one condition,
participants are told that the asterisk indicates that they win (or lose) in the current
trial; in another condition, the asterisk indicates that the real outcome (win/loss) is
unknowable to participants (i.e., ambiguous outcome). Using this task design,
researchers could assume that the comparison of ERPs elicited by the asterisk
between the two conditions reveals the difference in cognitive processing between
unambiguous and ambiguous information. However, the Hillyard principle could
only be applied in limited cases. In many studies which are theoretically important, it
is necessary to use different stimuli across conditions. For instance, researchers may
be interested in the processing of different pictures varied in emotional valence
(positive vs. negative). In this case, physical stimulus confounds might be unavoid-
able (although one can still normalize some of the basic physical properties of
pictures), but we may demonstrate that they are actually not responsible for the
between-condition difference of ERP measures with additional data analyses or
experiments (Luck 2004). The underlying logic of controlling stimulus properties
is further elucidated below.

4.1.2 Condition Comparison

The processing of an individual stimulus inevitably involves multiple processes.
Simply asking participants to watch a picture of a human face may elicit sensory,
perceptual, attentional, emotional, social cognitive, and memory processes and so
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on. To make things more complicated, these processes are often overlapping in the
time domain; thus an ERP component might reflect the influence of more than one
process. Therefore, the ERP data in a single condition is hardly informative from the
perspective of cognitive psychology.

To address this issue, cognitive psychologists have relied on Donders’s subtrac-
tive method (named after the Dutch scientist Franciscus C. Donders) for a long time.
As all mental operations take time, Donders proposed that differences in human
reaction time could be used to infer differences in mental processing (Posner 2005).
A modern version of Donderian method could be expressed in the following way:
“one can create two conditions such that the conditions differ only in the process of
interest and are equivalent with respect to all other processes” (Coles and Rugg
1995). Using Donders’s subtractive method, researchers would be able to derive the
neural correlates of a specific cognitive process from a deliberate experimental
comparison. Suppose that the processing of a certain kind of stimuli involves the
cognitive processes A, B, and C. When researchers focus on the process A, they may
design a control condition which (presumably) contains only B and C. Therefore, the
ERP differences between the experimental condition and control condition would be
considered as the effect of A. This explains why stimulus properties need to be
tightly controlled: if there are unplanned property variations between conditions, it is
plausible that these conditions differ not only in the process A but also in additional
cognitive components that are required for the processing of those properties. If that
happens, it would be more difficult to determine the meaning of ERP results.

Another common practice is that all conditions involve the process A, but
researchers are interested in comparing different variations of A (e.g., A1, A2).
The key point of this method, as a modification to the Donderian approach, is to
manipulate the functions of the same process rather than to add or delete different
processes (see Stelmach 1982, for details). As mentioned above, an experiment may
compare the ERPs elicited by positive (A1) and negative (A2) emotional pictures so
as to see if electrophysiological activity is modulated by the processing of emotional
valence. This experimental design would be beneficial from another type of control
condition that contains A0 (e.g., neutral pictures), in which the level or amount of
processing is assumed to be lowest and therefore could be treated as a baseline.

Here, please note that I introduce the subtractive method simply to help illustrate
the rationale behind condition comparisons. The idea underlying Donderian logic
(i.e., “pure insertion”) assumes the relationship between cognitive components is
linear (or additive); thus the effect of adding a new component is independent of
other components. Nevertheless, the assumption may violate the observations that
neural dynamics are nonlinear; when there is expected to be nonnegligible interac-
tions between neural processes, researchers usually turn to factorial designs practi-
cally (i.e., taking on all possible combinations of levels across factors; see Friston
et al. 1996, for details). This fact, however, does not harm the importance of
Donderian method for the understanding of ERP experimental design. For examples
of modern-day use of this method, please see Vidal et al. (2011).

Let’s assume that we are interested in examining the face specificity of N170.
According to Donderian logic, what kind of control condition should we use for our
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experiment? First, different kinds of stimuli (e.g., houses, vehicles, animals, flowers)
have been selected to contrast with faces according to the literature. Apparently,
these stimuli are hugely different from faces in many aspects, particularly sensory
features. Among them, pictures of cars are frequently used in the control condition
because of the high familiarity and complexity comparable to human faces (Rossion
and Jacques 2008). However, car stimuli might still not be optimal regarding the
issue of interstimulus perceptual variance. Some researchers compared upright and
inverted faces, which contain exactly the same amount of sensory information and
thus perfectly control all the aspects except the orientation (Itier et al. 2006).
Nevertheless, an inverted face could still be easily perceived as a facial stimulus.
Thus, any N170 difference between the upright and inverted conditions may not help
determine if this component is face-specific. An elegant experiment design makes a
comparison between upright and inverted Arcimboldo images: Arcimboldo was an
Italian Renaissance artist best known for creating face-like paintings with non-facial
objects such as fruits, vegetables, and flowers. Interestingly, the face perception
would be much weaker or even disappear for inverted Arcimboldo images, as
inversion disrupts holistic processing. Accordingly, comparing upright with inverted
Arcimboldo portraits becomes an ideal test of the face specificity of N170 (e.g.,
Caharel et al. 2013).

Based on the aforementioned methodology, some researchers have taken a step
further and suggested constructing difference waves between conditions so as to
isolate ERP components that are selectively associated with experimental manipu-
lation (Luck 2004). Indeed, the difference wave analysis has become a dominant
approach for the measurement of certain ERP components, such as the feedback-
related negativity (FRN; see Proudfit 2015, for a review). The FRN is widely
considered to be a neural index of the processing of outcome valence (positive/
negative). Based on the current understanding, many FRN researchers create a
difference wave by subtracting the ERPs in the positive condition from those in
the negative condition for each participant. The resulting difference wave in the
same time window of the original FRN is supposed to be “purely” valence-related,
since the common components that are insensitive to outcome valence have been
removed. However, the difference wave analysis has its own limitations (see Luck
2004, for details). For instance, one might be interested in the modulating effect of a
factor A. When this effect is significant on the FRN difference wave, it is possible
that the A factor actually affects (1) positive outcome trials, (2) negative outcome
trials, or (3) both. To resolve this problem, one would have to return to original
waveforms to construct a factorial design.

4.1.3 Behavioral Measure

Another important way of investigating the cognitive implication of ERP compo-
nents is to use behavioral measures. Here, potential measures include not only button
press but also movements of the hands, fingers, eyes, and muscle contractions, as
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long as they are properly collected and analyzed (Pernet et al. 2018). While these
behavioral responses might not be the focus of an ERP experiment, they could help
clarify if the cognitive process of interest is elicited or the experimental manipulation
is successful. For example, in each trial of the emotional Stroop task, participants are
presented with an emotional (e.g., “death”) or neutral word (e.g., “soil”) in different
colors. They are asked to name the color of the words ASAP while ignoring its
meaning. However, previous studies have showed that there is an emotional delay in
reaction time, that is, participants respond to emotional words more slowly than
neutral words. This effect is generally interpreted as an attentional bias toward
emotional stimuli (Williams et al. 1996). Therefore, in an ERP experiment that
aims to investigate the electrophysiological mechanisms of the emotional Stroop
effect, replicating the typical behavioral pattern (i.e., emotional delay) indicates that
participants’ attentional function has been indeed interfered by emotional processing
during the task. Otherwise, even though there are ERP differences between condi-
tions, researchers would meet difficulties to interpret these differences as the emo-
tional influence on attentional function if they fail to get the typical behavioral result.
This point is particularly notable when such a classic paradigm is applied. For these
reasons, Picton et al. (2000) suggested assessing participants’ behavior when possi-
ble. It should be noted, however, that the experimental environment of ERP studies
is quite different from real-world naturalistic scenarios (Zhang 2018), which could
affect behavioral performance in many ways. In addition, even though behavioral
data shows that the cognitive process of interest is involved in the experiment, it is
still undetermined whether the ERP differences between conditions really resulted
from this process. In a word, behavioral evidence from an ERP experiment could be
supportive, but not conclusive. Meanwhile, behavioral data involves a motor
response component by default, which might interact with other cognitive compo-
nents in the task.

4.2 Requirements of the ERP Method

As the readers may have learned from other chapters of this book, the ERP method
has many specific requirements to ensure that the data are of good quality (see also
Picton et al. 2000). The design of an ERP experiment for psychological research
needs to follow not only the principles of experimental psychology but also these
requirements. As a result, the ERP method is unsuitable for some research topics
practically. Also, researchers might have to reluctantly modify some critical aspects
of their original tasks derived from behavioral studies. Nonetheless, fulfilling the
requirements of the ERP method is the premise of a successful and theoretically
meaningful experiment. Below I summarize the most important requirements which
should be taken into account for ERP experimental design.
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4.2.1 Trial Number

The reliable delineation of an ERP component needs a sufficient number of repeti-
tions of the stimuli (or responses) which elicit that component (the specific number
varis across different ERP components; e.g., Cohen and Polich 1997; Marco-Pallares
et al. 2011). For this reason, while one-shot game paradigms have been widely used
in behavioral economics, only their iterated versions could be applied for ERP
experiments. This point may fundamentally change the nature of the research
question. For example, the classic Prisoner’s Dilemma Game (PDG) asks two
players to independently choose between “cooperate” and “defect,” which jointly
determined the decision outcome. Generally, people are more prone to defect their
partners in the one-shot PDG; in contrast, they would be more prone to cooperate in
the iterated PDG, since they have to deal with the same partner for many rounds
(Raihani and Bshary 2011). In this case, although increasing the number of trials in
each condition is necessary, there is a potential risk that researchers would deviate
from their primary goal.

4.2.2 Stimulus Probability

Perhaps the most well-known and most frequently investigated ERP phenomenon is
the “oddball” effect, that is, an improbable target stimulus elicits larger ERP
amplitudes than standard stimuli (see also below). Traditionally, this oddball effect
is often associated with the P3 component, but other components such as the N2 and
FRN are also affected (Patel and Azzam 2005; San Martín 2012). Researchers
suggest keeping the probabilities of stimulus/response categories constant within
and across conditions, in order to prevent confounding the oddball effect with the
experimental effects of interest (Picton et al. 2000). In some paradigms, however,
stimulus probability might be inevitably modulated by other experimental variables.
For example, participants may be asked to finish a reward learning task, in which
they receive outcome feedback (positive/negative) of their decision in each trial.
Although participants do not know the winning rule initially, they could make more
optimal choices through trial-and-error learning. As the task moves on, the FRN
elicited by negative feedback may become larger over time. Researchers may like to
explain this result as a learning effect, but it can actually be interpreted more
parsimoniously in terms of the oddball effect: as participants are more familiar
with the winning rule, they would be less likely to receive negative feedback,
which means the probability of negative feedback would decrease in the later stages
of the task. Previous studies have tried various methods to control the influence of
feedback probability during learning (e.g., Cohen and Ranganath 2007; Walsh and
Anderson 2011).
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4.2.3 Time-Locking

An ERP experiment requires that there is a time-locked relationship between the
event and (1) its ERP effects and (2) its associated cognitive processes. First, the
ERP waveforms prior to the time point zero of an event is supposed to reflect the
default brain state, while those appearing after event presentation is supposed to
reflect the impact of that event on electrocortical activity. Second, the cognitive
process of interest is supposed to emerge within the same time window of event
presentation. Fulfilling these requirements enables us to link the ERPs with the
cognitive process being investigated. Here, the first requirement relies on triggering
mechanism of the experimental procedure, while the second one relies on experi-
mental procedure itself. In reality, the cognitive process may happen before its
associated event. Imaging a simple gambling task in which participants choose
between a high-risk and a low-risk option, both of which may result in wins or
losses randomly. Using this task, we could investigate the ERPs elicited by outcome
feedback (win/loss) and assume that they reflect the processing of outcome infor-
mation, because participants are unable to predict the real outcome until its presen-
tation. However, we may not assume that the ERPs elicited by gambling option
(high�/low-risk) reflect the processing of option information, because the options
are unchanged throughout the task. Hence, participants could actually assess options
and make up their minds before option presentation (Gu et al. 2018). In this case,
even though there are significant ERP results in the option stage, their cognitive
meanings are unclear because there is probably no time-locked relationship between
(objective) option presentation and (subjective) option assessment. Partly because of
this reason, ERP studies on option assessment are scarce compared to those on
outcome evaluation.

4.2.4 Time Interval

The intervals between events could be measured as either stimulus-onset asynchrony
(SOV, the onset of the preceding stimulus to the onset of the next) or interstimulus
interval (ISI, time distance from offset to onset). An ERP experiment requires
sufficient intervals between adjacent events within each trial and across trials.
Specifically, the ERPs elicited by an event usually need a few hundreds of millisec-
onds to return to the baseline level; before that time, if a second event appears
immediately, then its associated ERP signals would likely be contaminated by the
influence of its preceding event. Therefore, if a behavioral paradigm involves the
presentations of several events within a very short time window, researchers often
need to extend the intervals between these events when applying it for ERP research
(for exceptions, see the steady-state visual evoked brain potential [SSVEP] tech-
nique; e.g., Keil et al. 2003). In addition, while fixed intervals generally do not cause
problems in behavioral studies, ERP experiments often use varied intervals between
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the event being analyzed and its preceding event, which could be accomplished by
inserting temporal jitters (i.e., time-varying intervals). This is because the expecta-
tion of a coming event generates anticipatory slow waves including the stimulus
preceding negativity (SPN) and contingent negative variation (CNV) (Bocker et al.
1994). When the interval between two events A and B is fixed, participants would be
able to anticipate the precise time of the onset of B after the presentation of A. In this
case, a clear SPN/CNV would be observed in ERP waveforms and would signifi-
cantly influence the baseline window of B.

4.2.5 Eye and Body Movement Control

Methods of controlling noncerebral artifacts have been systematically described in
other chapters of this book. From the perspective of experimental design, researchers
should consider whether their experimental setups and task requirements would
generate unnecessary eye or body movements, especially in the time windows of
the events being analyzed (Tal and Yuval-Greenberg 2018). For instance, in a
gambling task which provides the chosen outcome and alternative outcome simul-
taneously, if the two outcomes are presented at the two vertical ends of the screen,
participants would need to make saccades between these locations, which in turn
generates large electroocular artifacts that could have been avoided.

4.3 Confounding Factors

I consider confounding factors as within-subject and between-subject variables that
are not the interest of an experiment but have the potential to affect experimental
results and therefore should be adequately controlled. The idea of eliminating the
potential confounds of some within-subject variables has been introduced in the
previous sections. Regarding other within-subject variables, I suggest that the most
notable ones are habituation and fatigue, both of which manifest their effects over
time (i.e., sequencing effects). Habituation happens because participants are exposed
to the same stimuli for many times; fatigue happens usually when an experiment
lasts for more than tens of minutes. Both factors may result in attenuated neural
responses to stimuli in the latter half than the first half of the experiment. They might
be inevitable for an ERP experiment which requires collecting a large number of
trials for each condition. However, we may control their influence between condi-
tions by using repeated measure designs (e.g., counterbalancing), which are the basis
of experimental psychology and thus is not elaborated further.

Regarding between-subject variables, this section focuses on individual differ-
ences. It has been well-established that individual difference could manifest on the
ERPs (Keil et al. 2014) and its influence may be stronger than within-subject factors
in certain situations (Luck 2014). Thus, when individual differences are not the
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target of a study, they should be adequately regulated and reported. In the majority of
ERP studies, the controlled individual differences include age, sex, and handedness.
Indeed, these variables have been proven to play significant roles in individual ERP
patterns. For instance, the amplitudes of the CNV, error-related negativity (ERN),
and P3 all vary as a function of age among children between 7 and 17 years and
young adults, possibly reflecting the effect of neural development (see Segalowitz
and Davies 2004, for a review). Likewise, sex-related differences have been discov-
ered in many ERP components including the N1, N2, P3, and late positive potential
(LPP) (e.g., Gardener et al. 2013). In my opinion, however, the importance of the sex
factor has not yet been fully appreciated. For one thing, the samples of many studies
predominantly consist of male or female participants, but these studies usually
assume that their conclusions are suitable for both genders. For another, many
studies examined the potential modulating effect of age but not sex in statistical
analyses (for the significance of the sex effect, see: Eliot 2011; Schiebinger 2014).
Regarding handedness, limited studies have been devoted to explore the differences
in ERPs between left- and right-handed persons (e.g., Beratis et al. 2009; Coulson
and Lovett 2004; Nowicka et al. 2006). To my knowledge, most studies have
exclusively employed right-handers as participants, which may help control indi-
vidual difference in response bias but also have restricted researchers from under-
standing the potential role of handedness.

Aside from these variables, it is also necessary to control the education level of
participants. Many studies have no problem with this issue, since they mostly recruit
university undergraduates and graduates as participants. However, when a study
contains elderly citizens or clinical samples, things might be more complicated. As
pointed out by Picton et al. (2000), the importance of education level lies in the fact
that it “is a reliable indicator of general cognitive abilities.” Relevantly, the level of
specific cognitive abilities should be assessed, controlled, and provided in the report
when they are critical for the experimental task (Picton et al. 2000). In many tasks
which are designed to investigate individual preference, when participants do not
have sufficient cognitive abilities to meet task demands, their behavioral perfor-
mance may not be explained in terms of preference. For instance, some studies using
risk decision-making paradigms have found that elderly people are more risk-
avoidant than young adults. However, one might suggest that elderly participants
actually have deficits in reward learning abilities and working memory capacity,
which have restricted them from understanding the potential benefits associated with
choosing risky options. Finally, socioeconomic status also warrants careful atten-
tion, such as in social psychological research about self-esteem, fairness judgment,
or social hierarchy.

Collectively, a “typical” sample in a “typical” ERP study usually consists of
university students, age between 18 and 30, right-handed, having normal IQ, reading
ability, and motor skills. Controlling participant characteristics in this way is
expected to increase the level of homogeneity between participants within the
same sample. In addition, they should have no history of medical (e.g., heart
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diseases), psychiatric (e.g., schizophrenia), or neurological (e.g., epilepsy) illness;
also, they should be free of regular use of any substance affecting the central nervous
system, especially on the experiment day. For the limitations of this participant
screening strategy, please see the review from Henrich et al. (2010) for an example.

When the experimental design involves one or more between-subject factors
(e.g., comparing between a clinical sample and a healthy control sample in neuro-
logical and psychiatric research), the aforementioned demographic variables should
be matched between groups. The reason behind is similar with the Donderian
approach of controlling irrelevant cognitive processes on the within-subject level.
Keil et al. (2014) provide two helpful suggestions on this issue: first, researchers
should be aware of the unexpected consequences of matching the selected charac-
teristics of participants, since it might under the risk of systematically mismatch
groups on other characteristics; second, a single control group might not be able to
address all relevant characteristics, and multiple comparison groups might be
needed in certain cases. Finally, when the between-subject factor is about a clinical
issue, researchers should set up unambiguous, detailed inclusion and exclusion
criteria of clinical and nonclinical groups. Readers are referred to the Diagnostic
and Statistical Manual of the American Psychiatric Association (2013) for criteria
of most psychiatric disorders, and a consultation or collaboration with clinical
experts are highly recommended. While the criteria should be rigid, the conse-
quence of applying them should also be fully evaluated. For instance, excluding
participants with lifetime neurological or psychiatric illness may lead to rejecting up
to 50% of elderly individuals, thus limiting the general implication of a study on
aging (Pernet et al. 2018).

4.4 Classic Experimental Designs and Corresponding ERP
Indexes

It turns out that designing a novel experimental task to examine the cognitive
processes of interest and appropriately control confounding factors is a complicated
issue. For this concern, Luck (2004) recommended using standard experimental
manipulations that have been well studied in the literature. This strategy would be
more likely to get reliable mappings between ERP components and cognitive
processes than new paradigms (Picton et al. 2000). While researchers should not
hesitate to develop new paradigms for their studies, they could also consider slightly
modifying classic paradigms to fit specific research purposes, as long as the basic
characteristics of those paradigms are unaffected. In this section, I introduce several
classic experimental tasks that have been frequently employed in previous ERP
studies. Mostly because of space limitation, I focus on those representative tasks that
have been closely associated with a single ERP index, each of which is introduced
following the description of its corresponding task (Fig. 4.1).
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4.4.1 Cue-Target Paradigm

In the field of attention research, the cue-target paradigm (Fig. 4.2) requires partic-
ipants to respond quickly to the position of a target. Prior to the target presentation,
there is a preceding cue that carries information regarding the subsequent target
stimuli (Neyedli and Welsh 2012). The cue could be valid (correctly indicates target
location), invalid (provides erroneous information), or neutral (does not contain any
information). Both the cue and the target could be research objects of various topics
such as attention orientation, attention shift, and inhibition of return. When combin-
ing this paradigm with the ERP method, the P1 and N1 elicited by target presentation
may indicate the attentional bias under the influence of cue information. Generally

Fig. 4.1 A schematic of several important ERP components (negative voltages upward). Practi-
cally, different ERP components vary in their scalp distributions and might not be observable from
the same waveform. Also note that the ERN temporally overlaps with the P1; thus they could not be
jointly depicted in this waveform

Fig. 4.2 An example of cue-target paradigm. (Inspired by Tian et al. 2011)

56 R. Gu



speaking, the core of this paradigm is that there is a one-on-one mapping between
cue and target, which could be extended to other research fields. For instance, in the
monetary incentive delay (MID) task, the cue indicates the amount of reward
associated with successfully responding (Knutson et al. 2001; Schultz et al. 1998).
In this case, cue presentation affects behavioral response by modulating motivation
level rather than attention.

P1 & N1 The P1 and N1 are two important ERP indexes associated with sensory
processing and attention orientation (Luck et al. 2000). In response to the presenta-
tion of visual stimuli, the P1 (100–130 ms poststimulus) and N1 (150–200) appear
following the C1 (40–100 ms). However, since the C1 could only be observed in
certain paradigms, the P1 is probably the first clear ERP peak that one is able to
recognize in the average waveforms. Please be aware that their scalp distribution and
latency vary as a function of stimulus modalities (visual vs. auditory; see Luck
2014). These two components, which are in the same frequency range (alpha band),
are referred to as the “P1-N1 complex” by some researchers (Woodman 2010). From
the perspective of cognitive psychology, both of them are mainly regarded as
exogenous components modulated by physical stimulus attributes. Nevertheless,
researchers believe that there is a functional dissociation between them: one possi-
bility is that the P1 generally indicates bottom-up attentional processes elicited by
incoming stimuli information, while the N1 is more likely to be associated with
top-down selective attention toward task-relevant stimuli (Herrmann and Knight
2001). Although the P1 and N1 are supposed to reflect quick, coarse stages of
stimulus processing, recent studies suggest that they also play an important role in
more complex processes such as deliberate decision-making and social evaluation.
For instance, one of my recent studies has revealed that the amplitude of P1 elicited
by stage feedback could predict participants’ decision (whether or not to take
economic risk) in the next stage, indicating that the early attentional stage of stimulus
processing participates in subjective risk preference (Gu et al. 2018).

4.4.2 Face Presentation Paradigm

Pictures of faces have been widely used for not only studies of face perception but
also those of emotional processing, social decision-making, interpersonal relation-
ship, ingroup/outgroup bias, and stereotypes. Many international databases (e.g.,
Matsumoto and Ekman’s Japanese and Caucasian Facial Expressions of Emotion
[JACFEE]) provide facial stimuli that have been edited to control irrelevant dimen-
sions. Across different studies, faces could be vertically or horizontally oriented,
inverted or contrast-reversal, with spatial frequency filtering or additional visual
noises, or missing some inner features. In addition, they could be emotional or
neutral, familiar (e.g., celebrity faces) or unfamiliar, in the same ethnic group with
participants or not (Rossion and Jacques 2008). Faces could also be presented on an
unconscious level (e.g., being backwardly masked: see Etkin et al. 2004). Finally,
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face recognition could be modulated by task demands, as researchers often assign
some tasks (e.g., identifying the facial emotion) to attract participants’ attention or
for specific research goals. These manipulations are all theoretically interesting for
psychology and social science and have been proven to influence ERP patterns
(Hinojosa et al. 2015). For the design of appropriate control conditions, please see
Sect. 4.1.2 for details.

N170 From the late 1980s, researchers have begun to realize that facial stimuli
elicit specific electrophysiological signals compared to other visual stimuli. They
first discovered a vertex positive potential (VPP) in the 140–180 ms time window,
being more positive-going for faces than other kinds of objects. Later studies have
found another negativity at bilateral occipitotemporal sites, which is temporally
coincident with the VPP and probably reflects the negative counterpart of the same
equivalent dipoles. This component, being more negative-going for faces than other
stimuli, reaches its maximum at about 170 ms following stimulus onset and thus is
called “N170” (Bentin et al. 1996). While the N170 and VPP are considered as flip
sides of the same brain processes, the former one has received more attention from
academia. This is because the neural origin of both components is supposed to be
localized in the occipitotemporal cortex, which matches well with the scalp distri-
bution of the N170. As mentioned above, many researchers believe that the N170
generally reflects a face-specific processing mechanism in the brain, but the debate
still continues in many aspects (for details, see Hinojosa et al. 2015; Rossion and
Jacques 2008).

4.4.2.1 Stimulus Response Compatibility (SRC) Paradigms

This concept refers to a large family of tasks including the Stroop, Simon, Eriksen
flanker, and Navon, which are designed to investigate cognitive control
(or “executive control”)—the processes of storing, planning, and manipulating
contextually relevant information to reach a specific goal in a top-down manner
(Proctor and Vu 2006). These tasks are similar in the way that they all induce
conflicts between different information (especially task-relevant and task-irrelevant
ones): presenting color words in another incongruent color, displaying stimulus at an
location that are incongruent with the correct location of button press, or showing
incongruent visual features at the global and local levels (Simons 2010). Take the
flanker task (Eriksen and Eriksen 1974) as an example: in the arrowhead version of
this task (e.g., “> > < > >”), participants are required to respond to the direction of the
center arrowhead. The surrounding flanker arrowheads, though they are irrelevant
and should be ignored, usually interrupt the processing of the center target when
their directions are incongruent with the center target and lead to prolonged reaction
times and response errors. SRC paradigm are divided into two major categories
according to the nature of conflict processing: stimulus-stimulus (S-S, compatibility
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between task-relevant and task-irrelevant stimuli) and stimulus-response (S-R; e.g.,
the Simon task). SRC paradigms could be employed to elicit the stimulus-locked N2
since they inherently involve conflict processing (Folstein and Van Petten 2008);
meanwhile, response errors that occur in these tasks could elicit a response-locked
ERN effect (Van Veen and Carter 2002).

4.4.2.2 Stop Signal Paradigm

Aside from conflict processing, inhibition processing is also a critical component of
cognitive control (Miyake et al. 2000), which can be assessed by the stop signal and
go/nogo paradigms (Verbruggen and Logan 2008). Here I focus on the stop signal
paradigm because of space limitation. Participants perform a go task as they respond
to the presentation of a target stimulus ASAP. Occasionally, a “stop” signal would
appear shortly after the initial stimulus, which instructs participants to withhold their
response. However, participants should not wait for the stop signal to occur. The
need to stop a response elicits a fast control mechanism that inhibits action execu-
tion, and a frontocentral N2 would be generated accordingly by the stop signal
(Verbruggen and Logan 2008). The target stimulus and the stop signal can be
provided in different sensory channels (e.g., a visual target followed by an auditory
stop signal). Researchers could manipulate behavioral performance by modulating
task instruction (e.g., emphasizing reaction speed or accuracy) or the length of
interval between the target and the stop signal (i.e., “stop signal delay [SSD]”)
(Folstein and Van Petten 2008).

N2 The N2 refers to the second negative peak (time window, 200–300 ms) in the
averaged ERP waveforms and could be observed in many different paradigms (e.g.,
go/nogo, Stroop, stop signal, Eriksen flanker task; see Folstein and Van Petten 2008;
Kok et al. 2004). This component is strongly connected with the P3 to a degree that
they are sometimes referred to as the “N2-P3 complex,” and researchers should be
aware of their influence on one another. People believe that the N2 is a family
consisting of multiple subcomponents, but the number of its members is under
debate. Early studies suggest that there are at least an anterior N2a associated with
attention orientation, a central N2b associated with conscious attention, and a
frontocentral N2c associated with stimulus classification (Patel and Azzam 2005).
Additionally, there might also be a N2pc that arises in the occipitotemporal region of
the contralateral cortex as an index of attentional shift (for a review, see Patel and
Azzam 2005). However, Folstein and Van Petten (2008) argued that the above
categories need to be updated. Instead, they suggested that the visual N2 could be
divided into a mismatch-related anterior N2 that encodes the detection of novelty or
mismatch from mental template, another control-related anterior N2 associated with
cognitive control (including response inhibition, response conflict, and error moni-
toring), and a third posterior N2 that reflect certain aspects of visual attention.
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ERN The ERN is a response-locked rather than stimulus-locked ERP component,
which peaks at about 50–100 ms after participants executed an erroneous response to
a stimulus (Simons 2010). To avoid the influence of readiness potential, the ERN is
baseline corrected with the average activity preceding the time point of stimulus
rather than response (e.g., Eppinger et al. 2008). For correct trials, there is also a
much smaller correct response negativity (CRN) in the same time window, which is
topographically and morphologically similar with the ERN. The ERN is interpreted
as the activity of an automatic response-monitoring system (which is modality
nonspecific) rather than a conscious “oh-no!” effect, since subjective awareness is
not necessary for ERN production. In contrast, the “error positivity (Pe)” that
appears following the ERN is supposed to reflect awareness of the action error.
According to the “reinforcement learning of the error-related negativity (RL-ERN)”
theory, the ERN functions as a reward prediction error signal together with the FRN
(see below). Holroyd and Coles (2002) conducted an experiment to show the
relationship between the two components: in a probabilistic learning task, when
there was a 100% mapping between an erroneous response and negative feedback,
the ERN but not FRN emerged in the data; the reverse was true when the mapping
was 50% (i.e., uncertain feedback). Nevertheless, some questions still remain. For
instance, the ERN and FRN respond to certain variables in different patterns: while
the ERN amplitude increases as a function of individual level of trait anxiety (Hajcak
et al. 2003), the FRN decreases (Gu et al. 2010).

4.4.3 Gambling Paradigm

Monetary gambling task has a long history in the field of behavioral economics. To
my knowledge, the study of Gehring and Willoughby (2002) was the first one to
adopt this kind of task to investigate the ERPs associated with economic value
processing. In its simplest form, each trial of Gehring and Willoughby (2002)‘s
gambling task (Fig. 4.3a) involves a forced choice between two options, which may
or may not vary in risk level. After participants have made a decision, the
corresponding outcome feedback would be presented, which is the focus of ERP
analysis and usually generates an FRN and a P3 (San Martín 2012). There are at least

Fig. 4.3a An example of gambling paradigm. (Inspired by Yeung and Sanfey 2004)
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two kinds of outcome feedback: positive (wins) and negative (losses), both of which
appear on exactly 50% of trials, so as to control the effect of event probability (see
Proudfit 2015, for a review). Numerous variations have been developed from the
original task: there might be a cue presentation prior to the choice, which contains
task-relevant information; more than two options may be provided, of which the
appearance could be simple or complex; reward magnitude and winning probability
may be manipulated as experimental variables; there might be restrictions on the
gambling decision (e.g., time limitation); aside from winning and losing, participants
may receive neutral (zero) or ambiguous feedback; and not only the chosen outcome
but also the alternative outcome might be provided simultaneously or sequentially.

FRN The FRN (Fig. 4.3b) is a negative-going waveform that reaches its peak at
about 200–300 ms following outcome presentation. Recent studies have found that
cue presentation could also generate an FRN-like component (e.g. Liao et al. 2011).
The FRN was first reported by Miltner et al. (1997) using a time estimation task; in
their study, the FRN was larger for negative compared to positive performance
feedback and was supposed to be a neural index of error detection. The importance
of the FRN for neuroeconomics research had not been noticed until the study of
Gehring and Willoughby (2002); they designed a simple gambling task (see above)
and found out that the FRN (named as “medial-frontal negativity [MFN]” by
Gehring & Willoughby) was larger for losses than wins. Combining these findings,
Clay Holroyd and his colleagues proposed the RL-ERN theory in which the FRN is
considered as a negative prediction error signal (whether the real outcome is worse
than prior expectation) and is functionally analogous to the ERN. However, later
studies have pointed out that the FRN amplitude is sensitive to both negative and
positive prediction errors (i.e., a “salience prediction error” index; see Talmi et al.
2013). Also, it is possible that the FRN actually represents “reward positivity
(RewP)” that is more positive-going for wins than losses (Proudfit 2015).

Fig. 4.3b Grand average waveforms elicited by gambling outcome (derived from the author’s
original data) and their difference wave (DW) that is often used to measure the FRN
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4.4.4 Oddball Paradigm

The most common version of the oddball paradigm involves two kinds of stimuli
that are presented in a random series. These stimuli could be presented in either the
visual or auditory modality. One of them occurs much more often and thus is called
standard stimulus; the other one (i.e., the “oddball”) is called target stimulus, which
participants are asked to detect (may need an overt response; see Polich and Kok
1995). The probability of target varies across studies but is usually set between 0.1
and 0.2. Compared to standard stimuli, target stimuli elicit a larger N2, which is
followed by a larger P3 (Folstein and Van Petten 2008). This paradigm is widely
regarded as the most frequently used one in the history of ERP research (Picton et al.
2000). Based on the classic two-stimulus version, a three-stimulus oddball task has
been developed, which contains an additional kind of distracter stimulus (Fig. 4.4a).
The distracters also occur infrequently, but do not require participants to respond
to. This three-stimulus version aims to distinguish between two cognitive processes:
attention allocation and memory updating (see below).

P3 The P3 (Fig. 4.4b) is a large, broad, positive waveform and is one of the most
noticeable late ERP components. Sutton et al. (1965) first discovered the P3 and
reported that its peak emerged at about 300 ms following stimulus presentation.
Therefore, this component is also widely called “P300,” though its latency could
actually be much longer than 300 ms in many studies (Luck 2014). As one of the
most studied ERP components in the literature, the P3 has been associated with a
large number of cognitive functions, including attention allocation, working memory
updating, sensory discrimination, emotional and motivational processing, as well as
social evaluation. It is also sensitive to various cognitive variables such as stimulus
probability, stimulus complexity, and task difficulty (Duncan et al. 2009). For
instance, the original study of Sutton et al. (1965) found that the P3 amplitude
increased as a function of subjective degree of uncertainty. Finally, the P3 also plays
an important role in clinical research and has been conceptualized as a biomarker for

Fig. 4.4a An example of oddball paradigms. (Inspired by Polich and Criado 2006)
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externalizing psychopathology (e.g., Iacono and Mcgue 2006). In the 1980s, the
predominant interpretation of the P3 was that it indicates the updating of memory
representation for the stimulus context (Donchin and Coles 1988). Nevertheless, this
theory encountered difficulties to explain all follow-up findings as more and more
cognitive functions have been associated with the P3. To reconcile this problem,
John Polich and colleagues suggest that the P3 could be divided into two sub-
components: the first one is a frontal P3a that reflects the activity of an attentional
network responding to a novel stimulus; the second one is a parietal P3b that
generates from the comparison between the current stimulus and mental representa-
tion stored in memory (Polich 2007; Polich and Criado 2006). Supporting this
viewpoint, while the two-stimulus oddball task only elicit a typical P3, its three-
stimulus version could produce a reliable P3a from the distracter and P3b from the
target.

4.4.5 Sentence Comprehension Paradigm

There are also numerous variations within this category, aiming to explore different
topics in the field of language research. Here I mainly focus on the standard semantic
incongruence paradigm that has been designed to investigate the N400 component
(Fig. 4.5). The development of this paradigm was based on Taylor’s (1953) “cloze
probability” paradigm for measuring readability (here, cloze probability means “the
percentage of individuals who would continue a sentence fragment with that word”;
cited from Kutas and Federmeier 2011). Stimuli used in the paradigm are visual
sentences which may or may not contain unexpected or semantically incongruent
endings (Kutas and Hillyard 1984). To reduce temporal overlaps of EEG signals
associated with adjacent words, these sentences are typically presented one word at a

Fig. 4.4b Grand average waveforms elicited by oddball stimuli (derived from the author’s data) in
which a P3 component is observed
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time on the screen, with 200 ms for the duration of each word and another 300 ms ISI
between them. The most important object for ERP analysis is the context-congruent
or incongruent sentence final words, which accordingly may have a longer duration
(e.g., 500 ms; see Federmeier and Kutas 1999). Researchers also recommend
inserting a 3000–5000 ms interval between two sentences, allowing participants to
blink without contaminating the recording epoch (Duncan et al. 2009). This para-
digm has been successfully adopted to examine abnormalities of semantic
processing in clinical research (Deldin et al. 2006).

N400 First reported by Kutas and Hillyard (1980), the N400 is a negative-going
voltage deflection in the 300 and 600 ms poststimulus-onset window. This compo-
nent has a very broad scalp distribution but is largest over midline centro-parietal
sites (Kutas and Federmeier 2011). The most notable characteristic of the N400 is its
sensitivity to semantic incongruence, although semantic anomalies are not essential
for N400 elicitation. For example, participants first read an incomplete sentence,
“Ellen checkmates the opponent! She is good at . . .,” and then see its terminal word
in different conditions, “chess” or “football.” Consequently, “football” (which is
incongruent with the preceding context) would elicit a larger N400 than “chess.”
This semantic context effect is robust regardless of language form (printed, spoken,
or signed). Aside from the contextual factor, N400 amplitude is also affected by
other lexical variables such as word frequency and concreteness (Duncan et al.
2009). Although N400-like potentials could be elicited by meaningful nonlinguistic
stimuli such as line drawings, these potentials have slightly different scalp distribu-
tions compared to the verbal N400 (Duncan et al. 2009).
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Fig. 4.5 An example of sentence comprehension paradigm. (Inspired by Federmeier and Kutas
1999)
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Chapter 5
EEG Preprocessing and Denoising

Weiwei Peng

Abstract In this chapter, we first introduce physiological and non-physiological
artifacts embedded in the raw EEG signals, e.g., ocular related artifacts (physiolog-
ical) and power line interference (non-physiological). Then, we introduce the mon-
tage to describe and apply the location of scalp electrodes in the context of EEG
studies. Further, we describe several preprocessing steps that are commonly used in
the EEG preprocessing, including filtering, re-referencing, segmenting, removal of
bad channels and trials, as well as decomposition of EEG using independent
component analysis. More specifically, appropriate band-pass filtering can effec-
tively reduce superimposed artifacts from various sources which are embedded in
the EEG recordings. Re-referencing is a linear transformation of the EEG data,
through which noise in the reference electrodes could turn into noise in the scalp
electrodes. Data epochs that are time-locked to the specific events of interest should
be extracted to facilitate the investigation of task/stimulus-related changes in EEG.
Trials contaminated by artifacts, as well as bad channels that are not functioning
properly for various reasons, should be excluded from further analysis. Given that
the EEG data recorded from scalp electrodes can be considered as summations of
neural activities, and that artifacts are independent with each other, independent
component analysis could be a powerful and efficient strategy to separate artifact
from EEG signals.

Keywords Physiological artifacts · Non-physiological artifacts · Filtering ·
Re-referencing · EEG epochs · Artifact correction

While EEG recordings tend to contain noise and artifacts such as eye blinking or
movement, EEG signals measured from the scalp are not necessarily to accurately
represent signals originated from the brain. Therefore, it is very essential to apply
preprocessing and denoising to the recorded EEG data. Generally, preprocessing
steps include the transformations or reorganizations of the recorded EEG data by
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removing bad or artifact-ridden data without changing clean data (transformation)
and segmenting continuous raw signals without change of the data (reorganizations).
Notably, the application of preprocessing steps largely depends on several aspects,
including the goal of the study, the details of the experiment design, the equipment of
recording EEG raw signals, as well as the advanced analysis you plan to perform.
Here, we start the preprocessing procedures with an introduction of physiological
and non-physiological artifacts embedded in the raw EEG signals.

5.1 Artifacts in EEG

As summarized in Table 5.1, artifacts embedded in the EEG recordings could be
generally subdivided into two categories: physiological and non-physiological arti-
facts. Physiological artifacts include electrical potentials elicited by biological activ-
ities, which are largely generated from the physical part proximal to the head (e.g.,
eyes, muscles, and heart) or due to the subjects’ movements. Non-physiological
artifacts include the electrode-scalp interface, devices, and environment, which are
generated anywhere near the EEG recording system. Whereas physiological artifacts
that display characteristic electrical fields can be fairly easily identified,
non-physiological artifacts that display various morphologies can either distort or
obscure EEG activity.

5.1.1 Physiological Artifacts

Physiological artifacts generally originate from sources in the body. Some of the
most common physiological artifacts are eye blinks, eye movements, head move-
ments, heartbeats, and muscular noise (Islam et al. 2016). It is possible to detect and
identify those artifacts if other biometric data are accessible for us, e.g., electrooc-
ulogram or eye-tracking data for the detection of eye blink and movement artifacts,
electrocardiogram data for the detection of heartbeat artifacts, and accelerometer
data for the detection of head movement artifacts.

Table 5.1 Physiological and non-physiological artifacts

Physiological artifacts Non-physiological artifacts

Ocular-related artifacts due to eyes move-
ments and blinking

Power line interference artifacts (50 Hz in
Europe, and 60 Hz in the United States)

Electromyography artifacts due to frontalis
and temporalis muscle activities

Electrode artifacts due to the poor placement of
electrode on the scalp

Electrocardiographic artifacts due to
heartbeats

Malfunction of any part within EEG recording
system e.g., amplifiers

Scalp perspiration and movements Digital artifacts such as loose wiring or loosening
of circuit board connections
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Physiological artifacts of ocular-related potential, for example, eye movements
and eye blinks (as shown in Fig. 5.1a, b), are easily detected in conscious subject
during the routine EEG recordings. When the eyes move, the electric dipole between
the positively charged cornea and the negatively charged retina also moves. It thus
yields a large electrical potential, typically characterized by anterior location, bilat-
eral, and synchronized appearance (Jung et al. 2000). Ocular-related artifacts do not
destroy the brain-generated EEG signal but linearly sum on top of the brain-
generated EEG. Monitoring ocular activities, by placing electrodes above and
below the eye, can help identify potentials that are in phase with cerebral and out
of phase with extracerebral and ocular sources. There are several methods that have
been proposed to successfully attenuate ocular-related artifacts but sparing brain
activity, such as decomposition-based (Jung et al. 2000) and regression-based
techniques (Gratton et al. 1983).

Electromyography artifacts (as shown in the Fig. 5.1c) are high-frequency activ-
ities and showed to be very spiky, but they are too fast to be an epileptic discharge.
Principal sites of generating muscle artifacts are located at frontalis and temporalis
muscles (Muthukumaraswamy 2013). Frontalis muscle is mainly involved in forced
eye closure and photic stimulation. The contraction of frontalis muscle in periocular
movement may elicit sustained or individual motor unit potentials, which can be
appeared as “railroad tracks.” Temporalis muscles become active in jaw clenching,

Fig. 5.1 Examples of ocular and electromyography artifacts. Ocular artifacts such as eye move-
ments (a) and blinking (b) are represented as a large electrical potential, typically characterized by
anterior location, bilateral, and synchronized appearance. Electromyography artifacts (c) such as
muscle tension-related artifacts are high-frequency activities and showed to be very spiky
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chewing, or bruxism. The contraction of temporalis muscles may elicit bursts of fast
activities. Experimenters can instruct the subject to open the mouth, to relax the jaw
and diminish this kind of muscle artifact.

Artifacts originated from the heart are variably present during routing EEG
recordings (Nakamura and Shibasaki 1987). Referential montages would accentuate
electrocardiographic artifact, especially when using ipsilateral ear reference with the
larger intra-electrode distances. In contrast, referential linked ears montage can
reduce the electrocardiographic artifact. Overweight subjects or patients with short
stocky necks, as well as babies, may be predisposed to electrocardiogram artifacts,
because the dipole is situated closer to the recording electrodes and is better able to
transmit the current. While the electromyography artifacts “contaminate” the EEG,
electrocardiographic artifacts are essential in interpreting physiologic functions that
may occur during the recording session. Therefore, simultaneously recording the
electrocardiogram activities during routine EEG recordings is essential to enable the
recognition of the cardiac–cerebral relationship.

Scalp perspiration will also produce artifact by creating unwanted electric con-
nections between electrodes. Perspiration artifact appears as very low-frequency
(0.5 Hz) low-amplitude undulating waves (Barlow 1986). Changes in the DC
electrode potential from perspiration may result in an unstable baseline (sweat
sway) and crossing of tracings in adjacent channels. In addition, subjects’ move-
ments that cause the leads or electrodes to move can provide a large source of
“physiologic” artifact on recordings. This is especially true for the awake and
ambulatory patient or subject but is also quite notable in those who are agitated
and confused.

These physiological artifacts can be handled by avoidance, rejection, or removal.
To avoid the artifacts, experimenters often instruct subjects to suppress eye move-
ment and blinking. Nevertheless, the occurrence of these artifacts is inevitable, as
eye movements and blinks can be involuntary, especially in children and elderly
people. To remove artifacts, several preprocessing techniques have been proposed to
remove artifacts from EEG recording to improve the signal-to-noise ratio. For
epoch-based method, the whole temporal segments of EEG contaminated by arti-
facts are rejected. For independent component analysis (ICA)-based method,
artifact-related components are removed from the EEG signals. Nevertheless, in
this way, a large amount of useful cerebral information in the EEG is also discarded,
especially when the artifacts occur frequently.

5.1.2 Non-physiological Artifacts

Non-physiological artifacts generally originate from outside-world interference. One
of the most common sources of non-physiological artifacts is the electric interfer-
ence. It is the alternating mains power supply, at 60 Hz in the United States and
50 Hz in Europe. The electrical interference can be reduced by shielding cable, using
a shielded recording rooms, or moving the subject far from the source of interference
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in the room. In addition, connecting the subject to ground, and keeping all electrode
wires short, can also help to reduce the alternating current artifacts. Power line
interference can also be removed by applying a notch filter at 50 or 60 Hz, and
sometimes this kind of notch filter is pre-built in some headsets.

Another frequent cause of non-physiological artifact is electrode artifact due to
the poor placement of electrode on the scalp. When an electrode moves and the
electric double layer is disturbed, it would create a DC potential similar to
discharging a capacitor (Barlow 1986), and the characteristic electrode “pop” occurs.
“Pops” are sudden positive (or less commonly negative) discharges and usually
show an initial high-voltage very steep deflection, followed by an exponential decay
caused by the amplifier’s low-frequency filter. The best way to reduce electrode
artifact is a proper electrode application and maintenance. Electrodes should be
cleaned well and inspected regularly to look for signs of corrosion between the
electrode and conducting wire, damaged insulation, or broken lead wires. In addi-
tion, placing an additional electrode close to the electrode with suspected artifact
may also help to determine whether it causes electrode artifact.

Malfunction of any part within EEG recording system can cause artifact. Modern
amplifiers are small, low-power, and single-chip multichannel devices with solid-
state integrated circuits. Amplifier “noise” is caused by thermal agitation of electrons
in the amplifier circuits. Portable equipment is more susceptible to mechanical wear
and tear, such as vibration or jolting of machines. Loose wiring or loosening of
circuit board connections is also a common source of artifact, causing loss of signal
or intermittent failures. Digital artifacts include aliasing (inadequate sampling rate),
errors in analog to digital conversion, skew errors, multiplexing artifacts, and
blocking (Blum 1998).

The easiest way to minimize the effect of these non-physiological artifacts is to
adjust the environment (e.g., shielding the room, properly securing the electrodes).
The influence of environmental artifacts can also be somewhat reduced by using
active electrodes (electrodes that have an additional low-noise amplifier inside).

5.2 Montage

The International 10–20 System (left panel of Fig. 5.2) is an internationally
recognized method to describe and apply the location of scalp electrodes in the
context of EEG studies. This system is based on the relationship between the
location of electrodes and the underlying areas of the brain, specifically the
cerebral cortex. In the 10–20 system, the “10” and “20” refer to the fact that the
actual distances between adjacent electrodes are either 10 or 20% of the total front–
back or right–left distance of the skull (Herwig et al. 2003). This method was
developed to maintain standardization across studies, to ensure that outcomes of
clinical or research studies could be compiled, reproduced, and compared using
this scientific method.
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When recording a more detailed EEG using more electrodes, extra electrodes are
interpolated using the 10% division (right panel of Fig. 5.2), which fills in interme-
diate sites halfway between those of the existing 10–20 system. This new electrode-
naming system is more complicated, giving rise to the modified combinatorial
nomenclature, short as MCN. This MCN system uses 1, 3, 5, 7, 9 for the left
hemisphere and uses 2, 4, 6, 8, 10 for the right hemisphere, which represents 10%,
20%, 30%, 40%, 50% of the inion-to-nasion distance, respectively. Each electrode
placement site on this MCN system has a letter to represent the specific lobe or area
of the brain: frontal (F), temporal (T), parietal (P), occipital (O), and central (C).
Even when there is no “central lobe” actually, the “C” electrodes can exhibit/
represent EEG activity more typical of frontal, temporal, and some parietal–occipital
activity. Suffixal (Z) sites referring electrodes placed on the midline sagittal plane of
the skull (Fz, Cz, Pz, Oz), are present mostly for reference/measurement points.
Nevertheless, these electrodes will not necessarily reflect or amplify lateral hemi-
spheric cortical activities, as they are placed over the corpus callosum and do not
represent hemispheric laterality.

Differences in electrical potentials between these electrodes constitute channels,
and the combinations of different channels are called montages. There are two main
types of montages: the bipolar and the referential montages (Hu et al. 2018). In the
bipolar montage, channels are arranged in chains that follow an anterior-to-posterior
or a transverse arrangement. The chains imply that the second lead in the first
channel is the first lead in the second channel and so forth until the end of the
chain. In such a configuration, external or environmental noise can easily be

Fig. 5.2 The International 10–20 EEG Placement System. Left panel: The 10–20 system or
International 10–20 System is an internationally recognized method to describe and apply the
location of scalp electrodes in the context of EEG studies. The “10” and “20” refer to the fact that
the actual distances between adjacent electrodes are either 10 or 20% of the total front–back or
right–left distance of the skull. Each electrode placement site has a letter to identify the lobe or area
of the brain it is reading from. Right panel: modified combinatorial nomenclature system. When
recording a more detailed EEG using more electrodes, extra electrodes are interpolated using the
10% division, which fills in intermediate sites halfway between those of the existing 10–20 system
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canceled out, as it measures the difference in electrode potential between contiguous
electrodes, thus selectively amplifying the local potentials (Zaveri et al. 2006). In the
referential montage, each channel represents the differential electrode potential of
any given electrode to a single chosen electrode (reference electrode). In such a
configuration, it has the advantage of detecting both local (near field) and distant (far
field) potentials (Acharya et al. 2016) but is limited by the high susceptibility to the
external noises. Compared with bipolar montage, the electrode potential amplitude
of the deflection on a referential montage would take a closer representation of the
absolute electrode potential recorded by the electrode. For a displaying purpose
showing the EEG scalp maps in either 2-D or 3-D formats, or to estimate source
locations for data components, information regarding the locations of the recording
electrodes should be contained in the EEG dataset.

5.3 Filtering

Filtering is often necessary in the preprocessing pipeline, due to several reasons, e.g.,
presence of 50 Hz or 60 Hz line noise, high-frequency noises, as well as noises at
very low frequencies. Although these noises and superimposed artifacts from vari-
ous sources embedded in the EEG recordings, they can be effectively reduced by
appropriate band-pass filtering. Therefore, digital filters can be applied to the raw
EEG recordings and can significantly improve the interpretation of EEG
contaminated by artifacts. Filtering EEG signals with certain frequencies was
popular, such that either some frequencies are removed or possibly that some
frequencies are remained.

According to which frequencies are remained or removed, there are four types of
filters (as shown in Fig. 5.3): low-pass filter, high-pass filter, band-pass filter, and
band-stop filter. For the low-pass filter, signals with low frequencies below a certain
value are kept, while high frequencies greater than the certain value are removed/
attenuated. For the high-pass filter, only signal with frequencies greater than a certain
value are kept, while only those with low frequencies below the certain value are
removed/attenuated. For the band-pass filter, signals with frequencies between a
lower and upper bound are kept, while signals below the lower limit or greater than
the upper limit are removed/attenuated. For the band-stop filter, signals with fre-
quencies between a lower and upper bound are removed/attenuated, while signals
below the lower limit or greater than the upper limit are kept.

When selecting the filters applied on the EEG signals, the frequency ranges of the
artifacts embedded in the EEG recordings should be taken into consideration. For
example, high-pass filters, with limit of 0.1 Hz, are applied to the EEG signals to
remove low-frequency drifts; low-pass filters, e.g., with limit of 30 Hz, are applied to
the EEG signals to remove high-frequency noise (e.g., interference due to muscular
activities). To eliminate power line noise (50 Hz in Europe and Asia, 60 Hz in the
United States), a band-stop filter is commonly used which removes signals within a
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narrow frequency band and keeps signals within the rest of the spectrum almost
undistorted. Beyond the consideration of frequency bands of artifacts, the selection
of filters should also care about signals of which frequency range you are interested
in. For example, if you are interested in the how the stimulation modulates the alpha
signals, then a band-pass filter within alpha frequency range, such as 8–13 Hz range,
is needed. In such a way, the signals within alpha frequency band are kept, and
others outside this range are removed.

It is recommended to apply the filtering to the continuous EEG data as the first
step of preprocessing pipeline, particularly before segmenting the continuous EEG
data into epochs. Otherwise, it will introduce filtering artifacts at epoch boundaries if
filtering the segmented EEG epochs. For example, we commonly apply the high-
pass filter at 0.1 Hz to the continuous EEG data to minimize low-frequency slow
drifts, but not the segmented EEG data. If applying the high-pass filter at 0.1 Hz to
the segmented EEG data, it is done by filtering each segmented epoch separately,
which will introduce filtering artifacts, since the edge artifact may last longer than
the epochs (Cohen 2013).

Fig. 5.3 Four types of filters: low-pass, high-pass, band-pass, and band-stop filters. A low-pass
filter passes signals with a frequency lower than a selected cutoff frequency and attenuates signals
with frequencies higher than the cutoff frequency, while a high-pass filter passes signals with a
frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than
the cutoff frequency. A band-pass filter passes frequencies within a certain range and attenuates
frequencies outside that range, while a band-stop filter passes most frequencies unaltered and
attenuates those in a specific range to very low levels
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5.4 Re-referencing

In the EEG recordings, there was a reference electrode, also termed as the common
reference, e.g., one mastoid, linked mastoids, the vertex electrode, single or linked
earlobes, or the nose tip. Since EEG data can also be re-referenced offline, the
reference electrode during EEG recording is not very important. Particularly, in
the recording systems with active electrodes (e.g., BIOSEMI Active Two) that
record data without a recording reference, re-referencing offline is very necessary;
otherwise there would be left 40 dB of unnecessary noise in the data (Delorme and
Makeig 2004). Since referencing is a linear transformation, any activities present in
the reference electrode will be reflected as activity in all other scalp electrodes.
Therefore, when choosing a reference electrode, the reference electrodes should be
properly placed and should have a good signal, because noise in the reference
electrode will turn into noise in the scalp electrodes. Also note that when choosing
a reference electrode, it is important that the reference electrode is placed far away
from the locations of signals of interest; thus the reference electrode only has little
influence on the signals of interest.

Mastoids (the bone behind the ear), the bilateral electrodes placed roughly behind
the subject’s ears, are frequently used as reference electrodes, since they are rela-
tively far away from the locations of signals of interests. One of the ipsilateral
mastoids, or the average of the bilateral mastoids, can be used. Nevertheless,
referencing to one lateralized site is generally not recommended, because this will
lead to a lateralization bias in the data. The average of the two earlobes is also
commonly used. These are good choices because the reference electrodes are close
to the other electrodes but record less brain activities. Nevertheless, these are not
perfect references, because they can still measure neural activities at lateral temporal
areas. The central electrode, Cz, is frequently used as the reference electrode, if the
neural activities distant from that location are of interest and neural activities near
that location are not of interest. In addition, the reference electrode could be
theoretically placed anywhere such as the toe of the subject or a wall in the
experiment room. Nevertheless, these are poor choices since the electrical potentials
recorded from the reference electrode exhibit distinctive patterns compared with
those from scalp electrodes. As a point at infinity is far from all the possible neural
sources, Yao (2010) proposed a method to standardize a reference of scalp EEG
recordings to a point at infinity, which could be considered as a reference electrode
standardization technique (REST). It has been shown that REST is potentially
effective for the most important superficial cortical region, and the standardization
could be especially important in recovering the temporal information of EEG
recordings.

For the EEG recording system with a large number of electrodes (e.g., >100), the
electrode montage covers nearly the whole head, and an average reference is often
recommended. The assumption of average reference is: the sum of the electric field
values recorded at all scalp electrodes (sufficiently dense and evenly distributed) is
always 0, and the current passing through the base of the skull to the neck and body
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is negligible. Nevertheless, this assumption is problematic, since the amount of
electrode is not always dense and the distribution of electrodes over the head is
not always even. Therefore, using average reference only makes sense when the
EEG recording system has enough even channels so that the overall activity averages
to 0. If you have less than 32 channels, consider using a different reference instead of
average reference. Also note that the electrodes placed over nose tip or earlobe
should be not included when estimating average reference.

5.5 Extracting Data Epochs and Removing Baseline Values

To particularly investigate sensory/cognitive event-related potentials, EEG data
time-locked to the onset of specific events of interest were segmented to identify
changes of EEG activities to the onset of sensory stimulation or cognitive tasks. In
this segmentation procedure, the selection of the event onset (the time point “0”) is
important, which could be either stimulus onset or behavioral response made,
represented as stimulus-related and response-related brain responses. The dimension
of EEG data changed after the segmentation procedure (Fig. 5.4): 2-D of continuous
EEG data (electrodes�time) vs. 3-D of segmented EEG data (electrodes�time�trials).
Nevertheless, the time duration in the continuous EEG data (recording time of the
continuous EEG data) was much longer than that in the segmented EEG data (time
window of extracting EEG segments). For the experiments in which several stimuli
are presented with variable delays have multiple events that could be used as the
time ¼ 0 event, e.g., mismatch negative paradigm, it is recommended to extract the
EEG data relative the earliest event so that all events are in the epoch or directly
relative to the event of primary interest.

After extracting data epochs to specific experimental events, removing a mean
baseline value from each epoch is necessary, since the electrical potential at baseline
differs between data epochs. Baseline correction plays an important role in past and
current methodological debates in ERP research, serving as a potential alternative to
strong high-pass filtering. Nevertheless, baseline correction involves two inherent
difficulties: (1) the choice of baseline interval and (2) the prior assumption of no
systematic differences between conditions in the baseline interval.

Fig. 5.4 Illustration of segmenting continuous EEG data into EEG epochs. EEG data time-locked
to the onset of specific events of interest (t ¼ 0) were segmented to identify changes of EEG
activities to the onset of sensory stimulation or cognitive tasks
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It is definitely necessary to extract data epochs and remove baseline values, thus
for investigating stimulus/cognitive event-related potentials. Nevertheless, for the
resting-state dataset, it is not necessary to perform data epoch extraction and baseline
correction, even when sometimes the continuous EEG data were segmented into
non-overlapping segments of a few seconds (e.g., 2 s) to facilitate the subsequent
advanced analysis.

5.6 Removal and Interpolation of Bad Channels

Some of the EEG channels, especially for the high-density EEG channels, could
not accurately provide the neurophysiological information of brain activities,
when they are not properly placed on the scalp for various reasons. In this
situation, these channels could be called as “bad channels,” and it is important
to exclude these channels from further analysis. When flagging the “bad chan-
nels,” you could consider the following situations: (1) the channel is
malfunctioning for some reasons; (2) the channel is improperly placed or does
not have contact with the scalp; (3) two or more channels are bridged; and (4) the
channel gets saturated. After flagging bad channels, you can directly remove these
channels from further analysis.

Nevertheless, the dimension of EEG data matrix (channels�time�epochs) would
change if you directly remove the bad channels. When you removed the “bad
channels” for several subjects, the valid channels across subjects would be differ-
ent (1 subject will have 63 electrodes, while another subject will have 64 elec-
trodes), thus leading to inconveniencies to establish group-level EEG data. In
addition, the removal of “bad channels” would also be problematic when you
flag many “bad channels,” and the valid channels are not enough to begin with the
analysis, just because removing “bad channels” will result in loss of information.
Due to these reasons, repairing these bad channels, by interpolating the “bad
channels” based on the data from the “good channels,” is an alternative method,
instead of directly removing them. The most common interpolation of bad chan-
nels is by spherical splines (Greischar et al. 2004). It consists of the following
steps: (1) projecting the good and bad electrodes onto a unit sphere; (2) computing
a mapping matrix that maps N good channels to M bad channels; and (3) using this
mapping matrix to compute interpolated data of the bad channels. The more
channels you have, the more accurate the estimation of data on the bad channels
will be. Nevertheless, the interpolated channel is no longer independent, and
reduced the spatial resolution of the EEG, since it is a weighted sum of the activity
of other channels and does not provide unique data. In the practical EEG
preprocessing, the channels that are consistently flagged as bad channels could
be removed, while the remaining bad channels could be repaired using
interpolation method.
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5.7 Removal of Bad Epochs

EEG epochs that are greatly contaminated by artifacts (e.g., eye blinks and
movements), flagged as bad epochs, can be rejected away. For example, the EEG
epochs can be rejected, if the subject closed his or her eyes for several hundred
milliseconds or she or he may have been too tired on that trial to be focused on the
task. Electromyography bursts are mainly located within 15–40 Hz in frequency,
with relatively large amplitude and maximal electrodes around the face, neck, and
ears. Epochs with excessive electromyography bursts in the EEG recordings
should also be removed, when EEG signals at high frequencies (e.g., above
15 Hz) are of interest. Nevertheless, even you are not interested in the EEG data
above 15 Hz, it is also recommended to remove the epochs with electromyography
bursts, since electromyography bursts also indicate that the subject moved,
sneezed, coughed, or giggled during that trial, but have not been engaged in
activities of task during that trial.

The common approach to remove bad epochs is to visually inspect the data
using an interactive viewer and mark the bad segments in the data manually.
Nevertheless, there would be disagreement on whether the bad epochs should be
rejected. Although well-trained experts are very likely to agree on the annotation of
bad epochs, their judgement is subjected to fluctuations and not easy to be
repeated. Another common and simple approach involving the rejection of bad
epochs is the automatic rejection procedure, e.g., based on peak-to-peak signal
amplitude values (Delorme and Makeig 2004; Oostenveld et al. 2011; Gramfort
et al. 2014). When the peak-to-peak amplitude in the EEG data exceeds a
pre-defined threshold, the respective EEG epoch could be considered as bad trial
and removed in the following analysis. From the practitioner’s standpoint, this
approach seems quite easy to understand and simple to use. However, it can
potentially lead to a large loss of data, consequently reducing the quality of the
averaged ERP response. Another problem for automatic procedure to remove bad
epochs is that the adopted criteria could not be appropriate for all subjects (may be
appropriate for some subjects but not for others) and that the procedure could
introduce both Type I (epochs you think should be retained are rejected) and Type
II (epochs you think should be rejected are retained) errors.

Besides the removal of trials greatly contaminated by artifacts, sometimes we
want to remove EEG epoch where subjects have made error behavioral response. It
is concerned that epochs with error behaviors might influence both task perfor-
mance and relevant brain activities. In addition, we may also want to remove
epochs where subjects have made too slow (e.g., reactions times that are slower
than three standard deviations from each subject’s median reaction time) or too fast
(e.g., reaction times less than 200 ms) response, concerning that the subject was not
fully engaged in the experiment.
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5.8 Removal of EEG Artifacts Using ICA

ICA was firstly created for dealing with the cocktail party problem, upon which you
attempt to isolate a pertinent conversation from the noise of other conversations in a
cocktail party (Hyvarinen and Oja 2000). Applying the ICA to the EEG data
involves the decomposition of EEG time series data into a set of components.
More specifically, EEG data are transformed to a collection of simultaneously
recorded outputs of spatial filters applied to the whole multi-channel data, instead
of a collection of simultaneously recorded single-channel data records. Thus, ICA is
also a source separation technique that attempts to identify independent sources of
variance in the EEG data (Anemuller et al. 2003).

In the original EEG data collected at single channels, each row of the recording
data matrix represents the time course of summed in voltage differences between the
respective channel and the references channels. After ICA decomposition, each row
of the transformed data matrix represents the time course of the activity of one
independent component that is spatially filtered from the channel data. The outputs
of ICA procedure are statistically independent component (IC) waveforms, as well
as matrix that transforms EEG data to IC data, and its inverse matrix to transform IC
data back to EEG data. These outputs provide information about an IC’s temporal
and spatial properties. Concerning that ICA assumes an instantaneous relationship
(e.g., common volume conduction) and that any relationship between EEG and
EMG signals should involve propagation delays, it is recommended to only select
EEG channels for ICA decomposition.

The EEG data recorded from scalp electrodes can be considered summations of
real EEG signals and artifacts, which are independent of each other. ICA is therefore
potentially a useful methodology to separate artifacts from EEG signals (Jung et al.
2000; Vorobyov and Cichocki 2002). To removal artifacts embedded in EEG
recordings, the computed ICs are firstly classified as either artefactual or neural
related components (Zou et al. 2016). If detected and flagged as artifact-related ICs,
they can be subtracted from the recorded data, and the remaining data can be
remixed. In the artifact correction, ICA is used to separate components in order to
identify artifacts relevant with eye movements or heartbeats. These relevant ICs have
characteristic shapes (topographies, time courses, and frequency spectra) and can
often be identified automatically. That is, artifact-relevant components generally can
be identified according to the topographies, across-trial temporal distributions, and
frequency distributions of the components.

Abnormal topographies can be appeared as (1) power concentrated only in the
frontal lobe in topography (ocular artifacts); (2) discontinued topography (noise
artifacts); and (3) topography constrained within single electrode (electrode artifacts).
Abnormal across-trial temporal distributions can be appeared as (1) inconsistent
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between epochs (without obvious peaks in average waveforms); (2) periodic
waveform (power line interference); and (3) noisy pattern (similar to Gaussian
noise). In addition, the frequency of artifact relevant components is in higher-
frequency band (e.g., >30 Hz), while the frequency content of neural signals is in
lower-frequency band (e.g., 5–20 Hz). Particularly, for components relevant with
blink artifacts (as shown in Fig. 5.5), they have an anterior distribution, and their
time courses are largely flat with occasional very high-amplitude spikes indicating
artifacts of the eye muscles as they close and open.

Particularly, the application of ICA seems to be particularly useful in removing
blinks and other oculomotor artifacts (Hoffmann and Falkenstein 2008; Plochl et al.
2012). Using ICA to correct artifacts is generally considered the best, since it does
not assume orthogonal or gaussian behavior of the individual signals (Hyvarinen and
Oja 2000). In contrast, PCA (principal component analysis) assumes that all signals
are orthogonal and creates a succession of orthogonal base vectors, where each
vector will account for as much variance as possible (Bugli and Lambert 2007). As a
result, the first vector from PCA is significantly larger in magnitude than all the
subsequent vectors. When the signal to noise ratio is low, important information in
these subsequent vectors can get lost.

Fig. 5.5 Examples of components relevant with ocular artifacts. These components have typical
characteristics, including anterior distributions and time course with occasional high-amplitude
spikes indicating ocular artifacts
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5.9 Summary

We have described several preprocessings that are commonly used in the EEG
preprocessing, including filtering, re-referencing, segmenting, removal of bad chan-
nels and trials, as well as decomposition of EEG using ICA. As summarized in
Table 5.2, the preprocessing pipeline below listed the commonly used preprocessing
steps.

Admittedly, there is no universally adopted EEG preprocessing pipeline. It is
suggested that investigators can make their own choice in choosing methods to
transform or reorganize the raw data. Indeed, the application of preprocessing steps
largely depend on the goal of the study, the details of the experiment design, the
equipment of recording raw signals, as well as the advanced analysis you plan to

Table 5.2 Summary of preprocessing procedures

Process Remarks

1 Import data From. CNT file

Manual import of event and electrode information in the form
of MATLAB arrays

2 Import channel locations Load the channel location file describing channel positions

3 Remove empty channels Remove HEOG, VEOG, M1, M2

4 Re-reference data Compute common average

Or reference to a specific channel(s)

5 Filter data Low-pass filter at 30 Hz – >100 Hz

High-pass filter at 1 Hz – >0.3 Hz

6–1 Extract epochs with cor-
rect responses

Extract epochs [�3.5 s, 0 s] around “correct responses”

6–2 Extract epochs around
stimulus one

Extract epochs [�0.5 s, 1 s] around events

7 Baseline correction Baseline latency range: [�0.5 s, �0.1 s] around events, that is,
during fixation

8 Epoch rejection Reject epochs with extreme values outside +/� 40 microvolts
(higher threshold, e.g. 65/100uV)

Reject epochs with abnormal trend >50 microV/epoch or
R-squared >0.3

Reject epochs with improbable data, outside 6 SD of single
electrode or 5 SD of all electrodes

Reject epochs with abnormal distribution, kurtosis outside 5 SD
of mean kurtosis

Aim to remove only small number of epochs (<10%)

9 Artifact removal ICA on EEG epochs

Manual component removal (see if it is inconsistent across
trials and activation concentrate in frontal areas)

2 components for eye and 1 component for sine wave

Either remove as much epoch as possible or 2–4 components

5 EEG Preprocessing and Denoising 85



perform. In other words, the details of applying certain preprocessing methods
depend on what kind of the data that is being processed, how noisy the data is,
and which technique would be used in the subsequent analysis.

Below are some suggestions that might help you choose appropriate
preprocessing techniques. First, you can consider what kinds of artifacts might be
present in your data and which ones you want to remove. For example, ocular-
related artifacts such as eye movements and blinking could be considered a source of
noise in many studies, but they could also reveal important patterns which are of
interest in some studies. Second, you can consider which features you want to focus
on. If you are interested in event-related potentials, you will need to have accurate
temporal information. In contrast, you will need to have accurate spatial information
if you are interested in motor imagery classification. Third, you can consider whether
your analysis is performed online or offline. If you are interested in brain–computer
interface and preprocessing data as soon as it arrives, you might not be able to use
more computationally expensive methods.
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Chapter 6
Spectral and Time-Frequency Analysis

Zhiguo Zhang

Abstract EEG signals are typically characterized by oscillatory patterns at certain
frequency bands. Normally, the EEG data, especially spontaneous EEG data, are
analyzed in the frequency domain. The spectral analysis can transform EEG signals
from time domain to the frequency domain, which can reveal how the power of EEG
signals is distributed along frequencies. Furthermore, as EEG spectrum could
substantially vary over time, joint time-frequency analysis is often used to reveal
time-varying spectral activities of EEG. Particularly, time-frequency analysis is a
powerful method to estimate the event-related EEG spectral patterns, i.e., event-
related synchronization/desynchronization (ERS/ERD). In this chapter, I introduce
some commonly used spectral estimation methods (e.g., the periodogram, the
Welch’s method, and the multitaper method) and time-frequency analysis methods
(e.g., short-time Fourier transform and continuous wavelet transform). We also raise
some practical issues and cautionary notes when using these methods on EEG data
analysis, such as parameter tuning, visualization, and results reporting.

Keywords EEG · ERS/ERD · Fourier transform · Periodogram · Short-time Fourier
transform · Wavelet transform
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6.1 Introduction

EEG originates from synchronous neural spikes, and it is in nature comprised of
rhythmic activities in a wide spectrum of frequency (Niedermeyer and Lopes da
Silva 2005; Buzsaki 2011; Cohen 2017). Therefore, EEG, especially spontaneous
EEG, is commonly analyzed in the frequency domain, where one time-series signal
is characterized by its periodicity. More precisely, it is necessary to describe how the
signal power is distributed along frequency, which can be achieved by a wide variety
of spectral estimation methods (Cohen 2014). Further, since EEG is modulated by a
wide variety of internal states and external tasks, its spectrum is often unstable and
substantially varies over time (Sanei and Chambers 2013; Schlogl 2000; Luck
2014). Particularly, in event-related experiments, sensory stimulation or cognitive
tasks could increase or decrease EEG rhythmic activities at certain frequency bands,
and these event-related spectral changes are known as event-related synchronization/
(de)synchronization (ERS/ERD) (Pfurtscheller and Lopez da Silva 1999). The
ERS/ERD are normally represented as time-variant spectral power in a joint time-
frequency domain, which can be estimated and characterized by using a set of time-
frequency analysis (TFA) methods (Roach and Mathalon 2008).

In the following, we will first present some basic concepts about frequency and
spectrum. Then, we will briefly introduce the Fourier transform, which is the most
fundamental tool for spectral estimation, and some other commonly used and well-
established spectral estimation methods, such as the periodogram and the Welch’s
method. Next, the current mainstream TFA methods, including the short-time
Fourier transform (STFT) and continuous wavelet transform (CWT), are introduced.
Finally, we discuss how to estimate ERS/ERD of event-related EEG by using TFA
and other relevant methods.

6.2 Spectral Estimation

6.2.1 Basic Concepts

Frequency is a fundamental and important parameter to describe the number of
cycles of an oscillatory and vibratory waveform per unit time (Kay 1988; Stoica
and Moses 2005). The unit of frequency is hertz (Hz), which means one cycle per
second. A time-series signal, such as continuous EEG recording at one channel,
can be represented and characterized either in the time domain as the change of
signal amplitude (or other quantity) with respect to time or in the frequency domain
as the change of signal power (or other quantity) with respect to frequency.
Spectral estimation can transform a signal from time domain to frequency domain
and can provide a description of the signal’s power or energy distribution along
frequency (Kay 1988; Stoica and Moses 2005). Spectral estimation is popularly
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used in a very wide range of signals that exhibit oscillatory and rhythmic patterns,
and it is of particular importance in the analysis of EEG.

Mathematically, spectral estimation is defined as the estimation of the spectral
density of a random process from a sequence of time samples of the process (Kay
1988). The purpose of spectrum estimation is to detect periodicities in the data, by
observing peaks at the frequencies corresponding to these periodicities. Figure 6.1
shows a simulated signal consisting of three sinusoids, whose frequencies are,
respectively, 2 Hz, 8 Hz, and 20 Hz and amplitudes are, respectively, 1, 0.8, and
0.5. The time-series signal in Fig. 6.1a clearly shows rhythms and periodicity, but the
rhythms and periodicity can hardly be directly quantified from the time-domain
representation. By using the Fourier transform, the signal is represented in the
frequency domain (Fig. 6.1b), so the frequency and amplitude of these three
sinusoids can be well determined.

In the context of EEG analysis, spectral estimation is normally applied on
continuous EEG recordings in a time period to calculate the power of several
certain rhythms: theta (1–4 Hz), delta (4–8 Hz), alpha (8–12 Hz), beta (12–20 Hz),
gamma (>20 Hz).

Fig. 6.1 Time-domain representation and frequency-domain representation of a simulated signal.
(a) The simulated signal consists of three sinusoids, whose frequencies are, respectively, 2 Hz, 8 Hz,
and 20 Hz and amplitudes are, respectively, 1, 0.8, and 0.5. (b) The signal’s spectrum (calculated
using the Fourier transform; see Sect. 6.2.2 for details) exhibits three peaks at 2 Hz, 8 Hz, and 10 Hz

6 Spectral and Time-Frequency Analysis 91



The foundation of spectral estimation is the Fourier transform. The Fourier
transform represents and characterizes a time-series signal as the summation of a
series of sines and cosines. The details of Fourier transform are omitted here, and
these details can be easily found in textbooks of signal processing, such as (Oppen-
heim et al. 1996; Mitra 2000; Proakis and Manolakis 2006). The Fourier transform
for a continuous signal x(t) is called continuous-time Fourier transform (CTFT), and
it is calculated as

F fð Þ ¼
Z 1

�1
x tð Þe�j2πf τdτ, ð6:1Þ

where f is the frequency with a unit of Hz. The frequency range of spectrum is from
0 to the half of the sampling rate (which is known as the Nyquist frequency). For
example, the EEG signal in Fig. 6.2 has a sampling rate of 160 Hz; then the highest
frequency that can be detected from the signal is 80 Hz.

Because real-world EEG obtained by any device is not continuous in time but
sampled by analog-to-digital convertors at discrete time points, discrete-time Fourier
transform (DTFT) is actually used instead of CTFT to perform the Fourier transform
on EEG. DTFT of a discrete-time signal x[n], n ¼ 1, 2, � � �, N is calculated as

F fð Þ ¼
XN

n¼1
x n½ �e�j2πfn: ð6:2Þ

Further, in actual computer computation, both the time and frequency domains
must be discretized, and the number of sample points, N, must be a finite number.
Supposing the sampling rate is Fs, the frequency domain is discretized as f ¼ kFs/
N, k ¼ 0, 1, � � �, N � 1. Then, we have discrete Fourier transform (DFT) as

F k½ � ¼
XN�1

n¼0
x n½ �e�j2πkn=N : ð6:3Þ

For efficient computation, DFT is generally calculated using the celebrated fast
Fourier transform (FFT) algorithm. In FFT, the number of sample points N is usually
chosen as a power of 2, which can be achieved by zero padding (i.e., to add a number
of zeros at the end of the original time-series data).

Based on the Fourier transform, we can calculate the power spectral density
(PSD), which describes how the power of a random signal is distributed over
different frequencies. PSD is sometimes simplified as “spectral density” or “power
spectrum,” and its unit is V2/Hz or dB (i.e., 10log10(V

2/Hz)).
Spectral estimation is an extensively studied topic in the field of signal

processing, and there are numerous spectral estimation methods developed for
different types of signals and for different analysis purposes. In the following, we
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will introduce some widely used spectral estimation methods of EEG, including
(1) the periodogram, (2) the Welch’s method, (3) the multitaper method, and
(4) the autoregressive model-based spectral estimation.

Fig. 6.2 Time-domain representation and frequency-domain representation (the spectrum) of an
EEG signal with eyes closed. (a) The EEG signal is recorded at Oz and has a duration of 3 s and a
sampling rate of 160 Hz. By using bandpass filtering with difference cutoff frequencies, the signal
can be decomposed into five rhythms. (b) The spectrum of the EEG signal is calculated using the
Welch’s method (see Sect. 6.2.3 for details), and it shows how the signal power is distributed along
frequency. It can be seen clearly the alpha rhythm has the highest power among five rhythms
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6.2.2 Periodogram

Periodogram is a simple, yet popular, spectral estimation method. The periodogram
of a discrete-time EEG signal x[n], n ¼ 1, 2, � � �, N, with a sampling rate of Fs is
calculated as

P fð Þ ¼ 1
NFs

XN

n¼1
x n½ �w n½ �e�j2πfn=Fs

��� ���2, ð6:4Þ

where w[n] is a window function. This window function is used to assign different
weights to samples, which are normally set to be “1” for all samples. It can be seen
from Eqs. (6.3) and (6.4) that periodogram is simply the squared magnitude of the
Fourier transform of the signal (multiplying by a constant). The calculation of the
periodogram can be executed in MATLAB using the script “periodogram.m”.
Figure 6.3 shows the periodogram of an EEG signal, and the results can be obtained
by running the supplementary MATLAB script – “demo_periodogram.m” attached
in this book. Note that the periodogram in Fig. 6.3 is shown in two different scales:
the linear scale and the logarithmic scale. The linear scale can highlight the predom-
inant spectral peaks (such as the peak around 10 Hz in Fig. 6.3a) but will make other
spectral components (especially in the high-frequency band) undistinguishable. On
the other hand, by using a logarithmic scale, spectral components of different
frequency bands are more visually comparable, but the spectral peaks cannot stand
out. Because it is more often to examine EEG spectral power over a wide range of
frequency, it is more common to show the periodogram (and spectrum estimated by
other methods) in a logarithmic scale.

It should also be noted that, as EEG spectrum has a well-known “1/f” character-
istic (i.e., the power decreases rapidly as a function of the frequency f ), the

Fig. 6.3 Spectrum of the eyes-closed EEG signal (as shown in Fig. 6.2) estimated using the
periodogram (with a rectangular window). (a) Periodogram shown in a linear scale. (b)
Periodogram shown in a logarithmic scale
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components at very low frequencies (e.g., <1 Hz) often dominate the spectrum. It is
necessary to perform a detrending operation prior to spectral estimation. Detrending
means to move a trend (usually a linear trend) from the signal, and it can be easily
realized by the MATLAB function “detrend.m”.

We can also see from Fig. 6.3 that the periodogram shows very high variance
across frequency. Mathematically, the variance of the periodogram is the square of
the periodogram, which is a constant independent of the number of samples N. It
means that we cannot decrease the variance by using more data samples. As a result,
the periodogram often exhibits very high variability, and spectral peaks may be
difficult to be clearly observed and precisely located. For some EEG applications
where a smooth representation of spectrum is needed, the periodogram may not be
suitable.

6.2.3 The Welch’s Method

To address the periodogram’s problem of high variability, a number of smoothed
versions of periodogram have been proposed, and these include smoothed
periodogram (also known as the Daniell’s method), averaged periodogram (also
known as the Bartlett’s method), and the Welch’s method. Among these methods,
the Welch’s method is most popularly used in EEG analysis.

The Welch’s method first divides the signal of N samples into K data segments of
M samples, overlapping by D samples. If D ¼M/2, the overlap is 50%; if D ¼ 0, the
overlap is 0%. The overlapping segments are then windowed (i.e., multiplied by a
symmetric bell-shaped window). Next, we can compute the DFT and get the
periodogram of each windowed data segment. Then, it calculates the average of

Fig. 6.4 Spectrum of the eyes-closed EEG signal (as shown in Fig. 6.2) estimated using the
Welch’s method with different parameters. (a) Comparison between the Welch’s method and the
periodogram. (b) Comparison between the Welch’s method with different parameters of the
window length and overlapping length
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periodograms of all these data segments as the final spectral estimate. The Welch’s
method can lead to a reduction in the variance of spectral estimate as 1/K.

The calculation of the Welch’s method can be executed in MATLAB using the
script “pwelch.m”. Figure 6.4 shows the spectral density of an EEG signal estimated
using the Welch’s method, and the results can be obtained by running the supple-
mentary MATLAB script “demo_welch.m” attached in this book.

In Fig. 6.4b, different parameters, the length of the data segments M and the
length of overlapping D, lead to different spectral estimation results, because these
two parameters jointly determine the number of data segments K and subsequently
the variance of spectral estimate (note that the variance of spectral estimate is
inversely proportional to K ). First, the data segments should be long enough to
provide necessary frequency resolution (the frequency interval is Fs/M ); but a too
large M implies too few segments, which cannot significantly decrease the variance
of spectral estimation. Second, the length of overlapping D also determines
K (a large D leads to a large L and vice versa) and subsequently the variance of
the spectral estimate.

In addition, the window function used in the Welch’s method can also influence
the spectral estimates. A rectangular window has the best ability to resolve adjacent
sinusoids (i.e., high resolution), but its wide spreading may mask important details at
even lower levels (i.e., low dynamic range). Non-rectangular windows (such as the
Hamming window, the Hann window, etc.) can redistribute leakage to places, where
it does the least harm (high dynamic range) at the expense of increasing the leakage
in the vicinity of the original component (low resolution). However, the window
function will not largely influence the spectral estimation results in general. This
issue is seldom discussed in the field of EEG analysis.

6.2.4 The Multitaper Method

The Welch’s method decreases the variability of the periodogram by averaging the
periodograms of windowed data segments. In the Welch’s method, the window
function is fixed, but the data segments are different. The multitaper method shares
the similar idea of decreasing the variability by averaging periodograms of win-
dowed data as the Welch’s method, but in the multitaper method, the window
functions are different, but the data segments are the same (all the data samples).
Actually, the multitaper method averages modified periodograms obtained using a
family of mutually orthogonal tapers, which are known as discrete prolate spheroidal
sequences (Babadi and Brown 2014). In addition to mutual orthogonality, the tapers
also have optimal time-frequency concentration properties. Each taper is multiplied
by the data to form the tapered data, and then the periodogram of the tapered data is
estimated. Subsequently, the periodograms of tapered data by using all tapers are
averaged to produce spectral estimates with smaller variability.

The multitaper method can be executed inMATLAB using the script “pmtm.m”. In
“pmtm.m”, we need to specify a time-half bandwidth product, nw, which determines
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the frequency resolution of the multitaper estimate. Because the number of tapers used
in “pmtm.m” is (2�nw-1) and the estimate variance is inversely proportional to the
number of tapers, a large nw will lead to a smoother multitaper spectral estimate and
vice versa. Figure 6.5 shows the spectral density of an EEG signal estimated using the
multitaper method, and the results can be obtained by running the supplementary
MATLAB script “demo_multitaper.m” attached in this book.

6.2.5 Autoregressive Method

The periodogram, the Welch’s method, and the multitaper method all belong to a
general class of non-parametric spectral estimation methods. Non-parametric
methods estimate the spectrum purely from observed data, without assuming any
particular model for the data. Unlike data-driven non-parametric methods, another
class of methods is known as parametric spectral estimation, which first describes the
signal under study using a specific model. Then the model parameters can be
estimated from data, and finally the signal’s spectrum can be calculated from the
estimated model parameters. The most common model used for spectral estimation
is the autoregressive (AR) model. An AR model of order P, which is denoted as AR
(P), is written as

x n½ � ¼
XP

p¼1
apx n� p½ � þ e n½ �, ð6:5Þ

where ap, p ¼ 1, 2, � � �, P, are AR coefficients and e[n] is a random noise.

Fig. 6.5 Spectrum of the eyes-closed EEG signal (as shown in Fig. 6.2) estimated using the
multitaper method with different parameters. (a) Comparison between the multitaper method and
the periodogram. (b) Comparison between the multitaper method with different parameters of the
number of tapers
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The AR coefficients can be calculated from data samples using several methods,
for example, the Yule-Walker method, the Burg’s method, and the covariance
method. For simplicity, we skip the detailed derivation of the estimation of the AR
coefficients. Suppose the AR coefficients have been estimated, then the spectrum of
the signal x[n] can be calculated from these AR coefficients as

P fð Þ ¼ σ2

1þPP
p¼1 ape

�j2πfp=Fs
��� ���2

, ð6:6Þ

where σ2 is the variance of the white noise e[n] and can also be estimated with
abovementioned method, such as the Yule-Walker method.

AR spectral estimation using the Yule-Walker method can be executed in
MATLAB using the script “pyulear.m”. Figure 6.6 shows the spectral density of
an EEG signal estimated based on the AR model and using the Yule-Walker method,
and the results can be obtained by running the supplementary MATLAB script
“demo_yulear.m” attached in this book.

Figure 6.6 also shows that different model orders greatly influence the estimation.
A key problem in AR spectral estimation is to select the model order P. The higher
the model order is, the less variance remains unaccounted. However, an excessive
number of model parameters increases the statistical variability of their estimates. In
another word, if P is chosen too large, spurious peaks in the spectral estimates will
appear; if P is too small, the resolution is too low (not sufficient to resolve two
adjacent sinusoids). In the field of signal processing, a rule of thumb is that the order
is twice the number of sinusoids in the signal if the signal-to-noise ratio (SNR) is
very high, and the optimal order decreases with the SNR. There are also some criteria
for model order selection in AR spectrum. These include:

Fig. 6.6 Spectrum of the eyes-closed EEG signal (as shown in Fig. 6.2) estimated using the AR
model (with different model orders) and the Yule-Walker method. (a) Comparison between the
AR-based method and the periodogram. (b) Comparison between the AR model-based spectra with
different model orders
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• Akaike information criterion (AIC):

AIC ¼ N ln σ2
� �þ 2P ð6:7aÞ

• Bayesian information criterion (BIC):

AIC ¼ N ln σ2
� �þ P ln Nð Þ ð6:7bÞ

• Final prediction error (FPE):

FPE ¼ σ2 N þ Pþ 1ð Þ= N � P� 1ð Þ ð6:7cÞ

In practice, we could also determine the model order by getting guidance from
literature or trying out many model orders.

6.2.6 Comparison of Spectral Estimation Methods

Different spectral estimation methods have their unique properties and are suitable
for different types of EEG signals and different research purposes. We first discuss
the advantages and disadvantages of non-parametric methods and parametric
methods, respectively. Non-parametric methods are based on data solely and do
not require any priori definition of the model and its order. Hence, non-parametric
methods are much simpler than parametric methods from a methodological and
computational point of view. In contrast, as parametric methods are more statistically
consistent, even on short segments, they can achieve reliable calculation of (phys-
iologically interpretable) spectral parameters. Parametric methods do not need
windowing and, thus, have no spectral leakage. Also, the frequency resolution of
parametric methods is independent of number of data.

In EEG processing, non-parametric methods are more widely used, because the
advantages of non-parametric methods match the characteristics of EEG signals.
First, if the spectra are smooth, the non-parametric methods are adequate and more
reasonable. Second, when additive noise is large, non-parametric methods are more
accurate, because parametric methods are very sensitive to high noise levels. Third,
if the length of data is long, non-parametric methods are sufficient and more
reasonable. Because EEG signals typically have wide and smooth spectra, contain
large amount of noise, and are sufficiently long (thousands and more samples),
non-parametric methods are more suitable for EEG analyses. Of course, if model
order is correctly specified, AR model-based spectrum can also achieve satisfactory
results. Figure 6.7 shows the comparisons between some non-parametric and para-
metric methods on the eye-closed EEG. It can be seen clearly that, if an appropriate
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model order is selected for the AR model (in this case, P ¼ 20), AR model-based
spectrum estimation is very similar to the estimate of the Welch’s method.

Last but not the least, it is strongly advised to report parameters and settings (such
as the number of FFT points, zero padding, windowing parameters, etc.) used in
spectral estimation methods when reporting related results, because these parameters
could largely influence the results (Pernet et al. 2018).

6.2.7 Extraction of Spectral Features

After an EEG signal’s spectrum is estimated, it is still necessary to extract mean-
ingful features from the spectral estimate. The most common EEG spectral features
are band-limited power: spectral power within a certain frequency band. The fre-
quency limits of a frequency band are determined either by conventional definition
(i.e., the frequency bands of the delta, theta, alpha, beta, gamma rhythms) or by
statistical analyses that can detect the most important frequency (e.g., at which the
EEG power of two groups/conditions are different, as discussed in Chap. 17). Band-
limited power can be calculated as the average or the summation of power values at
frequency points within the specific frequency band of interest or concern. To
eliminate the difference between individuals, relative power (the ratio between
band-limited power and the total power in the whole frequency range) is often

Fig. 6.7 Comparisons of spectral estimates of the eyes-closed EEG signal (as shown in Fig. 6.2)
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used. For example, alpha power (the band-limited power of the alpha rhythm from
8 Hz to 12 Hz) can be calculated as the spectral estimate averaged from all frequency
points within the range 8–12 Hz, and relative alpha power is the ratio between the
alpha power and the total power of the EEG signal.

Another type of important spectral features are the location, magnitude, and
bandwidth of spectral peaks. For example, in the applications of brain-computer
interfaces based on steady-state visual evoked potentials (SSVEP), it is necessary to
locate the spectral peaks and extract the magnitudes of these peaks. Another example
is to identify different alpha peaks of different individuals, for the inter-individual
differences in alpha peaks could be indicative of an individual’s traits or states.
Lastly, sometimes we can also treat the spectrum as a random process and compute
its statistics, such as the mean, variance, and entropy as features.

6.3 Time-Frequency Analysis

6.3.1 Basic Concepts

In spectral analysis, we have a basic assumption that the spectrum of an EEG signal
is fixed and does not change over time. Apparently, this assumption oversimplifies
the non-stationary characteristics and dynamic behaviors of EEG. EEG signals are
actually highly non-stationary, which means that its statistical properties (e.g., the
spectral density) substantially vary with time. Although time-varying characteristics
of EEG spectrum could be attributed to noise or random disturbances, they could be
modulated by experimental conditions or mental states and thus convey important
information. For example, EEG spectrum will change considerably depending on
various physiological and psychological states, e.g., eyes-open/closed (Barry et al.
2009), sleep (Fell et al. 1996), meditation (Cahn and Polich 2006). However, for
non-stationary EEG, spectral estimation is unable to identify its time-variant spectral
components and is unable to provide simultaneous time and frequency localization.

Figure 6.8 shows an EEG signal during two conditions (0–2 s, eyes-open; 2–4 s,
eyes-closed) and its spectra in these two periods. Clearly, the signal in two periods
has largely different spectra (black solid lines in Fig. 6.8b), particularly in the alpha
band. But this difference cannot be observed from the spectrum of the whole period
of signal (red dashed lines in Fig. 6.8b), because the spectrum does not contain any
time information. To see how the spectrum changes with time, time-frequency
analysis can provide a joint time-frequency distribution (TFD) of the signal power
(i.e., the distribution pattern of power at each time point as well as at each
frequency) (Boashash 2015). For example, in the TFD of Fig. 8C, the spectral
power is strong around 10 Hz (frequency information) and in the range of 2–4 s
(time information), and such joint time-frequency information indicates the exper-
imental condition of eyes closed.

To reveal time-varying spectrum of non-stationary EEG signals, time-frequency
analysis (TFA) techniques are needed. TFA comprises a batch of methods that
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study a signal in both the time and frequency domains simultaneously. In general,
there are two types of TFA techniques: time-frequency power distributions and
time-frequency signal decomposition. Time-frequency power distributions can
represent the amount of signal power assigned to a given time-frequency point,
and some popular methods include the short-time Fourier transform (STFT)
(Delorme and Makeig 2004) and the continuous wavelet transform (CWT)
(Delorme and Makeig 2004; Mouraux and Iannetti 2008). Time-frequency signal
decomposition methods decompose a signal into a set of additive components
according to their distinct time-frequency properties, and some typical methods
include the discrete wavelet transform (DWT) (Adeli et al. 2003), matching pursuit

Fig. 6.8 An EEG signal recorded during two conditions: eyes open (0–2 s) and eyes closed (2–4 s).
(a) The EEG waveform was recorded at Oz and with a sampling rate of 1000 Hz. (b) The spectrum
of the whole period of EEG (0–4 s, shown as red dashed lines) and the spectra of the EEG signal
during the eye-open (0–2 s) and eye-closed (2–4 s) conditions (shown as black solid lines), all of
which are estimated using the Welch’s method. It can be seen that the spectral estimates are largely
different between two conditions, especially in the alpha band. (c) The TFD of the EEG signal,
estimated using short-time Fourier transform (see Sect. 6.3.2 for details). The onset of alpha wave
can be clearly observed around 2 s, indicating the start time of the eyes-closed condition
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(Durka 2007), and empirical mode decomposition (Sweeneyreed and Nasuto
2007). In the following, I mainly introduce two popular time-frequency power
distributions methods for EEG: STFT and CWT.

6.3.2 Short-Time Fourier Transform (STFT)

STFT is a simple and common method for TFA of EEG, and it is based on a general
sliding-window approach. The sliding-window approach assumes the non-stationary
signal can be sliced into a number of short data segments, where the assumption of
stationarity holds. In another word, although the signal has time-varying spectra, the
spectrum of any one short data segment is fixed. Based on the idea of sliding
window, conventional spectral estimation methods (such as the periodogram, the
Welch’s method, the AR method) can be performed on each of these segments.
Spectral estimates of all windows can then be concatenated to form a spectral power
distribution in the joint time-frequency domain. Figure 6.9 shows the steps of the
sliding-window approach. These steps are also listed below:

1. Select a window function of finite length.
2. Place the window on top of the signal at t ¼ 0.
3. Segment the signal using this window.
4. Compute the spectrum of the windowed data segment.
5. Incrementally slide the window along time.
6. Go to step 3, until the window reaches the end of the signal.

The most important properties of all TFA methods are their time resolution and
frequency resolution. Time resolution and frequency resolution of a TFD are its
capability to discriminate two signal components that are closely adjacent in the time
domain or in the frequency domain. In STFT (and all other sliding-window
approaches), there is a tradeoff between time-resolution and frequency resolution,
which is known as the uncertainty principle of TFA. The uncertain principle tells us
that one cannot know the exact time-frequency representation of a signal: time
resolution and frequency resolution cannot be made arbitrarily small (either we
resolve in frequency or in time, but not both). In another word, we cannot precisely
know at what time instance a frequency component is located, and we can only know
what interval of frequency are present in which time intervals.

Figure 6.10 shows the TFDs of an EEG signal by using STFT with different
window sizes, and the results can be obtained by running the supplementary
MATLAB script “demo_stft.m” attached in this book. We can see from Fig. 6.10
that different window sizes lead to different time-frequency resolution. A shorter
window has better time resolution, so that the VEP component can be clearly
observed and localized in time (around 150 ms) in Fig. 6.10b, where a window of
200 ms is used. But a shorter window also leads to poor frequency resolution, so the
VEP component were dispersed in the frequency domain (from 0 to 15 Hz) and,
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more seriously, the P300 (which has a low frequency around 2-3 Hz) cannot be
observed in Fig. 6.10b. On the other hand, a longer window achieves good frequency
resolution at the expense of poor time resolution. In Fig. 6.10d, where a window of
800 ms is used, the P300 component is very clear-cut in the time range of
300–600 ms and around 2–3 Hz. But the VEP is not clearly shown in Fig. 6.10d
because the time resolution is so poor that some of the VEP power is leaked into the
pre-stimulus range. In summary, window selection is the fundamental problem with

Fig. 6.9 Illustration of the general idea of the sliding-window approach (taking STFT for exam-
ple). (a) The simulated signal has one linearly increased frequency. (b) Choose a symmetric, bell-
shaped, and finite-length window, and slide it along the time axis. (c) At each time point (five points
t1, . . ., t5 are shown here as examples), multiply the window function with the signal to generate a
windowed data segment. (d) At each time point, use FFT (or other spectral estimation methods) to
estimate the spectrum of the windowed data segment. E: The time-dependent spectra of all time
points describe how the signal’s spectral power changes with time. F: The time-dependent spectra
are normally represented as a time-frequency data matrix, and the power of each point of the matrix
is color coded. The data matrix is also known as time-frequency distribution (TFD), which
characterizes how the signal power is distributed in the joint time-frequency domain
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STFT (and all sliding-window approaches). Table 6.1 summarizes the window sizes
in different domains and their influence on the time resolution and frequency
resolution of TFD.

6.3.3 Continuous Wavelet Transform (CWT)

The fundamental limitation of STFT is that the fixed-length window leads to fixed
time-frequency resolution in the whole time-frequency domain. But, as discussed in
Table 6.1, the window size should be varied in the time-frequency domain to
optimize the time-frequency resolution for diversified spectral components in a

Fig. 6.10 STFTs with different window sizes of a visual evoked potential (VEP) signal. (a) The
VEP signal was recorded with a sampling rate of 250 Hz at O1 in a visual oddball experiment. The
VEP waveform shown here is the average of 30 trials. The original data is downloaded from https://
vis.caltech.edu/~rodri/data/cg_o1t.asc. (b) STFT with a window size of 0.2 s. (c) STFT with a
window size of 0.4 s. (d) STFT with a window size of 0.8 s

Table 6.1 The influence of window size on the resolution of STFT

Window size in
time domain

Window size in
frequency domain

Time
resolution

Frequency
resolution Suitable for

Long Short Low High Slow-varying spectral
components

Short Long High Low Transients, spikes, and
discontinuities
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signal. In practice, it is often the case that EEG signals are composed of short
duration events of high-frequency and low-frequency events of long duration.

One useful strategy of window selection is to use an adaptive and variable time
window that is short at high frequencies and long at low frequencies. Actually, it is
the window selection strategy of another very popular time-frequency analysis
method: continuous wavelet transform (CWT). CWT is able to address the problem
of fixed time-frequency resolution in STFT according to the time-frequency charac-
teristics of the signal and actual needs. More precisely, CWT uses long windows in
the low-frequency range and short windows in the high-frequency range.

EEG signals often have components that range from spikes (typically high-
frequency components) to slow waves. We are typically interested in when a spike
occurs and don’t care much what its exact frequency contents are, which can be well
represented by CWT with small windows that have good time resolution. On the
other hand, we usually don’t need to locate the exact interval of a slow-wave
component, and a good estimate of its frequency content is of much more impor-
tance, which can be obtained using CWT with large windows. Therefore, by using
adaptive windows in different frequency ranges, CWT is suitable for analyzing time-
frequency components of EEG signals.

The adaptive windows and flexible time-frequency resolution of CWT are
achieved by using wavelets: basis functions that can both be localized in frequency
(or “scale”) and in time. A wavelet is a square-integrable function, which normally
has an amplitude that begins at zero, increases, and then decreases back to zero.
Some commonly used wavelets include Haar wavelets, Morlet wavelets, Daubechies
wavelets, etc. For example, the Morlet wavelet is defined as (Cohen 2018).

ψ tð Þ ¼ e�t2=2e2jπft: ð6:8Þ

where ω is the central frequency of the Morlet wavelet. From (6.8) we can see that
the Morlet wavelet is actually a sinusoid e2jπft weighted by a Gaussian kernel e�t2=2.
Note that the definition of the Morlet wavelet may be slightly different in different
books, which may take some scaling and shift parameters into consideration.

Given a “mother” wavelet as ψ(t), we can make a basis to represent a signal by
using scaled and shifted versions of ψ(t), ψ 1

a t � τð Þ� �
, where α is a factor controlling

the scaling or dilation and τ is a factor controlling the translation of position of the
wavelet in the time domain. As the scale factor, α, expands the analyzed function in
time, it thus allows for examination of the signal over a wide interval. Scale is
inversely proportional to frequency: α ¼ f0/f, where f0 is the center frequency (mean
of the lower cutoff frequency and the upper cutoff frequency) of the mother wavelet
ψ(t). A large scale will yield a smaller window in the frequency domain and better
frequency resolution and vice versa. Scales can be arbitrarily set in CWT, but they
normally are set to make frequency bins uniformly spaced. Figure 6.11 shows the
scaling and shifting of a Morlet wavelet basis.

An EEG signal’s CWT is calculated as the convolution of the signal with the
wavelet basis function:
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X t; αð Þ ¼ CWT x tð Þf g ¼
Z 1

�1

1ffiffiffi
α

p x τð Þψ� 1
α
τ � tð Þ

� �
dτ: ð6:9Þ

The squared magnitude of |X(t, α)|2 is called the scalogram.
In CWT, the frequency resolution increases proportionally with the scale, while

the time resolution decreases proportionally. Though we have not gained anything
with respect to “total uncertainty” through CWT, we are still able to tune the separate
time and frequency uncertainties according to our interests or the characteristics of
the signal. Notably, CWT also has limitations in its time-frequency resolution.
Considering that CWT has a poor time resolution for low-frequency components
and a poor frequency resolution for high-frequency components, it is not suitable for
identifying short-duration but low-frequency components, and long-duration but
high-frequency components. In addition, the parameters of wavelets determine the
time-frequency resolution of CWT and these parameters should also be carefully
tuned for a better time-frequency representation.

Figure 6.12 shows the TFDs of the VEP signal (as shown in Fig. 6.10) estimated
using Morlet CWT. The results can be obtained by running the supplementary
MATLAB script “demo_mwt.m” attached in this book. In Fig. 6.11, we can see
both the VEP and the P300 components. In the low-frequency range (<5 Hz), CWT
uses a long window so that the P300 component can be revealed in the range of
300–600 ms and around 1–3 Hz. For VEP, which is in a relatively higher frequency
band (5–10 Hz), a shorter window is used to better identify short-duration VEP

Fig. 6.11 Scaling and
shifting of a Morlet wavelet
basis
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components. As mentioned earlier, different parameters of CWT (ω and σ in Morlet
wavelet) will also influence the time-frequency resolution of TFD. Interested readers
could set different parameters in “demo_mwt.m” to examine how these parameters
change the time-frequency resolution of the TFDs.

6.3.4 Other Commonly Used TFA Methods

6.3.4.1 Time-Varying AR Model

The AR model is often used to provide a parametric spectral estimation of EEG. In
the model of (5), the AR coefficients are fixed and do not change with time. As a
consequence, the estimated spectrum is also unchanged. But, actually, because of the
dynamic behavior of EEG, the AR coefficients should also vary with respect to time,
resulting in a time-varying AR (TVAR) model:

x n½ � ¼
XP

p¼1
ap n½ �x n� p½ � þ e n½ �, ð6:10Þ

where ap[n], p ¼ 1, 2, � � �, P are time-varying AR coefficients. To estimate ap[n], a
number of adaptive filtering and Kalman filtering methods are available (Aboy et al.
2005; Arnold et al. 1998; Kaipio and Karjalainen 2002; Tarvainen et al. 2004; Khan
and Dutt 2007). These methods can estimate the TVAR coefficients at each time
instant in a recursive manner, which means ap[n] is estimated from ap[n � 1]. Once
ap[n] is estimated, the time-varying AR spectrum can be calculated as

Fig. 6.12 CWT of visual evoked potentials (as shown in Fig. 6.10). (a) Scaleogram estimated
using the Morlet wavelet with ω ¼ 0.5, σ ¼ 0.5, which are, respectively, the central frequency and
the spread of the mother wavelet. (b) The frequency-dependent wavelet bases (only the real parts of
the wavelet functions are shown as black solid lines) and the corresponding window functions (blue
dashed lines)

108 Z. Zhang



P t; fð Þ ¼ σ2 tð Þ
1þPP

p¼1 ap tð Þe�j2πfp=Fs
��� ���2

, ð6:11Þ

where Fs is the sampling rate and σ2(t) is the instantaneous variance of e(n).
The sliding-window approach can also be used to estimate the TVAR model.

Compared with the sliding-window approach, adaptive filters have a lower compu-
tational complexity and are suitable for online processing. But adaptive filters have a
lag in estimation because they only make use of past samples. In the TVAR-based
TFA, the frequency resolution is mainly controlled by the model order P (which is
the same as the case in the AR model-based spectrum). If P is too large, spurious
peaks will appear; if P is too small, adjacent sinusoids cannot be resolved. The order
P also has an influence on the time resolution, because P implies the number of past
samples that contribute to the current sample. A larger P decreases the time resolu-
tion and vice versa.

6.3.4.2 Time-Frequency Decomposition Methods

Discrete wavelet transform (DWT) (Mallat 2008) is extensively used to decompose a
signal into a series of additive components with different scales, and it will not
produce a joint representation of signal power in the time-frequency domain. Unlike
CWT, which can contain an infinite number of scales, DWT performs wavelet
transform at finite discrete scales, and it leads to a more efficient decomposition of
the signal. Normally, the scale is changed in powers of 2. Aside from DWT,
matching pursuit (MP) and empirical mode decomposition (EMD) are also time-
frequency decomposition methods that have been used for EEG. MP is an iterative
algorithm that in each step finds an element from a set of functions (dictionary) that
best matches the current residue of the signal decomposition (Durka 2007). EMD is a
procedure for decomposition of a signal into a set of intrinsic mode functions, which
are functions with the same number of extrema and zero crossings, with its enve-
lopes being symmetric with respect to zero (Sweeneyreed and Nasuto 2007).

6.3.4.3 Latest Developments

Time-frequency analysis of EEG is still a field under development, because the
fundamental limitation of time-frequency resolution and some practical require-
ments have not been perfectly solved. For example, in Zhang et al.’s work (Zhang
et al. 2011), a local polynomial model-based method was proposed to achieve the
optimal tradeoff between time resolution and frequency resolution in the whole time-
frequency domain by using local polynomial basis with adaptive window size at
each time-frequency point. In Kim et al.’s recent paper (Kim et al. 2018), the
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conventional multitaper method is extended to a TFA method, named state-space
multitaper method, so that it can provide a statistical inference framework for TFA of
EEG and other types of nonstationary time series.

6.4 Event-Related Synchronization/Desynchronization
(ERS/ERD)

The most common application of TFA on EEG is to identify event-related synchro-
nization/desynchronization (ERS/ERD) in event-related experiments. A huge body
of experimental investigations have shown that various sensory stimuli or cognitive
events do not only evoke EP/ERP but also induce transient power modulations of
EEG spectrum. Such modulations are presented as an increase (ERS) or a decrease
(ERD) of spectral power at a specific frequency band. The differences between
EP/ERP and ERS/ERD are evident: EP/ERP are time-locked and phase-locked, and
they are usually studied in the time domain, while ERS/ERD are time-locked but
non-phase-locked, and they are usually studied in the time-frequency domain
(Pfurtscheller and Lopez da Silva 1999; Mouraux and Iannetti 2008). As discussed
in Chap. 3, time-domain averaging can effectively estimate EP/ERP, because these
potentials are phase-locked and time-domain averaging can restrain the non-phase-
locked noise and other components. However, ERS/ERD are not phase-locked, and
they cannot survive from time-domain averaging. In the following, the estimation of
ERS/ERD and related phase locking values will be introduced.

6.4.1 Estimation of ERS/ERD

ERS/ERD are also known as event-related spectral perturbation (ERSP), or can be
identified from ERSP, which measures the event-related spectral changes relative to
the spontaneous EEG baseline in a wide range of frequency and shows the spectral
changes in the joint 2D time-frequency domain (Delorme and Makeig 2004). ERS
and ERD can be identified from the ERSP as positive spectral changes and negative
spectral changes, respectively. In this section, we will introduce how to estimate
ERS/ERD from ERSP or baseline-corrected TFD of event-related EEG. It should be
noted that ERS/ERD can also be estimated using other approaches (e.g., to estimate
the spectral envelope at a certain frequency band), especially in the field of neural
engineering, where computational time and single-trial estimation are key issues
under consideration.

To estimate ERS/ERD or ERSP from multiple trials of EEG activities, we need
first use TFA to transform single-trial EEG waveforms into TFDs and then average
these single-trial TFDs to identify ERS/ERD. The procedure to estimate ERS/ERD is
as follows:
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1. Repeat the event of interest a given number of times.
2. Pre-processing to remove artifacts and noise.
3. Segment EEG into trials based on the onset time of events.
4. Time-frequency analysis.
5. Take average across trials and baseline correction.

By comparing above procedure to detect ERS/ERD with the procedure to esti-
mate EP/ERP, we can see that except Step 4, which is only essential in the detection
of ERS/ERD, other steps are the same. Similar to the estimation of EP/ERP, a
reliable ERS/ERD component is normally detected from a number of trials. But
ERS/ERD is not phase-locked to stimulation and will be smoothed out during
across-trial averaging in the time domain. Therefore, we need to use TFA to
transform ERS/ERD waveforms into the time-frequency domain and then use
across-trial averaging in time-frequency domain to obtain the averaged TFDs,
from which the ERS/ERD components could be identified. Figure 6.13 shows how
to use TFA to estimate ERS/ERD of multiple trials of laser-evoked potentials (LEP)
and compares different TFDs (of single LEP trials, of across-trial averaged LEP,
averaged from TFDs of all LEP trials without or with baseline correction). A
supplementary MATLAB script “demo_erserd.m” is attached in this book to dem-
onstrate the procedure of ERS/ERD estimation.

TFA methods introduced in this chapter, such as STFT and CWT, can be used to
estimate ERS/ERD. Window selection is crucial in the analysis of ERS/ERD,
because the onset/offset time and the frequency range of ERS/ERD covey important
information about the brain functioning. Frequency-dependent window (as in CWT)
is recommended: short windows are used in high-frequency range (such as the
gamma band) and long windows are used in low-frequency range (such as the
theta and delta band). The window at one specific frequency should cover at least
one cycle (usually 2–3 cycles) of ERS/ERD signals at this frequency. For example,
to detect an ERS/ERD component at 10 Hz, the window size at 10 Hz should be at
least 100 ms. But at very low-frequency bins, the window cannot be too long, for
time resolution will be seriously degraded and, for example, some unwanted com-
ponents could be seen even before event onset. In practice, it is often necessary to try
out many possible parameters and to choose those parameters that can achieve the
best visually or statistically reasonable TFDs.

6.4.2 Baseline Correction and Illustration of ERS/ERD

Another important issue in the detection of ERS/ERD is the baseline correction.
Baseline correction is simple in EP/ERP estimation, but not trivial in the detection of
ERS/ERD. This is mainly because ERS/ERD exists in a wide range of frequencies
and the signal power at different frequencies is remarkably different. ERS/ERD is
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defined as the increase or decrease of signal power with respect to a baseline period.
At each frequency, a baseline period is defined by the power values within a time
window preceding the stimulus, and thus the baseline period is also called as the
pre-stimulus period. In EP/ERP detection, the baseline values are subtracted from
poststimulus values. Such a “subtraction” approach for baseline correction also
works for ERS/ERD, but some other baseline correction approaches are also com-
monly used. Generally, the following four baseline correction approaches are often
used for ERS/ERD estimation (Roach and Mathalon 2008):

Fig. 6.13 TFA of multiple trials of laser-evoked potentials (LEP) for the detection of ERS/ERD.
(a) 74 trials of LEP were recorded at Cz of one individual with a sampling rate of 256 Hz. More
details about the experiment and the EEG data can be referred to (Hu et al. 2014). (b) LEP
waveforms and TFDs (spectrograms) of randomly selected 10 trials. TFDs were obtained using
STFT with a 400 ms Hamming window. (c) TFD of LEP averaged from 74 trials. (d) TFD averaged
from 74 TFDs of single LEP trials. (e) TFD in D after baseline correction (subtraction). Subplots A,
C, D, and E can be obtained by running the supplementary MATLAB script “demo_erserd.m”

attached in this book
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Subtraction : P t; fð Þ � �R fð Þ ð6:12aÞ
Relativec Change : P t; fð Þ � �R fð Þ½ �=�R fð Þ ð6:12bÞ

Power Ratio : log10 P t; fð Þ=�R fð Þð Þ ð6:12cÞ
Z-score : P t; fð Þ � �R fð Þ½ �=SD R fð Þ½ � ð6:12dÞ

where P(t, f ) is the power value at a time-frequency point(t, f ) and R(t, f ) is the
baseline values with mean �R fð Þ and standard deviation SD[R( f )]. A comparison
among these four baseline correction approaches can be seen in Fig. 6.14.

Actually, expressing poststimulus EEG power relative to pre-stimulus EEG
power entails two important and surprisingly neglected issues. First, it can introduce
a significant bias in the estimation of ERD/ERS magnitude. In (Hu et al. 2014), it
was shown that that expressing ERD/ERS as the average percentage of change
calculated at single-trial level introduces a positive bias, resulting in an
overestimation of ERS and an underestimation of ERD. This bias can be avoided
using a single-trial baseline subtraction approach. Second, it confuses the contribu-
tion of pre- and poststimulus EEG power (Kim et al. 2018). Many studies have
shown that pre-stimulus (baseline) EEG activities could modulate an individual’s
behavioral responses as well as neural responses to an event. Given that the
variability in ERD/ERS is not only dependent on the variability in poststimulus

Fig. 6.14 Comparisons of TFDs obtained using four different baseline correction approaches for
the detection of ERS/ERD. These results can be obtained by running the supplementary MATLAB
script “demo_erserd.m” attached in this book
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power but also on the variability in pre-stimulus power, an estimation of the
respective contribution of pre- and poststimulus EEG variability is needed. In
another word, baseline correction (no matter which approach is used) may not be
the best approach to quantify the event-related rhythmic activities, and it will be
better to include baseline (pre-stimulus) EEG activities in the study of event-related
EEG responses (Kim et al. 2018).

Another non-trivial issue in ERS/ERD estimation is how to present ERS/ERD in
a suitable color scale. EEG spectral power follows the power law (1/f ) and is highly
unbalanced among frequency bands: low-frequency components have much higher
power than high-frequency components. As a result, if we display EEG power at the
same scale, weak components at high-frequency bands may be buried. Hence,
sometimes it is necessary to display ERS/ERD at low-frequency bands (delta,
theta, alpha, beta) and at high-frequency bands (gamma) separately. However, it
must be mentioned that adjusting the color scale can only visually highlight those
time-frequency regions where power is increased or decreased. From those visually
important time-frequency regions, we can specify some regions of interest (ROIs). In
Fig. 6.14, those rectangular boxes indicate ROIs where signal power is either largely
increased or decreased. Subsequently, we can summarize the power values within all
time-frequency points of a ROI by, for example, averaging across all time-frequency
points, and the summarized power value can be used as the time-frequency feature of
this ROI. It is definitely better to perform a rigorous statistical test at each time-
frequency point to examine its significance and avoid possible bias caused by visual
inspection. Please refer to Chap. 17 for more details about statistical analysis of time-
frequency EEG data.

6.4.3 Phase Locking Value (PLV)

The estimation results of TFA (STFT or CWT) are actually complex values, but both
spectrogram and scaleogram are the squared magnitude of TFA output, and they do
not make use of the important phase information. An often-used phase feature is
phase locking value (PLV) (Mouraux and Iannetti 2008), which is also known as
inter-trial phase coherence (ITPC) (Delorme and Makeig 2004). PLV is an important
complement to the time-frequency power, and it is calculated as

PLV t; fð Þ ¼ 1
M

XM

i¼1

Fi t; fð Þ
j Fi t; fð Þ j , ð6:14Þ

where Fi(t, f )is the complex time-frequency value from TFA. PLV is between 0 and
1: 0 reflects a completely random distribution of phase angles between trials, and
1 reflects perfectly synchronized phase angles across trials. Typically, ERP compo-
nents are phase-locked, so the PLV values in ERP-related time-frequency regions are
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high (close to 1). But ERS/ERD components are non-phase-locked, so the PLV
values in ERS/ERD-related time-frequency regions are close to zero. Figure 6.15
shows the PLV values of the LEP trials, which are used in Figs. 6.13 and 6.14.
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Chapter 7
Blind Source Separation

Fengyu Cong

Abstract Blind source separation algorithms have been widely used in the EEG
signal processing. This chapter introduces the EEG model basis of blind source
separation and details of three mainstream algorithms, i.e., principal component
analysis (PCA), independent component analysis (ICA), and tensor decomposition,
to provide a comprehensive review on this growing topic. The main focus will be on
basic principles of applying ICA on continuous EEG data to remove artifacts, PCA,
and tensor decomposition on ERP data to conduct group analysis. The introduction
of current softwares specialized in PCA and ICA on EEG signal processing will also
be covered.

Keywords Blind source separation · Independent component analysis · EEG ·
Event-related potentials · Back projection

7.1 Introduction of Blind Source Separation

Blind source separation (BSS) is to separate source signals from a set of mixed
signals (observation), without the aid of relevant information (or with very little
information) about the source signals or the mixing process (Cois 2009). Typically,
the observations are obtained at the output from a set of sensors, where each sensor
receives a different combination of source signals. There are different methods of
BSS: principal component analysis (PCA), independent component analysis (ICA),
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nonnegative matrix factorization (NMF), and so on. Promising applications have
already been found in the processing of communications signals (Chaumette et al.
1994; Mathew and Reddy 1995; Swindlehurst et al. 1997; van der Veen 1998),
biomedical signals like ECG (De Lathauwer et al. 2000) and EEG (Makeig et al.
1996), and monitoring (Durso and Prieur 1997). However, BSS is now routinely
performed on multidimensional data (Cichocki 2013; Kolda and Bader 2009), such
as images and video signals (Zhao et al. 2013).

Figure 7.1 illustrates a fairly general BSS problem also referred to as blind signal
decomposition or blind source extraction. We observe records of N sensor signals X
(t) ¼ [x1(t), x2(t), � � �, xN(t)]T coming from a MIMO (multiple-input/multiple-output)
and filtering system, where t is usually a discrete time sample and (∙)T denotes
transpose of a vector. These signals are usually a superposition (mixture) of
R unknown source signals S(t) ¼ [s1(t), s2(t), � � �, sR(t)]T and noises E(t) ¼ [e1(t),
e2(t), � � �, eN(t)]T. The primary objective is to estimate all the source signals sr(t) or
only some of them with specific properties. This estimation is usually performed
based on the output (sensor, observed) signals xn(t) in order to estimate sources.
Usually, the inverse (unmixing) system should be adaptive in a way, provided with
some tracking capability, to a nonstationary environment. Instead of estimating the
source signals directly by projecting observed signals using the unmixing system, it
is more convenient to identify an unknow mixing and filtering system (e.g., when the
unmixing system does not exist, especially when the system is underdetermined, i.e.,
the number of observations is lower than the number of source signals, N < R) and
simultaneously estimate the source signals by exploiting some priori information
about the source signals and applying a suitable optimization procedure.

There appears to be something magic about blind source separation, since we are
estimating the original source signals without knowing the parameters of the mixing

Fig. 7.1 BSS model for
EEG signal
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and filtering processes. It is difficult to imagine that one can estimate the source
signals in this way. In fact, it is not possible to uniquely estimate the original source
signals, without some priori knowledge. However, one can usually estimate these
signals based on certain indeterminacies. In mathematical terms, the indeterminacies
and ambiguities can be expressed as arbitrary scaling and permutation of the
estimated source signals. These indeterminacies preserve, however, the waveforms
of original sources. Although limitations of these indeterminacies seem to be rather
severe, these limitations are not crucial in a great number of applications, since the
most relevant information about the source signals is contained in the temporal
waveforms or time-frequency patterns of the source signals, instead of embedding in
their amplitudes or the arranged orders in the output from the system.

7.2 PCA and Rotation for ERP Analysis

7.2.1 The Theory of PCA and Rotation

Principal components analysis (PCA) is a multivariate technique that seeks to
uncover latent variables responsible for pattern of covariation in numerical datasets
(Harman 1976). It is a statistical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variable, referred as principal components.

The matrix X 2 ℝm � n (m � n) can be written as follows:

X ¼ UΣVT , ð7:1Þ

In specific,

1. U ¼ u1 u2 � � � un½ � is a unitary (m� n)-matrix; each column ofU is a principal
component.

2. V ¼ v1 v2 � � � vn½ � is a unitary(n � n)-matrix, which means the loadings of
the component.

3. Σ is a (n � n)-matrix with the propertites of

Pseudo-diagonality:

Σ ¼ diag σ1; σ2; � � �; σnð Þ, ð7:2Þ

Ordering:

σ1 � σ2 � � � �σn � 0: ð7:3Þ

The σi are singular values of X, referred to as the power of each principle
component. Thus, the PCA could be used for dimension reduction.
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For a long time, PCA has been used as a technique of data description and
reduction to manage the copious quantities of measurements obtained in event-
related potential (ERP) studies. Although PCA has limitations when applied to
ERP data and is also sensitive to parameters such as component overlap and
correlation (Dien 1998), it has been applied to numerous studies and gained consid-
erable success (Dien 1999; Spencer et al. 2001; Squires et al. 1975).

Recognition of the limitations during PCA procedure has given rise to efforts to
improve the process of technique itself. Note that the oblique rotation promax can
generate more accurate results with correlated ERP components than the customary
orthogonal rotation varimax (Dien 1998; Dien et al. 2005). The use of a covariance
matrix for the relationship matrix and the inclusion of Kaiser normalization also
yield refined results, in comparison to covariance loadings during rotation (Dien
et al. 2005).

Varimax rotation is the most commonly used approach in PCAs (Kaiser 1958),
although other rotation algorithms are available. In this approach, pairs of factors
are rotated in the two-dimensional space formed by their two axes, so as to
maximize the sum of the variance of the squared loadings. The factors are system-
atically rotated in pairs until changes are negligible. This procedure has consider-
able effects on factor loadings, which make the loading values as extreme as
possible (either zero or extremely high). Such a principle is shared by other family
members of the orthomax rotations. This is an appropriate criterion for ERP dataset
(especially for a temporal PCA).

Promax is a method for quick rotation to oblique simple structure. Here, the
promax algorithm is taken as an example. Starting with a matrix of factor loadings
that has been rotated to orthogonal simple structure, a crucial problem was to
formulate an ideal “pattern” matrix as a function for the orthogonal solution,
which means to find a set of weights to a given factor loading. We define a matrix
P ¼ ( pij) as:

pij ¼ akþ1
ij

���
���=aij, ð7:4Þ

with k > 1. Each element of this matrix is, except of sign which remains unchanged,
the kth power of the corresponding element in the row-column normalized orthog-
onal matrix. The least squares fit of the orthogonal matrix of factor loadings to the
pattern matrix generated by Eq. (7.4) could be calculated as follows:

L ¼ FTF
� ��1

FTP, ð7:5Þ

where L is the unnormalized transformation matrix of the reference vector structure,
F is the orthogonal rotated matrix, and P is the matrix derived from the orthogonal
matrix defined in Eq. (7.4). Equation (7.5) is the “Procrustes” equation described by
Cattell (1976). The columns of L are normalized such that their sums of squares are
equal to unity. This provides the transformation matrix from the orthogonal factors
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to the oblique reference vectors. From this point standard and well-known formulate
(Harman 1976) can be used to compute the intercorrelations among the oblique
primary factors and the matrix of primary factor loadings.

After rotating the loading matrix, the components could be calculated as follows:

Y ¼ LX, ð7:6Þ

L comes from any kind of rotated factors algorithm, including “orthomax,”
“equamax,” “promax,” and so on.

7.2.2 Introduction of ERP_PCA Toolbox

Aimed to improve the performance of group analysis on ERP data and help
researchers master advanced signal processing methods (e.g., wavelet filter, FFT
filter, and PCA), we developed the ERP_PCA toolbox.

7.2.3 Input

After preprocessing, the EEG data will be reshaped to a matrix with the size of M�N
for each stimulus, where M denotes the number of electrodes and N denoted the
number of samples. As shown in Fig. 7.2a, there are three matrices for each stimulus,
which can be reshaped to a third-order tensor with the size of M�N�P (Fig. 7.2b) for
each subject, where P denotes the number of stimuli. Finally, the data for each
subject can be linked together and form a fourth-order tensor with the size of
M�N�P�Q, where the Q denotes the number of subjects. The fourth-order tensor
is the input of our toolbox to perform group analysis, which contains all the
information about the ERP data among all subjects.

7.2.4 Features of ERP_PCA Toolbox

The conventional method of analyzing the ERP data at group level is calculating the
grand averaged data across subjects, which can be conducted rapidly in the toolbox.
Given that the averaged data across trials are still noisy, the wavelet filter and FFT
filter were good for further filtering noisy ERP data (Cong et al. 2015b). As a
consequence, the wavelet and FFT filter modules were added into the toolbox.

In general, a grand averaged waveform can be regarded as a sum of several ERP
components. Thus, PCA and rotation were gradually used to extract individual ERP
component, which were embedded in our toolbox. The rectangle box below shows
the processing methods in ERP_PCA toolbox (Fig. 7.3).
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7.2.5 Output

The ERP_PCA toolbox provides a rapid output of processed data. The basic output
involves (1) the waveform of grand averaged ERP data across subjects for each
stimulus at certain electrode (Fig. 7.4a); (2) the topographies within a certain time
window for each stimulus (Fig. 7.4b); (3) the similarity of topographies across
subjects for each stimulus, which represents the homogeneity among the subjects

Fig. 7.2 Input of the ERP_PCA toolbox. (a), A matrix with the size of M�N for each stimulus; (b),
a third-order tensor with the size of M�N�P for each subject; (c): a fourth-order tensor with the size
of M�N�P�Q for all the subjects

Fig. 7.3 The features of ERP_PCA toolbox
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(Fig. 7.4c); and (4) the time-frequency graphs for each stimulus based on wavelet
decomposition (Fig. 7.4d); in addition, (5) the toolbox enables users to output an
excel of the amplitude of the interested component at single/several electrodes(s) for
each stimulus, which can be conducted further statistical analysis on other platform,
such as SPSS and R-studio.

7.2.6 A Detailed Example Using ERP_PCA Toolbox

PCA is a well-known method to extract individual component based on grand
averaged ERP data across subjects. Here, we used the ERP data of a classic
mismatch negativity (MMN) experiment to show how PCA is applied in extracting
individual component. MMN is a pre-attention component mainly located at
frontal electrodes and with the latency ranging from 100 to 250 ms. The experi-
ment adopted a two-deviant oddball paradigm (small deviant stimuli and large
deviant stimuli), and after subtracting the ERP responses to standard stimuli from
mismatch responses, the difference waveforms for large and small deviant were
drawn at electrode Fz (Fig. 7.5a). The interested time window was 150–300 ms,
and the topographies (Fig. 7.5b) were obtained from the mean amplitude within
this time window.

Fig. 7.4 Output of ERP_PCA toolbox. (a), The waveform of grand averaged ERP data across
subjects for each stimulus at certain electrode; (b), the topographies within a certain time window
for each stimulus; (c), the similarity of topographies across subjects for each stimulus, which
represents the homogeneity among the subjects; (d), the time-frequency graphs for each stimulus
based on wavelet decomposition
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The raw ERP waveform can be regarded as the sum of a few different ERP
components; we want to extract single MMN component by PCA. After performing
PCA, a few principle components were extracted. Here comes a question: How to
select the interested components to extract single MMN component by back projec-
tion? The basic rules are selecting the principle components that meet both the
temporal (latency and polarity) and spatial (topography) features of the interested
ERP component (e.g., MMN). For extracting the MMN component, we selected the
peaks of three principle components within the time window of 150–300 ms and the
active region centered at frontal area in the topographies (Fig. 7.6).

Through back-projecting the three selected principle component, the single MMN
component was extracted (Fig. 7.7a). The grand averaged topographies were
obtained using the same time window of 150–300 ms (Fig. 7.7b).

7.3 Applying ICA on Continuous EEG Data

7.3.1 ICA Model

ICA is based on the linear model of the unknown source signals S and observed
signal Z. The model could be described by the following equation:

Z ¼ AS, ð7:7Þ

where Z 2 RM�N , S 2 RR�N . A 2 RM�R with the full column rank is named as
mixing matrix. S represents the source signals of ICA decomposition and R the
number of components.

Fig. 7.5 The temporal and spatial properties of raw ERP data. (a), The waveforms of raw ERP data
for small and large deviant stimuli; (b), the topographies calculated from the mean amplitude of the
time window 150–300 ms for small and large deviant stimuli of the raw ERP data
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Fig. 7.6 The waveforms and topographies for three interested principle components
The components are selected based on the temporal (components peak within the time window of
150–300 ms) and spatial features (active region centered at frontal area)

Fig. 7.7 The temporal and spatial properties of ERP data after using PCA to extract MMN. (a), the
waveforms of ERP data after using PCA to extracted MMN for small and large deviant stimuli; (b),
the topographies calculated from the mean amplitude of the time window 150–300 ms for small and
large deviant stimuli of the ERP data after using PCA to extracted MMN
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In this overdetermined model, the dimension of the observed signalM is assumed
to be larger than that of the source signals R. Therefore, dimension reduction is
necessary before data feed into ICA decomposition. Once model order (number of
source components) was estimated, dimension reduction matrix was used to trans-
form the model from overdetermined to determined, as follows:

X ¼ VTZ ¼ VTAS ¼ AS ð7:8Þ

In the above formula, A 2 RR�R, A¼VTA, X 2 RR�N , VT 2 RR�M is the
dimension reduction matrix which derives from PCA. VT consists of the first
R eigenvectors of the covariance matrix of the data matrix Z.

The ICA decomposition model is as the following:

Y ¼ WX, ð7:9Þ

where Y ¼ RR�N is the component matrix, which is used to estimate source signals
S. ICA is an algorithm that finds unmixing matrix W 2 RR�R based on the
independence of components.

According to difference between cost functions, Hyvärinen et al. proposed five
different ICA algorithms, including algorithm based on non-Gaussian maximization,
algorithm based on maximum likelihood estimation, algorithm based on minimum
mutual information, algorithm based on tensor, and algorithm based on nonlinear
decorrelation and nonlinear PCA (Hyvärinen et al. 2001). Beyond fixed-point-based
FastICA (Hyvarinen 1999), max mutual information-based InfomaxICA (Sejnowski
and Bell 1995) also have been widely used in all kinds of fields. The InfomaxICA is
widely used due to its stability. The equation of mutual information is listed as
follows:

I Y;Xð Þ ¼ H Yð Þ � H YjXð Þ, ð7:10Þ

where I refers to the mutual information of components and H is the entropy. Based
on the above formula, the iterative formula was obtained as follows:

ΔW / WT
� ��1 þ 1� 2Yð ÞXT ð7:11Þ

The estimation of mixing matrix needs the combination of W and dimension
reduction matrix (Cong et al. 2014):

U ¼ VB ¼ VW�1, ð7:12Þ

where B¼W�1 andU 2 RM�R is named as the coefficient matrix approximating the
mixing matrix A in (7.7).
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7.3.2 Stability of ICA Decomposition Under Global
Optimization

Most of the ICA algorithms are self-adaptive, and an ICA algorithm may converge to
local minima. Therefore, whether the results obtained by ICA decomposition are
reproducible is crucial. If both Eqs. (7.8 and 7.9) are merged together, the global
matrix C links the extracted components and the sources together as the following:

Y ¼ WX ¼ WAS ¼ CS, ð7:13Þ

where C ¼ WA.
As shown in Eq. (7.11), the ICA algorithm is adaptive. In theory, for global

optimization, there is only one nonzero element in each column and each row of the
global matrix C. Then, the global matrix equal to multiplication of a permutation
matrix P and a diagonal matrix D as:

C ¼ PD ð7:14Þ
Y ¼ CS ¼ PDS ð7:15Þ

Subsequently, the coefficient matrix turns to be

U ¼ VB ¼ VW�1 ¼ VAD�1P�1 ¼ VVTAD�1P�1 ¼ AD�1P�1, ð7:16Þ

where,WA¼ PD,A¼VTA, VVT is an identity,D�1 is a diagonal matrix, and P�1 is
a permutation matrix.

Under the global optimization, if one ICA algorithm is run multiple times with
random initialization, the stability of coefficient matrix and component matrix is the
same. Stability of extracted components represents the stability of ICA algorithm.

7.3.3 Stability of ICA Decomposition Under Local
Optimization

Most ICA algorithms tend to converge to the local optimization as they are adaptive.
The global matrix cannot be written as the production of a permutation matrix and a
diagonal matrix. Subsequently:

Y ¼ CS 6¼ PDS ð7:17Þ
U ¼ VW�1 6¼ AD�1P�1 ð7:18Þ

the formula above means that some of the extracted components are still mixtures
of some sources. In the estimation of coefficient matrix U, the matrix inverse of
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the unmixing matrix W cannot be avoided. It is widely acknowledged that the
inverse operation can amplify the errors in W. Therefore, it is necessary to access
whether both the coefficient matrix U and the component matrix Y are stably
estimated or not.

For example, under the condition that ICA decomposition is run K times with
random initialization, and the number of components is R, R�K components can be
fed into cluster algorithm. In ICASSO (Himberg et al. 2004), a parameter named Iq
is calculated from the difference between intra-cluster similarities and inter-cluster
similarities. In the application Iq is an index to evaluate the stability of component
matrix, and we named as Comp_Iq.

In ICA decomposition, one component is always along with its associated
coefficient vector. However, the stability of coefficient matrix and that of component
are different. In order to assess the stability of the coefficient matrix, the member-
ships of component cluster result can be used to cluster coefficient vectors. The
stability index of coefficient matrix could also be calculated. It is called Coef_Iq in
this study.

The ICA algorithm is stable once both the component and the corresponding
coefficient vector are stably extracted. The stability index of ICA algorithm is
defined as

Iq ¼ Comp Iq� Coef Iq ð7:19Þ

The range of stability is from 0 to 1.0 means the component is extremely unstable.
1 means the component is stable. Comp_Iq work as the probability of the stability of
the component matrix. Coef_Iq is the probability of the stability of the coefficient
matrix. So the multiplication can be expressed as the stability of the whole (Zhang
et al. 2018).

7.3.4 Subtraction to Reject One Component by Back
Projection

For ICA mixed model:

X ¼ AS ð7:20Þ

where X 2 ℝM � N is the signal to be decomposed. A 2 ℝM � R is mixing matrix.
S 2 ℝR � N is the source signal. R represents the number of source signals.

ICA decomposition model:

Y ¼ WX ð7:21Þ
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where W 2 ℝR � M is unmixing matrix. The inverse matrix B ¼ W�1 2 ℝM � R is
used to estimate A.Y 2ℝR � N is used to estimate the source matrix S. However, it is
well-known that ICA has the magnitude and polarity indeterminacy. It is assumed
that the kth component of the decomposition corresponds to the ith source signal. But
yk, : 6¼ si, :, b:, k 6¼ a:, i. But it can be proved that Ek ¼ b:, k � yk, : ¼ a:, i � si, : under the
condition of global optimal solution. That means rank-1 matrix Ek is ultimately
decomposed by ICA. The proof process is as follows:

Global matrix:

C ¼ WA ð7:22Þ

Then:

Y ¼ CS ð7:23Þ
BC ¼ A ð7:24Þ

Under the condition of global optimal solution, each row and each column of
C has only one nonzero element (Cong et al. 2011b). If the kth component of the
decomposition corresponds to the ith source signal, then ck, i is nonzero.

∴yk, : ¼ ck, i � si, : ð7:25Þ

b:,k � ck, i ¼ a:, i ð7:26Þ

Multiplying Eq. (7.25) with Eq. (7.26) on both sides,

b:,k � ck, i � yk, : ¼ a:, i � ck, i � si, : ð7:27Þ

The ck, i can be omitted on both sides of the equation because it is a real number:

b:,k � yk, : ¼ a:, i � si, : ð7:28Þ

Therefore, it is rank-1 matrix Ek ¼ b:, k ∙ yk, : (k ¼ 1, 2, � � �R, R is the number of
extracted components) that could be ultimately decomposed by ICA.

To reject the component, back projection result could be subtracted from the EEG
recordings, as illustrated below (Cong et al. 2011a):

Xclear ¼ X� Ek ð7:29Þ

By this way electrooculogram (EOG) could be rejected from EEG.
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7.3.5 ICA and Artifact Correction

ICA is an adaptive algorithm; consequently, it will work better if the artifacts being
removed own large portion of the variance, such as blinks and large eye movement.
After performing ICA on EEG data, the spatial and temporal features for each
component were drawn. Here the basic features of independent components (ICs)
for blinks and eye movement artifacts are shown (Luck 2014).

7.3.6 Blink

The eye seems like a battery, since there is constant electrical potential between
cornea at the front of the eye and the retina at the back of the eye. Consequently, the
source of the EOG is centered at frontal area and the potential gradually falling off
toward the back of the head. When any eye movements occur, the constant potential
will change, leading the voltage deflection at frontal area.

Figure 7.8 shows the basic features of an IC for blink artifact. As for the spatial
feature, when the eyes blink, the constant potential will change greatly at the vertical
direction. As Fig. 7.8a shows, the topography of the blink component will be either
positive or negative at frontal area for the uncertain polarity of ICA algorithm and

Fig. 7.8 Basic features of the independent component for blink artifact. (a) The topography of the
blink component will be either positive or negative at frontal area and shows a tendency of decrease
from frontal to occipital of the head; (b) the histogram of the above topography shows that frontal
electrodes own pretty large coefficients; (c) the PSD of the IC for blink is mainly centered at low
frequency band; (d) the time-frequency graph based on STFT method of the IC for blink; (e) the
time series of the IC for blink shows the sudden monophasic deflection
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shows a tendency of decrease from frontal to occipital of the head. Figure 7.8b is the
histogram of the above topography, which implies that only few electrodes (frontal
electrodes) own pretty large coefficients and the other electrodes own similar small
coefficients. The eye blink response consists primarily of a monophasic deflection of
50–100 μ V with a typical duration of 200–400 ms. As a result, we can infer that
compared with spontaneous EEG, the blink will be a sudden monophasic deflection
lasting for 200–400 ms and the frequency mainly centered at 2.5–5 Hz. In terms of
temporal feature, the time series were drawn in Fig. 7.8e, which shows the sudden
monophasic deflection. Figure 7.8c shows the power spectrum density (PSD) of the
IC of blink, which is mainly centered at low-frequency band. Figure 7.8d is the
addition of time-frequency graph based on short time Fourier transform (STFT)
method.

7.3.7 Eye Movement

Compared with blinks, the eye movement we referenced here will change the
potential at the horizon direction. When the eyes move, the voltage becomes more
positive over the side of the head that the eyes now point toward and will be reverse
polarity at the opposite side, which seems like a scale bias to one side. As a result, the
topography of the IC component for eye movement (Fig. 7.9a) shows reverse

Fig. 7.9 Basic features of the independent component for eye movement artifact. (a), The
topography of the eye movement component shows reverse polarity at the opposite sides centered
at frontal electrodes; (b), the histogram of the above topography; (c), the PSD of the IC for eye
movement; (d), the time-frequency graph based on STFT method of the IC for eye movement; (e),
the time series of the IC for eye movement
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polarity at the opposite sides centered at frontal electrodes, and the histogram of eye
movement component (Fig. 7.9b) shows an almost uniform distribution. The vast
majority of eye movements will be saccades (sudden shifts in eye position), which
would consist of a sudden step from one voltage level to another voltage level, where
it would remain until the eyes moved again. Consequently, the duration of the
sudden deflection of IC for eye movement tends to be longer (Fig. 7.9e) than the
blink component, and the PSD tends to center at a lower frequency band (Fig. 7.9c).

7.3.8 Introduction of ICA Toolbox

EEGLAB provides a manipulation to perform ICA on EEG data. In practice, there
are several disadvantages of the ICA module in EEGLAB, which disregard the
stability of ICs. In our ICA toolbox, we added the extraction of stable ICs. As
mentioned in Sect. 7.3, the stability of ICs involved two parts: (1) determining the
number of extracting ICs and (2) determining the times of running ICA decompo-
sition. In addition, we improved the style of showing the results of ICs, namely,
showing the features of one IC in one figure.

7.3.9 Determining the Number of Extracting Independent
Components

ICA is capable of decomposing the determined model, which means that the number
of source equals to the number of sensors. As a consequence, the default number of
the extracted independent component is equal to the number of electrodes in
EEGLAB. However, from our experience, the best practical number of components
to extract stable ICs ranges from 15 to 30. In our toolbox, you can easily set a
number/range of the extracted components to perform ICA (Fig. 7.11).

7.3.10 Determining the Times of Running ICA
Decomposition

ICA is an adaptive algorithm, which means the results of ICs will be different among
each run. To our knowledge, the ICs results are based on single running in
EEGLAB. As ICASSO suggested, the ICA decomposition can be run many times
to evaluate the stability of ICs. In our lab, the times of running ICA decomposition
range from 15 to 50 to extract stable ICs on EEG data.

In our toolbox, you can easily set the times of running ICA decomposition
(Fig. 7.11).
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7.3.11 Evaluating the Number of Stable Independent
Components

As ICASSO suggested, the Comp_Iq can be used to evaluate the number of stable
ICs after performing ICA decomposition certain times at a certain number of
components. In addition, the toolbox provides other indexes to evaluate the stability.

As mentioned in the theory part of ICA, the unmixing matrix was randomly
initialized, which took several steps to convergence among each ICA decomposi-
tion. In consequence, the mean and standard deviant value of the steps to reached
convergence were obtains across runs, as shown in Fig. 7.10a. With the increase of
the number of components, the it took more steps to convergence, namely, it tended
to be more difficult to convergence. In addition, the number of converged runs was
obtained among all the runs. As Fig. 7.10b shows, among fifty runs, the unmixing
matrix can’t reach convergence-criteria within certain number of iteration (the
threshold of iteration is 100 for FastICA and 512 for InfomaxICA) for each run
after the number of extracted component was bigger than 25. The results suggested
that the ICs might be unstable when the number of extracted component is above 25.
As mentioned in 7.3, Fig. 7.10c illustrated the Comp_Iq among all the runs at certain
number of components. In our Lab, the criterion was that the Comp_Iq for stable ICs
should be more than 0.9. Figure 7.10d is the result of explaining variance of the first
several components drawn from PCA.

Upon above results, the number of stable ICs was 25 in this study.

Fig. 7.10 Four indexes to evaluate the number of stable ICs. (a), the mean and standard deviant
value of the steps to reached convergence were obtains across runs; (b), the number of converged
runs is obtained among all the runs; (c), the Comp_Iq among all the runs at certain number of
components; (d), the results of explaining variance of the first several components drawn from PCA
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7.3.12 Showing the Results in a Detailed Way

The criterion of determining whether an IC is an artifact component is using the
temporal (waveform) and spatial (topography) features. As we know, the waveforms
and topographies are plotted in separated figures in EEGLAB, which means you
have to check one IC in two figures. From the user’s experience, it’s pretty
disturbing. In our toolbox, we plot the features of one IC in one figure and added
three features of the IC: (1) the histogram of the topography; (2) the PSD of the IC;
(3) and the time-frequency graph based on STFT method of the IC (Figs. 7.8 and
7.9).

7.3.13 Flowchart of ICA Toolbox

The ICA toolbox provides friendly dialogs to effectively perform ICA. The first step
is choosing the EEG data, which you want to perform ICA (Fig. 7.11a). In addition,
in our lab, we prefer to perform ICA on continuous EEG data (not the epoched EEG
data), which retain the original temporal feature. The second step is setting several

Fig. 7.11 The flowchart of ICA toolbox. (a), Choosing the EEG data; (b), setting several
parameters for running ICA, which include the number of extracting ICs, the number of running
times, and the algorithm to perform ICA; (c), showing the results of each IC; (d), inputting the index
of the artifact component to remove
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parameters for running ICA (Fig. 7.11b), which include the number of extracting
ICs, the number of running times, and the algorithm to perform ICA. We suggested
to use InfomaxICA to decompose continuous EEG data, if you have a high-
performance workstation, because it’s time-consuming.

The third step is showing the results of each IC (Fig. 7.11c), which will be saved
as a PNG picture for each IC in the folder of the data you selected. The first two
parameters should be the same as the numbers filled in the second step, and you can
decide to plot the results of each IC in the current window or not. After checking the
results of each IC, you can input the index of the artifact component to remove at the
fourth step (Fig. 7.11d). The above steps are the basic procedures to conduct artifact
removal on EEG data based on ICA in our ICA toolbox.

7.3.14 A Detailed Example Using the ICA Toolbox

Based on the features of time, space, frequency, and time-frequency domain, the
artifacts of blinks and eye movement can be accurately detected and rejected.
Figure 7.12 shows how ICA is applied in artifact correction. A 20-s period of
EEG data with the sampling rate of 500 Hz is shown in Fig. 7.12a, and data epochs
filled with blue are obvious blink artifacts. Then, the FastICA algorithm was
performed on the Raw EEG data. After visual inspecting the ICs, the blink compo-
nent (Fig. 7.12b) was selected out. Finally, the blink component was subtracted by
back projection, and the clean data was obtained.

7.4 Tensor Decomposition for ERP Analysis

In EEG experiments, there are more modes than the two modes of time and space.
For instance, analysis of EEG signal may compare responses recorded in different
groups (e.g., comparison of responses between patients and healthy controls).
Thus, at least one more mode appears, and it is the subject. Furthermore, in an
experiment to elicit ERPs, there are modes of EEG trial (since several stimulus
presentations are required) and stimulus presentation condition. This means the
brain data collected by EEG techniques can be naturally fit into a multi-way array
including multiple modes.

However, most applied computing tools for brain research are oriented for
one-way or two-way data. Consequently, in order to facilitate the two-way signal
processing methods, the extra methods besides the two modes of time and space are
often concatenated (data are horizontally connected in plane) or stacked (data are
vertically connected in a plane) with the time or the space mode for generating a
matrix (Cong et al. 2013, 2014; Delorme and Makeig 2004; Eichele et al. 2011;
Mode and Discovery 2012). This is often called unfolding a multi-way array into a
matrix. For EEG data, such unfolding inevitably loses some potentially existing
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Fig. 7.12 Applying ICA in artifact correction. (a) The 20-s period of EEG data and data epochs
filled with blue are obvious blink artifacts; (b) the selected blink component by visual inspecting
each IC; (c) the clean EEG data after subtracting the blink component by back projection
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interactions between/among the folded modes, such as time, frequency, and space
modes. The interactions can be of research interest. Consequently, in order to
appropriately reveal the interactions among multiple modes, the signal processing
methods particularly for a multi-way array are naturally promising tools.

A multi-way array is named as a tensor (Cichocki et al. 2009; Kolda and Bader
2009). Recently, tensor decomposition has become surprisingly attractive for signal
processing (Andrzej Cichocki 2013). Indeed, it has already been applied for analysis
of ERPs in the 1980s (Mocks 1988).

Generally, for a given Nth-order tensor X 2 ℝI1�I2�����IN , the canonical polyadic
decomposition (CPD) is defined as

X ¼
XR

r¼1
u 1ð Þ
r ∘u 2ð Þ

r ∘� � �∘u Nð Þ
r þ E ð7:30Þ

U nð Þ ¼ u nð Þ
1 ; u nð Þ

2 ; � � �; u nð Þ
R

h i
2 ℝIn�R denotes a component matrix for mode #n,

and n ¼ 1, 2, � � �, N (Cong et al. 2015a).
The demo data was adopted from Cong et al. (2012), and the preprocessed data

was a third-order tensor with the size of 60 (temporal samples) � 9 (channels) � 42
(the subjects are composed of 2 groups with 21 children per group). Then, the
wavelet decomposition was performed at each channel for each subject to form a
fourth-order tensor with the size of 60 (temporal samples)� 71 (frequency bins)� 9
(channels) � 42 (the subjects are composed of 2 groups with 21 children per group).
According to the previous processing, 36 components were extracted for each mode.

Reckoned from the left to the right side, the first column shows three temporal
components (#16–#18); the second column describes the three spectral components
(#16–#18); the third column presents the three spatial components (i.e., topogra-
phies) (#16–#18); and the last column shows the three multi-domain feature com-
ponents (#16–#18). The order of the components and the variance of a component in
the NCPD are not determined. RD: reading disability. AD: attention deficit, adapted
from Cong et al. (2012)

The criterion of selecting the components of interest was based on the temporal,
spatial, and spectral properties of the interested ERP component. In this study, the
component #20 was regarded as the desired multi-domain feature of the MMN
shown in Fig. 7.13, because the corresponding temporal spatial and spectral com-
ponents meet the MMN property requirements.

Obviously, the temporal, spectral, and spatial component matrices do not contain
any information of the subjects, and they are common to all features. Variability
among subjects exists in each feature component, which is a column of the feature
component matrix. This is a characteristic of the multi-domain feature extraction of
ERP, when NCPD is applied on the fourth-order ERP tensor of the TFR that includes
the time, frequency, space, and feature modes, which can be performed further
statistical analysis.
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Chapter 8
Microstate Analysis

Huibin Jia

Abstract The microstate analysis, which is based on the clustering of electric field
maps, has been proved to be an efficient technique that could fully use the spatial
information of topographies of EEG/ERP signals. Typically, researchers found that
only four kinds of distinct topographies (i.e., microstate classes) could explain most
variances of the spontaneous EEG data. Moreover, each of the four commonly
observed microstate classes was closely associated with the activity of distinct
resting-state brain networks revealed by BOLD signals of resting-state fMRI. For
ERP signals, the microstate segmentation can be used to identify the underlying ERP
components and their latencies from the multichannel ERP waveforms. In this
chapter, we illustrated the basic concepts of microstate analysis, the commonly
used clustering algorithms, the metrics derived from microstate analysis, and how
to perform microstate analysis using open-access tools.

Keywords Topographic maps · Spontaneous EEG · ERP · Spatial clustering

8.1 Introduction

Traditionally, the signal processing of EEG and ERPs is based on their features in
time domain (e.g., the morphology of ERP waveforms) and frequency domain (e.g.,
spectral power and ERS/ERD) (Jia et al. 2017; Jeremy et al. 2014; Maxwell et al.
2015; Wu et al. 2016). In these approaches, a set of scalp electrodes were usually

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/
978-981-13-9113-2_8) contains supplementary material, which is available to authorized users.

H. Jia (*)
Key Laboratory of Child Development and Learning Science of Ministry of Education, School
of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China

© Springer Nature Singapore Pte Ltd. 2019
L. Hu, Z. Zhang (eds.), EEG Signal Processing and Feature Extraction,
https://doi.org/10.1007/978-981-13-9113-2_8

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9113-2_8&domain=pdf


defined as regions of interest (ROIs) (Li et al. 2018). Thus, these traditional
approaches failed to utilize rich spatial information inherent in EEG/ERP signals.
In account of this aspect, the microstate analysis or the clustering of electric field
maps has been recently developed and proved to be an efficient technique that could
fully use the spatial information of topographic maps (Khanna et al. 2014). The
microstate analysis is originated from the researches of Dietrich Lehmann and
colleagues in 1987 (Lehmann et al. 1987). They found that the time series of scalp
potential maps of spontaneous EEG signals are not a disorganized succession with
irregularly varied topographical configurations, but rather an organized continuum
with regularly changing configurations (i.e., it remains stable for a period of time
typically ranging from 80 to 120 ms, followed by an abrupt alteration into a new
configuration, and returns to its stability again) (Michel and Koenig 2017; Koenig
et al. 2002). Note that, within the period of time for stable configuration, the strength
of the scalp potential field may increase or decrease, but its topography remains
stable. Since the scalp potential field reflects the momentary state of global activity
of underlying brain networks and the topographical configuration indicates changes
in the global coordination of cerebral activities, Dietrich Lehmann and his colleagues
proposed that these stable periods should reflect the basic steps of information
processing in human brain (i.e., “atoms of thoughts”) and named them as functional
microstates (Lehmann et al. 1998, 2005; Khanna et al. 2014). Although the initial
studies were conducted on spontaneous EEG activities, similar findings (i.e., periods
with quasi-stable potential landscape) have also been obtained in topographical ERP
analysis (Murray et al. 2008). In general, each of these functional microstates in ERP
waveforms may reflect certain ERP component (Hu et al. 2013).

For decades, researchers have developed several techniques in order to identify the
underlying microstates (Pascual-Marqui et al. 1995; Gärtner et al. 2015; Murray et al.
2008). Although alternative approaches exist, most of the previous studies were based
on spatial cluster analysis of scalp potential maps (Michel and Koenig 2017). In these
techniques, the maps of all time points are assigned to a few classes (clusters), which
could explain most variances in EEG/ERP activities. Then, functional microstates are
determined post hoc by fitting the template map of identified classes back to the map of
each time point. Finally, several temporal parameters of these microstate classes (e.g.,
the mean duration, occurrence rate per second, percentage of time coverage over the
entirely recorded EEG signals) are computed (Khanna et al. 2014).

Researchers found that only 4~8 classes of distinct topographies were needed to
explain most variances (~80%) of the spontaneous EEG data (Rieger et al. 2016;
Pascual-Marqui et al. 1995; Van de Ville et al. 2010). In microstate segmentation of
spontaneous EEG in eye-open or eye-closed resting state, four microstate classes
(i.e., microstate class A, B, C, and D) have been consistently identified in different
studies with notable similarities across studies (Gao et al. 2017). Simultaneous
EEG-fMRI has been used to investigate correlations between EEG microstates and
resting-state fMRI (Britz et al. 2010, 2014; Van de Ville et al. 2010). Britz et al.
(2010) found that each of the four commonly observed microstate classes was
closely associated with the activity of distinct resting-state brain networks revealed
by BOLD signals of resting-state fMRI. Notably, the temporal parameters and
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topographical configurations of these four microstate classes could be influenced by
neuropsychiatric disorders, age, personality, and cognitive states (e.g., eye-open and
eye-closed) (Andreou et al. 2014; Britz et al. 2014; Gao et al. 2017; Hatz et al. 2015;
Schlegel et al. 2012; Koenig et al. 2002; Seitzman et al. 2017).

For ERP signals, a traditional approach to identify underlying ERP components
and their latencies from multichannel ERP waveforms is to visually inspect the ERP
waveform of each channel and the topographic map of each time point. However,
this approach has a series of limitations, such as being time-consuming, subjective,
and reference-dependent. In contrast, the microstate segmentation (i.e., segmenta-
tion based on topographic ERP) provides a robust and objective approach to
identify the underlying ERP components (Hu et al. 2013), since different scalp
fields must have been generated by different configurations of generators in the
brain and different ERP components must reflect distinct configurations of electric
generators (Murray et al. 2008).

In the following, we will illustrate the basic concepts of microstate analysis, the
commonly used clustering algorithms, the metrics derived from microstate analysis,
and how to perform microstate analysis using open-access tools. The pipeline of
microstate analysis is shown in Fig. 8.1.

Fig. 8.1 The pipeline of classical microstate analysis for resting-state EEG signals, which is done
through individual-level microstate identification (panel A) and following group-level microstate
analysis (panel B)
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8.2 Basic Concepts

Two global measures together with the waveforms and the scalp potential map are
applied frequently in a set of studies using EEG/ERP microstate analysis. They
are the global field power (GFP) and the global map dissimilarity (GMD) (Brunet
et al. 2010).

The GFP is defined as the standard deviation of the electric potentials across all
scalp electrodes of a given map, thus constituting a single, reference-independent
measure of response strength. Note that the GFP is high in “hilly” maps (i.e., maps
with pronounced peaks/troughs and steep gradients), but is low in “flat” maps (i.e.,
maps with shallow gradients) (Brunet et al. 2010). Moreover, high GFP is typically
associated with relatively stable landscape configuration and high signal-to-noise
ratio (SNR), while low GFP is commonly found in maps with low SNR, implying
that the scalp configuration is changing into another new one.

The GMD is an index of configuration differences between two electric fields and
is independent of the field strength (Brunet et al. 2010). It is defined as

GMD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where ui and vi are the voltage of map u and v at electrode i, respectively; �u and �v are
the average voltage of all electrodes of map u and v, respectively; and N is the
number of electrodes on map u or v.

The GMD is ranging from 0 (i.e., the two maps are equal after they are normalized
by GFP) to 2 (i.e., the two GFP-normalized maps have the same topography with
reversed polarity).

An equivalent measure is the spatial Pearson’s product-moment correlation
coefficient (i.e., spatial correlation) between the potentials of the two maps to be
compared. When the GMD of the two maps is 2, their spatial correlation is �1;
when the GMD of the two maps is 0, their spatial correlation is 1.

The GMD can be used to test whether different neural sources are involved in
generating the observed scalp potentials for the two maps being compared. It is
generally found that the GMD of two maps is inversely correlated with their GFPs,
suggesting scalp potential maps tend to remain quasi-stable when GFP is high
(Brunet et al. 2010).
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8.3 Spatial Clustering Algorithms in Microstate Analysis

During the past decades, several methods have been proposed in order to analyze/
decompose the map configurations into a certain number of EEG/ERP microstates.
In the vast majority of initial studies in this field, the spatial locations of negative and
positive centroids in 2D or 3D scalp space (i.e., the locations of electrodes with
negative extreme and positive extreme) were used as descriptors of each scalp map
in EEG/ERP signals (Lehmann et al. 1987). Through observing the time series of
these map descriptors, the moments where such descriptors significantly altered can
be identified and used to define the borders between two successive microstates.
Although this method has been proved to be useful in the initial studies, it has some
limitations (Khanna et al. 2014). Firstly, complex electric maps often have more than
one negative or positive centroid. Secondly, only limited spatial information (i.e., the
locations of electrodes with negative and positive extremes) is used. Thus, for most
related studies in these years, this method has been abandoned. Instead, two clus-
tering algorithms were used. One was based on the k-means clustering (Pascual-
Marqui et al. 1995). The other method was based on hierarchical clustering and was
named as atomize and agglomerate hierarchical clustering (AAHC) (Murray et al.
2008). The basic ideas underlying these two kinds of methods are illustrated below.

Suppose there are n microstate classes of the EEG/ERP signals to be analyzed
using k-means clustering-based microstate segmentation (Fig. 8.2). Although the

Fig. 8.2 The pipeline of k-means-based microstate identification
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number of microstate classes can range from 1 to the total number of all data points
in theory, the actual number of microstate classes usually ranges from 2 to 20 in
typical multichannel EEG/ERP data. Steps of the k-means clustering-based micro-
state segmentation are as follows. Firstly, the GFP of each electric map is computed.
As explained above, scalp potential maps tend to remain quasi-stable and have high
SNR when GFP is high; thus, only the topographies at the GFP peaks are used as
“original maps” in k-means clustering. Secondly, n scalp maps are randomly
selected from these original maps and are later used as the “template maps” of the
n microstate classes. Thirdly, the spatial correlation or GMD between each template
map and each original map is computed, which provides spatial correlation series for
each template map as a function of time. For each original map, one of the template
maps yields highest spatial correlation or lowest GMD. According to these metrics,
the global explained variance (GEV) of these template maps, which could quantify
how well these template maps describe the total variance of the whole data, is
calculated. Each of the n template maps is updated via averaging all the original
maps that yielded highest spatial correlation or lowest GMD with a certain template
map compared to all the other template maps. Then, the time series of spatial
correlation or GMD for each updated template map and the resultant GEV are
recomputed as above. These steps (i.e., updating template maps, recalculating spatial
correlation or GMD series for each template map, and recalculating the GEV) are
repeated until the GEV becomes stable (i.e., a maximum GEV is found). Note that,
since the k-means clustering analysis is based on the random selection of initial
template maps from all the original maps as seed clusters, the final results can in
principle vary from run to run, even though the same multichannel EEG/ERP dataset
is analyzed. In order to overcome this issue, a new set of n initial template maps are
randomly selected and the entire above procedure is repeated. Typically, a high
number of randomizations (e.g., 100 times) are used, which will simply increase
computational times as the number increases. Among all the random selections, the
set of n final template maps that yield the highest GEV will be retained. Finally, all
the above steps will be conducted for n + 1 template maps, and iterate until a user-
defined maximum microstate classes number has been reached. A crucial question
here is how to determine the optimal number of template maps (i.e., microstate
classes or cluster in k-means clustering analysis), which will be discussed in the next
section of this chapter.

The k-means method is performed for each supposed number of clusters (i.e.,
microstate classes), whereas the AAHC approach (Fig. 8.3) operates in a
completely bottom-up manner wherein the number of clusters is initially large
and progressively diminishes (Murray et al. 2008). In AAHC, only the topogra-
phies at GFP peaks are used as “original maps” for many studies. Each of these
original maps is designated as a unique cluster. The cluster with the lowest GEV is
identified and atomized (i.e., its constituent maps are atomized). All the maps in
this cluster will be independently re-assigned to the remaining clusters with highest
spatial correlation. The AAHC then proceeds recursively by removing one cluster
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at a step and stops when all the original maps are merged into one single cluster.
Supposing n clusters (i.e., microstate classes) exist in the EEG/ERP data being
analyzed, the step when n clusters exist will be used in the next analysis. The
template map of each cluster is obtained via averaging all the original maps
belonging to that cluster. As is the case for k-means approach, we need to
determine the optimal number of clusters in the next step.

A method closely related with the AAHC is the topographic atomize and agglom-
erate hierarchical clustering (T-AAHC) method. The only one difference between
T-AAHC and AAHC is the assessment of the clustering quality and the definition of
a “bad” cluster. As illustrated above, the “bad” cluster is defined as the cluster with
the lowest GEV. However, in T-AAHC, the “worst” cluster is defined as the cluster
that has the lowest sum of correlations between its members and prototypical map.

During the implementation of k-means clustering or (T-)AAHC, the following
issues should be noted. Firstly, since a high number of randomizations are needed in
k-means clustering, the computational time of k-means clustering is usually very
long compared to the (T-)AAHC approach (Murray et al. 2008). Although these two
methods often yield generally comparable results, especially for multichannel
EEG/ERP activities with high SNR, the final template maps identified by the two

Fig. 8.3 The pipeline of
(T-)AAHC-based microstate
identification
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methods may not be exactly the same, as have been shown below. Secondly, in many
studies, the original maps during clustering are defined as the maps at GFP peaks
(Santarnecchi et al. 2017). However, in some studies, all the maps in the
multichannel signals being segmented are determined to be the original maps in
topographical segmentation, especially when the dataset being analyzed is ERP
signals (Hu et al. 2013). Thirdly, the polarity of each original map is usually
disregarded in topographical clustering of resting-state EEG signals, whereas the
polarity should not be disregarded in microstate analysis of multichannel ERP
dataset (Murray et al. 2008; Kikuchi et al. 2011). Fourthly, some additional steps
are needed before map clustering. Researchers suggested that the resting-state EEG
signals should be digitally band-pass filtered between 2 and 20 Hz (or between 1 and
40 Hz in some other studies) and re-montaged against average reference (Van de
Ville et al. 2010; Schlegel et al. 2012; Koenig et al. 2002).

8.4 Identifying the Optimal Number of Clusters

Both spatial clustering algorithms will identify a set of clusters (i.e., microstate
classes) and related template maps. Then, we need to determine the optimal number
of clusters. Two methods have been used in literatures: a cross-validation
(CV) criterion and a Krzanowski-Lai (KL) criterion (Pascual-Marqui et al. 1995;
Van de Ville et al. 2010; Santarnecchi et al. 2017; Michel and Koenig 2017). The
first method seeks to optimize the ratio between the GEV and the degrees of freedom
for a given cluster number, since increasing the number of clusters (i.e., microstate
classes) would increase the GEV but decrease the degrees of freedom and vice versa.
This method provides a value of CV for each cluster, and the minimum CV gives the
optimal number of clusters. The second method works by first computing a quality
measure of the clustering, and the highest value of this quality measure indicates the
optimal map clustering. However, these two methods have some limitations. For
example, the CV criterion is sensitive to the number of scalp electrodes. When high-
density EEG is analyzed, a minimum CV usually could not be found. For the KL
criterion, several prominent peaks may be observed, especially for resting-state EEG
signals. In data analysis, both methods should be used in identifying the optimal
number of clusters. Besides, several local maximum values may be observed in the
results of KL criterion. In practice, the second maximum value of the KL curve may
be more important than the first maximum value.

As mentioned above, the four clusters (i.e., microstate classes) were commonly
identified in resting-state EEG data. Moreover, the four clusters exhibited highly
similar configurations in various studies. Thus, many experimental and clinical
studies fixed four clusters as a standard of resting-state EEG signal processing, in
order to ensure consistency with previous studies (Gao et al. 2017; Michel and
Koenig 2017).
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8.5 Fitting the Template Maps to the Potential Maps

In this step, each scalp map of EEG/ERP dataset is assigned to one of the template
maps. Two different approaches have been used in previous studies (Murray et al.
2008). In the first approach, the spatial correlation between each template map and
the map of each time point is computed, and each map is assigned to the cluster with
highest spatial correlation. In the second approach, we only compute the spatial
correlation between original maps (i.e., the ones over GFP peaks) and template
maps. If two adjacent original maps have highest spatial correlation for the same
microstate class, then all the electric maps between these two adjacent original maps
are assigned to the same microstate class (i.e., cluster). If the two adjacent original
maps are assigned to different clusters, then the first half of maps between the two
adjacent original maps are assigned to the preceding microstate class, whereas the
last half of maps are assigned to the following microstate class. Through these fitting
procedures of the first approach or the second approach, the scalp maps of all the
time points will be re-expressed as an alternating sequence of functional microstates.

After this map fitting, temporal post-processing can be performed. For example,
small segments could be rejected via temporal smoothing. Moreover, if the spatial
correlation between template maps of two clusters is relatively high (e.g., higher than
0.9), these two clusters can be merged into one cluster (Brunet et al. 2010).

8.6 The Commonly Used Microstate Parameters

Many parameters can be derived from the microstate sequence. There are four
commonly used microstate parameters: (1) the mean duration of a microstate class,
(2) occurrence rate per second of a microstate class, (3) time coverage of a microstate
class, and (4) the transition probability between adjacent microstate classes (Michel
and Koenig 2017; Schlegel et al. 2012). Note that, for ERP maps, the second and the
fourth metrics are not available since a given microstate class appears only once.

8.7 Available Tools of Microstate Analysis

There are some free and open-access tools that can be used in microstate analysis:
(1) the LORETA software developed by Roberto D. Pascual-Marqui from the KEY
Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich,
Switzerland (Pascual-Marqui 2002) (http://www.uzh.ch/keyinst/loreta.htm); (2) the
EEGLAB plugin for microstates developed by Thomas Koenig from the University
of Bern, Switzerland (https://sccn.ucsd.edu/wiki/EEGLAB_Extensions_and_plug-
ins); and (3) the CARTOOL software developed by Denis Brunet and colleagues
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from the Functional Brain Mapping Laboratory, Departments of Fundamental and
Clinical Neurosciences, University Medical School, University of Geneva, Switzer-
land (Brunet et al. 2010) (https://sites.google.com/site/fbmlab/cartool).

The LORETA software has a module called “microstate segmentation,” which
can parse the topographic maps of EEG/ERP into microstates. Only k-means
clustering-based microstate segmentation is available in the current version of
LORETA. The EEGLAB plugin for microstates was developed as a plugin of the
famous EEGLAB software, providing an easy-implementation way to conduct
microstate analysis for EEGLAB users. Both k-means clustering and AAHCmethod
can be found in this plugin. However, it could only be applied to the microstate
analysis of resting-state EEG activities. We cannot perform ERP microstate seg-
mentation using this EEGLAB plugin. Compared to the above two tools, the
CARTOOL is a much versatile software. However, it could not recognize the files
in EEGLAB format. Below, we will show how to identify the four commonly
detected EEG microstates in spontaneous EEG activities using the EEGLAB plugin
for microstates and how to identify ERP microstate in typical ERP waveforms using
the CARTOOL software.

8.8 Example: Identifying Microstates in Spontaneous EEG

Basic Information of the Demo Datasets In the experiment, both eyes-closed and
eyes-open resting-state EEG data were recorded about 5 min from the 64 scalp tin
electrodes mounted in an elastic cap (Brain Products, Munich, Germany), with the
sampling frequency of 500 Hz around 9:00 to 12:00 in the morning. Subject was
introduced to eyes-closed first and then eyes-open. The EEG datasets consist of
20 4-min EEG recordings (eye-closed and eye-open condition), obtained from
10 volunteers in the Sleep and NeuroImaging Center of Southwest University,
China. In preprocessing, the continuous EEG data were down-sampled to 250 Hz
and digitally filtered within the 0.1–45 Hz frequency band using a Chebyshev type II
filter. The filtered EEG recordings were re-referenced to average reference and then
segmented to 2 sec. The segmentations with ocular, muscular, and other types of
artifact were identified and excluded. We only retained the first 120 segmentations,
constituting a 4-min EEG recording for each subject.

The EEGLAB plugin for microstates can be downloaded from https://sccn.ucsd.
edu/wiki/EEGLAB_Extensions_and_plug-ins. A brief video on how to use this tool
can be downloaded from http://www.thomaskoenig.ch/index.php/software/micro
states-in-eeglab. In this plugin, there is a MATLAB script called
“TestMSAnalyses.m,” which is a demo script on how to use this tool. For users
unfamiliar to MATLAB programming language, we have modified the above script
into another script, i.e., the “restEEG_microstate_analysis.m.”
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In order to use this modified script, please follow the steps below:

1. This EEGLAB plugin for microstates does not have any external dependency,
except EEGLAB. Please unzip the directory to the “plugins” folder under the
EEGLAB folder, and add the paths via addpath (genpath
(‘my_microstate0.3_directory)) or via the set path menu in MATLAB.

2. Open this script (“restEEG_microstate_analysis.m”), and run it.
3. A modal dialog box with prompt “Your version of DIPFIT”will open. Here, you

should enter your version of DIPFIT, which is a plugin for EEGLAB. It can be
found in the “plugins” folder under the “EEGLAB” folder. For EEGLAB 13.1,
the version of DIPFIT is 2.2; thus, you should enter “2.2” in this case.

4. A folder selection dialog box with prompt “Path to the data of one condition”
will open. This dialog box enables users to navigate to the folder (e.g., the “EC”
folder in demo datasets), which stores the EEG data of all subjects in one
condition. Before using this plugin for microstate analysis, you should create a
folder for each condition/group and put all the preprocessed resting-state EEG
datasets of a condition/group, which should be in EEGLAB format (�.set and �.
fdt), to the corresponding folder.

5. A modal dialog box with prompt “The name of this condition” will open. Here,
you should enter the name of the condition. For example, if the “EC” folder has
been selected in the above step, you should enter “EC” here.

6. A modal dialog box with prompt “The name of this group” will open. Here, you
should enter the name of this group. Since there is only one group in demo
datasets, you can enter any arbitrary input, such as “group 1.”

7. A folder selection dialog box with prompt “Path to store the results” will open.
This dialog box enables users to navigate to the folder where they are able to
store the results of microstate analysis.

8. A modal dialog box with prompt “Any electrode to be deleted? True ¼ 1 False
¼ 0” will open. If there are any electrodes that should be deleted before
microstate analysis (e.g., electrodes over bilateral mastoids and electrodes that
can record non-brain signals), you should enter “1” here. Otherwise, enter “0” in
this step.

9. If you entered “1” in the previous step, a modal dialog box will open. Here, you
should enter the name of electrodes you want to exclude from microstate
analysis.

10. After the above parameters have been entered, the EEGLAB will open, and the
EEG datasets in the folder you specified will be loaded into EEGLAB. Some
additional preprocessing will be conducted on these datasets, including loading
the channel locations, average-referencing, and band-pass filtering between
2 and 20 Hz. Four modal dialog boxes will open sequentially, which are used
to define the parameters for clustering. In the first dialog box with prompt
“Using the maps of GFPPeaks as original maps? True ¼ 1 False ¼ 0,” enter
“1.” In the second dialog box with prompt “Ignore the polarity of maps? True ¼
1 False ¼ 0,” enter “1.” In the third dialog box with prompt “Number of
restarts,” enter “100.” In the fourth dialog box with prompt “Use AAHC?
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True ¼ 1 False ¼ 0,” in case you want to use AAHC in map clustering, please
enter “1”; otherwise enter “0” (in this case, k-means clustering will be used).
Note that, since randomization of initial template map is not needed in AHHC,
thus changing the input parameters of the third dialog box will not change the
computational time if AAHC is selected in the fourth dialog box. After these
parameters have been specified, the script will loop across all subjects to identify
the individual clusters of all subjects.

11. After the individual clusters (i.e., individual microstate classes) of all subjects
are identified, the script will combine the microstate maps across subjects. The
group-level four microstate classes will pop up, and then we need to sort the four
microstate classes in the canonical order: microstate class A, B, C, and D exhibit
left-right orientation, right-left orientation, anterior-posterior orientation, and
fronto-central maximum, respectively. The updated EEG datasets with micro-
state information for all the subjects will be stored in the path you specified in
step 7.

12. A modal dialog box with prompt “Fitting based on GFP peaks? True ¼ 1 False
¼ 0” will open. For most cases, please enter “1.”

13. Two files will also be stored in the path you specified in step 7. The names of
these two files are “ResultsFromIndividualTemplates.csv” and
“ResultsFromGrandGrandMeanTemplate.csv,” respectively. The difference
between these two files is during fitting each original map to the template maps
of the four microstate classes (i.e., clusters), the individual template maps and
group-level template maps will be used, respectively. These two files will store
the microstate parameters (i.e., GEV and the duration, occurrence rate, time
coverage, and transition probability between any two microstate classes).

8.9 Example: Identifying Microstates in Multichannel ERP

Here, the datasets in folder “Data_AVSP_20/L/datasets”will be used as demo datasets
in ERP microstate segmentation. First of all, we need the group-level grand-average
ERP activities in Brain Vision Recorder format. The “Grandaverage” plugin of
EEGLAB, which can compute the ERP activities of specified EEGLAB datasets
and can be downloaded from https://sccn.ucsd.edu/wiki/EEGLAB_Extensions_and_
plug-ins, is used to obtain the grand-average ERP activities of the EEGLAB datasets in
condition “L.” The installation of this EEGLAB plugin is exactly the same as the
microstate plugin shown above. In order to obtain the grand-average ERP activities in
Brain Vision Recorder format, please follow the below steps:

1. Load all the 20 datasets in condition “L” at once via “File >> Load existing
dataset.”

2. Merge these datasets through “Edit >> Append datasets,” and compute the group-
level grand-average ERP activities through the “Grandaverage” plugin.
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3. Re-extract data epochs via “Tools >> Extract epochs.” Here, only the ERP
activities between 0 and 1000 ms after the stimuli onset should be retained.

4. Reference to common average via “Tools >> Re-reference.”
5. Export the ERP activities in Brain Vision Recorder format through “File >>

Export >> Write Brain Vis. exchange format file.” You should name the files
storing grand-average ERP, such as “L_granderp_avgref.” In this case, three files
will be exported: “L_granderp_avgref.dat,” “L_granderp_avgref. vhdr,” and
“L_granderp_avgref. Vmrk,” which store the ERP data, the header information,
and the markers, respectively.

After we have exported these ERP activities, we can use the CARTOOL software
to conduct microstate segmentation. In this software, select “Tools >> EEG and
Tracks >> Segmentation of EEG files,” then a dialog with title “Segmentation” will
open. This dialog box has two parts: “Files” and “Parameters.”

The first part “Files” has a header “Files Presets” and three panels. For “Files
Presets,” select “ERPs/On Grand Mean(s).” In the first panel “Segmenting Groups of
Files,” hit “Add New Group of Files,” and load the grand-average ERP generated in
the previous step. In the second panel “Epochs,” select “No epochs.” In the third
panel “Files Options,” specify the directory where you want to store the results of
microstate segmentation and the kinds of files you want to export. Then, hit “Next,”
which will open the second part “Parameters.”

The second part “Parameters” has a header “Computation Presets” and four
panels. For “Computation Presets,” we can choose “EEG/Surface/ERPs/T-AAHC
(recommended)” or “EEG/Surface/ERPs/K-Means (classical)” depending on which
method you want to use. In this case, we choose the first method AAHC. For the first
panel, we should do nothing. In the second panel “Data Preprocessing,” select”
Using Whole Data.” In the third panel, we need to choose “Clustering method”
(topographical AAHC [T-AAHC]) and “Range of Clusters” (from 1 to 20 clusters in
this case) and decide what we want to do with time points with low correlations
(Select “No Labeling if Below,” “50”% here). In the fourth panel “Temporal
Postprocessing,” select “Sequentializing Segments,” “Merging Correlated Seg-
ments” with “If Correlated above” 95%, “Segments Temporal Smoothing” with
“Window Half Size” 3 and “Strength (Besag factor)” 10, and “Rejecting Small
Segments” with “Shorter than or equal to” 20 TFs. Then, hit “Process.”

After microstate segmentation is finished, a dozens of files will be generated in
the folder you specified in the first part “Files” of dialog “Segmentation.” Suppose
the name of folder you specified is “Seg LGranderp.” In this folder, you will find a
file named as “Seg LGranderp.vrb.” Open this file, and at the end of this file you will
find the “Optimal Clustering” number. For the current ERP dataset, the optimal
clustering number is 10. Then, we can open the files saving the results corresponding
to cluster number that is 10. For the current data, the corresponding files are named
as “Seg LGranderp.10.(12).” In the file name, “10” means we want to segment the
ERP signals into 10 clusters (i.e., ERP microstates), and “12” means the actual
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number of identified microstates, since in many cases two nonadjacent segments are
assigned to the same cluster during clustering. In the temporal postprocessing, the
nonadjacent segments assumed to be in the same cluster are re-assigned to two
different clusters. In order to see the results of microstate segmentation, you can drag
the “Seg LGranderp.10.(12).seg” into the CARTOOL window. The second, third,
fourth, and fifth cluster correspond to N1, N2, P2, and P4 component, respectively,
which is very similar to the results in Hu et al. (2014).

The results of the above two examples have been shown in Figs. 8.4 and 8.5,
respectively.

Fig. 8.4 The group-level maps of the four microstate classes (A–D) in the eye-closed (EC) and
eye-open (EO) condition when the AAHC method or k-means clustering is used. Color should be
used for this figure in print
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8.10 Remarks and Conclusion

To sum up, several points of EEG/ERP microstate analysis should be mentioned.
First, the EEG data should be preprocessed properly in order to obtain robust results.
Second, the functional significance of the four commonly observed microstate
classes in resting-state EEG is still unclear. Thus, you should be cautious about the
interpretation of the results from microstate analysis in resting-state EEG. Third,
although the microstate segmentation is mainly applied to resting-state EEG signals
or ERP activities, this method can also be applied to time-frequency domain. More
details can be found in Jia et al. (2015). Finally, we only provide the application of
microstate analysis on identifying the underlying ERP components and latencies as
an example. In fact, more complex data analysis based on ERP topography can be
performed, as shown in Murray et al. (2008) for extended reading.
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Chapter 9
Source Analysis

Xu Lei

Abstract The scalp electroencephalogram (EEG) records electrical activity gener-
ated by the ensemble of a great number of pyramidal neurons within the brain.
Sampling of electromagnetic brain signals in milliseconds has already been
achieved. Unfortunately, the spatial resolution of EEG is very poor, which is limited
by the relatively small number of spatial measurements (only a few hundred in EEG)
and the inherent ambiguity of the underlying static electromagnetic inverse problem.
In fact, localizing these potentials from the scalp EEG within the brain is an ill-posed
inverse problem. This chapter firstly provides a brief introduction to the topic with an
overview of the inverse problem from a signal processing perspective. In the next
two sections, we describe the source models and head models of EEG source
analysis, followed by various approaches to the inverse problem with which the
properties of the neural current generators are estimated from the data. Finally, we
discuss about the recent developments and the emerging signal processing issues of
EEG data analysis.

Keywords Inverse problem · Forward problem · EEG · Source imaging

The scalp electroencephalogram (EEG) represents electrical activity generated by
the ensemble of a great number of pyramidal neurons within the brain. When a large
number of pyramidal neurons synchronously produce their post-synaptic potentials,
significant electric currents start to flow in the surrounding tissue, which may be
observable by the electrodes on the scalp. With advances in technology, sampling of
electric brain signals at millisecond intervals has already been achieved. Unfortu-
nately, the spatial resolution of EEG is very poor, which is limited by the relatively
small number of spatial measurements (only a few hundred in EEG) and the inherent
ambiguity of the underlying static electromagnetic inverse problem. In fact,
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localizing these potentials from the scalp EEG within the brain is an ill-posed inverse
problem (Helmholtz 1853). An introduction to the topic with an overview of the
associated inverse problem from a signal processing perspective is provided below.

9.1 The Forward Problem

Two important concepts for EEG source analysis are the forward problem and the
inverse problem (Fig. 9.1). The forward problem is an estimate of the topographical
map that would result from activity of a dipole in a specific region of the brain with a
specific orientation. The inverse problem is the estimate of what dipoles with
different orientations and magnitudes could produce in an observed topographical
map.

As the localization and orientation of dipole has been known, the output signal
from the electrodes on the scalp can be solved analytically without any EEG data.
Main factors that influence the accuracy of our calculation are the head model and
the source model. For a particular source model, computation of the scalp potentials
and induced electric fields requires solution of the quasi-static approximation of
Maxwell’s equations. The detail of the mathematical deductions can be found in
Baillet’s study (Baillet et al. 2001a). Analytic solutions exist for simplified geome-
tries, such as when the head is assumed to consist of a set of nested concentric
homogeneous spherical shells representing the brain, skull, and scalp. However,
when the surface integrals are computed over realistic head shapes, these equations
must be solved numerically. These models are routinely used in most clinical and
research applications to EEG source analysis.

Fig. 9.1 Forward problem and inverse problem in EEG source analysis. The forward problem has a
unique solution and can be obtained analytically without EEG data. The inverse problem has no
unique solution because many different configurations of dipoles could produce the same pattern of
topographical activity. Here, both the one white dipole and the two yellow dipoles could produce
the same scalp recorded activity
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9.1.1 Source Model

Source modeling includes how to model the source and determine the source space.
There are at least three models to model the source, such as the charge model (Yao
1996), the dipole model (El Badia and Ha-Duong 2000), and multipolar models
(Nolte and Curio 2000). The current dipole is a straightforward extension of the
better-known model of the paired-charges dipole in electrostatics. In contrast, an
equivalent charge model has similar effectiveness for imaging a pair of dipoles,
while for imaging sources with special construction, the latter is superior to the
equivalent current dipole (Yao 1996). Note that brain activity does not actually
consist of discrete sets of current dipoles, but rather that the dipole is an approximate
representation for synchronous activation of a large number of pyramidal neurons,
extending over a few square centimeters of gray matter. However, an identifiability
problem may arise when too many dipoles are utilized to represent a single large
region of synchronous activation. These sources can be simplified to a multipolar
model, which is derived by performing a Taylor series expansion of the Green
function. An example of multipolar models was given in modeling the lateral extent
of neuronal activity (Nolte and Curio 2000).

Another important topic is the distribution of source. If only a few restricted areas
are assumed active synchronously and each area evolves with its specific temporal
process, then the EEG potentials can be modeled by a small set of isolated sources.
This localized single time-course hypothesis is both convenient and fairly realistic
since neurons in a population are expected to be strongly coherent in time (Scherg
and von Cramon 1986). However, the disadvantages are obvious for the isolated
source model. For example, dipole position may be well approximated by the center
of a cortical patch, but it is hard to represent the extension of source. In fact, dipole
localization may be meaningless for a highly extended cortical region (Baillet et al.
2001b). Worse still, in the case of multiple sources, estimating the number of dipoles
is often a nontrivial task (Benar et al. 2005).

The above-mentioned traps have led some scientists to prefer distributed sources
where a large number of dipoles are placed evenly in the head, either in the whole
brain volume (Hämäläinen and Ilmoniemi 1994) or along the surface of the cortex
(Babiloni et al. 2003), the distributed source model. Because a dipole has three fixed
orientations (along the cardinal x -, y -, and z-axes), forward problem can have
different orientations in space. In some models, all three orientations are calculated,
but for other models only dipoles that are perpendicular (normal) to the cortex are
modeled. One optimal selection is based on the segmentation of the individual
magnetic resonance imaging (MRI) into the gray and white matters. Because the
interface between the gray and white matters forms a surface solution space of source
imaging, the source space is constrained to the cortical surface, and the orientation of
the source can be considered to be radial to the surface. The use of the individual
MRI is necessary for clinical cases when deformations or lesions are presented.
Determining the distribution of source is valuable to determine the Talairach coor-
dinates of the dipoles, which is informed to draw conclusions about the activated
neurophysiologic structures (Fig. 9.2).
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9.1.2 Head Model

Head model determines the measurements on the scalp after locating the sources at
the given positions. Both the electromagnetic (permeability and conductivity) and
geometrical (shape) features of the volume are considered in head model. The
simplest and still widely utilized head model is the spherical model. Because of
the uniform conductivity, the spherical model allows for an analytical solution of the
forward problem (Yao 2000). However, the accuracy of source localization is
limited in this model because the head is hard to be simplified to spherical and the
conductivity is hard to be simplified to spatially uniform (Michel et al. 2004). An
advanced model is the multi-shell spherical head model, which incorporated differ-
ent conductivity parameters and considered local anisotropies, and it ameliorates the
accuracy to a certain degree.

Several simulations have shown that accurate lead field computation can only be
achieved by using realistic volume conductor models, such as the boundary element
method (BEM) and the finite element method (FEM) (Valdes-Hernandez et al.

Fig. 9.2 The source space and the head model. (a) The dipole model assumes limited dipoles; their
location, direction, and strength should be estimated. (b) The distributed source model. More than
1000 brain sources were constructed from an MRI (each blue dot is a location). (c) Three-shell
spherical head model and (d) three-shell realistic head model. The three meshes correspond to the
scalp, skull, and cortex
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2009). For the BEM model, the interfaces are modeled as triangulations between
compartments of equal isotropic conductivities (Hämäläinen and Sarvas 1989).
Since individual MRI is now routinely performed as a part of most psychological
protocols, this data is readily available. In this condition, surface boundaries for the
brain, skull, and scalp were extracted from these images. Many automated and semi-
automated methods exist for surface extraction from MR images (Fischl et al. 1999).

The FEM mode, in contrast, tessellates the whole volume and considers the
anisotropic electrical conductivity of each element. Skull breaches and other struc-
ture anisotropies can be taken into account, especially for the deep sulci sources
(Güllmar et al. 2010; van den Broek et al. 1998). However, the generation of realistic
geometric models is a nontrivial task, requiring the accurate segmentation of MRI
and stable tessellations of head compartments. Worse still, the information about
tissue conductivities is rarely available with current technology. Because of its
complexity of the individual FEM model, efforts have been made over recent
years to combine the computational efficiency of template model with more accurate
descriptions of the individual head shape. For example, in the condition that
individual’s MRI is not available, an approximate model (AM) was proposed
(Valdes-Hernandez et al. 2009). Statistical comparisons revealed that the perfor-
mance of AM was better than the usual average model in the MNI space, and it
provided a convenient tool in large clinical studies.

9.2 The Inverse Problem

Given the observed pattern of topographical activity, the inverse problem
reconstructed the most likely location, orientation, and magnitude of cortex source
that generated this activity. This problem can be difficult to answer for both
theoretical and practical reasons. At a theoretical level, there is no unique solution.
This means that there are many possible – and possibly very different – configura-
tions of brain activity that can produce the same topographical map (see Fig. 9.1). At
a practical level, all methods for estimating the inverse solution require several
assumptions and involve parameter selections, and those parameter selections may
impact the results. The rest of this section introduces some of the commonly used
methods for estimating solutions to the inverse problem, as well as to some of the
assumptions and parameters involved in each method.

9.2.1 Equivalent Current Dipole

Equivalent current dipole (ECD) assumed the EEG signals are generated by a few
isolated dipoles located at distinct positions. This may be a valid assumption for
experiments that involve stimulation of primary sensory or motor cortices without
concurrent cognitive or decision-making processes. Under the assumption of a few
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isolated point sources, the sources can be uniquely identified mathematically and the
parameters may be estimated by various nonlinear optimization algorithms (Lei et al.
2009). The target function usually includes minimizing the residual variance
between simulated model and the recorded signal. Once the dipole location, orien-
tation, and magnitude are estimated, a weight for each electrode can be determined
such that the weighted sum of activity at all electrodes is the estimate of the dipole
activity (Fig. 9.3).

Multiple approaches to dipole source localization exist. One is to fit dipoles to
scalp recordings separately for each moment; this approach is known as moving
dipole localization because both the dipole location and orientation can vary over-
time. This is typically done on time-domain data (event-related potentials) of one
time point, or the average of a time window, or the spatial pattern after ICA

Model initiation: 

starting model of dipole locations and orientations. This information may 

from previous studies or fMRI experiment (which has better spatial 

resolution)

Step i in source space:

Current model of dipole locations and orientations

Step i in scalp surface:

Calculate the distribution of voltage from current model. This is a simple 

forward problem

Evaluation Step i:
Calculate residual variance of current model (RV =XX.XX%)

Step i+1 in source space:

Make a small adjustment to current model to reduce the RV

Fig. 9.3 The procedure of dipole fitting in equivalent current dipole model. The procedure includes
five main steps. Model initiation: starting model of dipole locations and orientations. Iterated step in
source space estimates current model of dipole locations and orientations. Iterated step in scalp
surface calculates the distribution of voltage from current model. Evaluation step calculates residual
variance of current model. The updated step in source space makes a small adjustment to current
model to reduce the residual variance
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decomposition. Another approach is to fix the dipole location but allow the orien-
tation to vary freely, or to fix both the dipole location and orientation but allow only
the dipole magnitude to vary. This is implemented in BESA and SPM. Once the
weights are constructed, a dipole time series can be created, and analyses can be
performed on this time series, including time-frequency decomposition. Realistic
head and brain models for the forward problem are possibly but not commonly used.

The advantage of EDM is its simplicity and the main drawback is that one needs
to predefine the number of sources, which is unfeasible for many problems. In
addition, the number of unknown parameters is smaller than the number of sensors.
Furthermore, the optimization is often trapped in the local minima and the sources to
be localized need to be of small number. Another disadvantage is the interpreting of
one or a small number of dipoles. This rests on the rationale of the assumption that
that dipole is the only active source in the brain. In addition, as some researches
revealed, for complex cognitive processes or widespread epileptic discharges, the
EDM assumption is inappropriate (Benar et al. 2005).

9.2.2 Beamformer and Scanning Methods

The beamforming approaches, which are originated from the radar and sonar signal
processing, have recently been the most common algorithms in EEG source analysis
(Gross et al. 2001; Sekihara et al. 2001; Van Veen et al. 1997). These approaches are
designed to estimate the activity at one brain region by simultaneously minimizing
the interference from other active regions. For this target, the selected operator
optimizes a goal function that maximizes the ratio between activity and noise at
each candidate region. The goal function contains the a priori information about the
sources and a covariance matrix about the recorded signal. The method usually
contains two steps. First, the sources are linearly estimated using an optimal direc-
tion that is a priori defined. Therefore, the beamforming approaches have the same
basic limitations as the other linear inverse solutions. Second, the result is normal-
ized by the noise power. The idea of normalization as a second step in the inverse
solution has also been used in the sLORETA method. Simulation studies suggest
that beamforming provides results with higher accuracy compared to other source
analysis methods and that beamforming has the least amount of overestimation of
the spatial extent of the activation (Dalal et al. 2008).

The main disadvantages of beamforming approaches are the number of parame-
ters that must be set and the influences of those parameters on the results. These
options include which algorithm to use; whether and which frequencies to analyze;
whether to use time-domain covariances or frequency-domain cross-spectral densi-
ties; the length of the time window for computing the covariances and whether that
window should change as a function of frequency; whether and how to regularize the
covariance matrix; whether to compute weights based on all conditions or separately
for each condition; what to use as a normalization baseline; how many voxels to
estimate and where they are located; what type of forward model to use (for EEG,
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what values to use for skull and scalp conductance); whether to fix dipole orienta-
tions with respect to the cortex or use three cardinal orientations; if using three
orientations, how to estimate a voxel’s activity from projections onto the three
orientations; and so on. The number of parameters and choices should not dissuade
you from applying adaptive spatial filters, but it is important to consider the
parameters of the analyses and their possible influences on the results.

A related but distinct technique is to use a scanning strategy. That is, all source
locations are scanned one by one to quantify how well the scalp map that is
forwardly computed from assuming a dipole at each location can be classified as
either being in the signal subspace or being in the noise subspace, while the signal
and noise subspaces are orthogonal to each other and estimated from EEG or MEG.
An implementation of this approach is multiple signal classification (MUSIC), in
which the nonlinear optimization process of finding the dipole location is avoided
(Mosher et al. 1992). However, MUSIC’s performance suffers if the sources to be
localized are correlated, especially if they are close to one another. Variations of
MUSIC, such as recursively applied and projected MUSIC and the first-principles
vector localization method, mitigate this problem to a certain degree.

9.2.3 Distributed Source Model

The disadvantage of EDM is that the exact number of dipole sources generally
cannot be determined a priori. In view of this problem, distributed source models
have received increased attention, because they do not need any a priori assumption
about source number. In these models, each point of a 3-D grid or 2-D surface of
solution points is the source, and this implies that the number of sources is much
larger than the number of electrodes. The following task is to infer a unique solution
that explains the scalp measurements. Unfortunately, an infinite number of solutions
can lead to the exactly same scalp measurements. This means that the inverse
problem is highly underdetermined.

Based on DSM, EEG inverse problem can be stated as

Y ¼ Lθ þ ε1, ð9:1Þ

where Y 2 Rn � s is the scalp measurement with n sensors and s samples. L 2 Rn � d is
the lead field matrix and θ 2 Rd � s is the source dynamics in s samples for d dipoles.
If sources are assumed to have free directions, L is a matrix of n � 3d and θ is the
source solution matrix of 3d � s. 3 indicates the three orthogonal components of
each dipole. The term ε1 represents random fluctuations in sensor spaces. Equation
(9.1) is a linear equation, and the EEG inverse problem is to solve this equation. Here
n is usually much smaller than d; some additional constraints on the solution are
needed. Here we introduced some typical algorithms.

The minimum norm (MN) solution is a general estimator for a 3-D brain source
distribution in the absence of any a priori information (Hämäläinen and Ilmoniemi
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1994). The only assumption in MN is that the solution should have minimum overall
intensity, i.e., the smallest L2-norm. The solution has the simplest expression:

θ ¼ LT LLT
� �þ

Y , ð9:2Þ

where + denotes the Moore-Penrose pseudo-inverse and T denotes the transposition
of a matrix. This is the minimum square multiply method, which is widely utilized in
general linear model estimation. The MN solution provides a unique solution as only
one combination of brain sources can have both the best fitting of the measurements
and the lowest overall intensity. However, there is no physiological necessity to
restrict the overall intensity with the lowest values. In addition, as superficial points
can produce large voltage with very small intensity, the MN algorithm favors weak
and localized superficial patterns. In contrast, deep sources are hard to be
reconstructed and they may be incorrectly projected to some superficial sources.

Because of the superficial tendency of the MN, various weightings have been
proposed to ameliorate the algorithm. One possible weighting is based on the norm
of the columns of the lead field matrix (Lawson and Hanson 1974), and the related
solution of weighted MN (WMN) is

X ¼ W�1AT AW�1AT
� �þ

Y , ð9:3Þ

And the weighted matrix W is defined as

W ¼ diag kL1k; kL2k; . . . ; kLdkð Þ, ð9:4Þ

As the norm of the columns of the lead field matrix for deep source is small, they
will obtain more weight during source imaging. There are additional constraints that
can be added in this weighted matrix. A well-known example is the Laplacian
weighted minimum norm algorithm (implemented in the LORETA software,
Pascual-Marqui et al. 1994):

W ¼ B� diag kL1k; kL2k; . . . ; kLdkð Þ, ð9:5Þ

where B denotes the discrete spatial Laplacian operator. Standard LORETA
(sLORETA) further considered the post-process of the standardized current density
power (Pascual-Marqui 2002):

θl
0 ¼ θl

T Sθ½ �ll
� ��1

θl, ð9:6Þ

where Sθ is the variance of the estimated current density:

Sθ ¼ W�1AT AW�1AT
� �þ

A, ð9:7Þ
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The particular constraint in these LORETA family methods is that they select the
weight with a smooth distribution by minimizing the spatial Laplacian, which
measures the spatial roughness of the solution. For vector fields, because the
smoothness is not uniquely defined, different definitions of smoothness will produce
different optimally smoothed solutions (Mitiche et al. 1988). The smoothness
constraint may be partially reasonable, as the activity in neurons in neighboring
patches is always correlated. However, this assumption may be unsuitable as the
spatial scale is mismatched between the distance of solution space and the distance
of electrodes.

9.2.4 Sparse Solution

The disadvantage of LORETA family is that the result is very blurring, and the
current neurophysiological functional localization idea indicates that the main neural
electric activities should be sparsely localized (Gorodnitsky et al. 1995). A reason-
able solution may be sparsely localized. Currently, there are at least two strategies to
make the solution sparsely. One is to solve the lp( p � 1) norm solution directly, and
this includes thel0 and l1 norm solution (Xu et al. 2007). Another method iteratively
shrinks the solution space in order to get a sparse solution. Both strategies can
change the initially underdetermined problem to a finally overdetermined problem.
For example, some algorithms first obtain an initial solution based on LORETA and
then shrink the solution gradually with special design of the iteration steps. Here we
introduced the focal underdetermined system solver (FOCUSS) (Gorodnitsky et al.
1995) and the iterative Gaussian source imaging algorithm (GIA) (Lei et al. 2009) as
examples of these algorithms.

FOCUSS is an energy localized iterative procedure (Gorodnitsky et al. 1995). By
a linear transform θ ¼ Wϕ, Eq. (9.1) is changed to

minkϕk
s:t : LWϕ ¼ Y

�
ð9:8Þ

The ith iteration of FOCUSS constructed the transformWi as a diagonal matrix of
the prior iteration solution θi�1. This iteration can be simplified as the following two
equations:

Wi ¼ 1=diag kL1k; kL2k; . . . ; kLdkð Þ � diag θi�1ð Þ, ð9:9Þ
θi ¼ Wi

�1AT AWi
�1AT

� �þ
Y , ð9:10Þ

where Wi is constructed with the amplitudes of the elements of θi�1, and this weight
matrix enhances some of the elements in θi�1 having large amplitude and simulta-
neously decreases the remaining elements. ||Ll|| is the norm of the lth column of the
matrix L. During iteration procedure, Eq. (9.9) tends to decrease a large number of
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elements until they become zero. And this is the reason that the solution of FOCUSS
is sparse.

Other constraints were introduced in the iteration procedure. For example, we
assumed that the solution sources in a local region are approximately of the same
orientation and with amplitudes with spatial Gaussian distribution (Lei et al. 2009).
With the similar iteration step of FOCUSS, a new algorithm was proposed: Gaussian
source imaging algorithm (GIA). The Gaussian source model (GSM) is the key step
in GIA, and it iteratively determined the following two parameters:

First, determine the GSM center. Each center is defined as the grid node which
meets two conditions: (a) its amplitude v is larger than 1% of the maximum value in
the entire solution space; (b) v is the largest one among the nearest 6 neighbors. This
step also determines the radius of GSM. In each direction (total of six directions), the
distance from the center to the first node with increased amplitude is the radius of
that direction. And the radius of GSM is the mean of all radii.

Second, adjust the amplitude at each GSM. The source strength is determined by
the Gaussian function. For the ith GSM, δi is defined by the amplitude of center vmax
and the mean value of its nearest neighbors vneighbor:

δi
2 ¼ d2= ln vmax=vneighbor

� �
, ð9:11Þ

where d is the space resolution, i.e., the distance of nearest neighbors. The amplitude
of a neighbor node noted by position vector sj is determined by.

Qj ¼ Qi � exp � si � s j
�� ��2

σi2

 !
ð9:12Þ

The Qj denotes the dipole moment of the center node i; its amplitude is the local
maximum vmax. The si and sj are the spatial position vectors of the grid nodes i and j,
respectively. If vj, norm of Qj, is larger than that of the current solution at node j,
norm of θi( j), Qj, is set to node j. Otherwise, moment of node j will not be changed.

Note that above two steps are the smoothing and shrinking operations that modify
the solution space. The iteration procedure is based on FOCUSS and it is guaranteed
to converge as shown in reference (Gorodnitsky et al. 1995). For GIA, the initiali-
zation is important for correct source localization. We chose the smooth source
distribution provided by LORETA as its initialization solution. Detailed discussion
about convergence is given in Lei et al. (2009).

9.3 Bayesian Source Model

Bayesian inference is a general procedure for incorporating a priori information into
the estimation of the sources. The method is conceptually simple, using basic laws of
probability, making its application even to complicated problems relatively
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straightforward. For source analysis, Bayesian allows for a more detailed description
of the anatomical and functional a priori information. The types of information
include the neural current (Schmidt et al. 1999), the sparse focal nature of the
sources (Phillips et al. 1997), combined spatial and temporal constraints (Baillet
and Garnero 1997), and recently the resting-state spatial patterns (Lei et al. 2011).
The parametric empirical Bayesian framework has been proved to be a promising
tool for reliable estimation of EEG sources, because various priors can be used for
source reconstruction (Lei et al. 2015).

9.3.1 Parametric Empirical Bayesian

Parametric empirical Bayesian (PEB) model (Lei et al. 2011; Mattout et al. 2006;
Phillips et al. 2002) is used for EEG source imaging:

Y ¼ Lθ þ ε1 ε1 � N 0; T;C1ð Þ
θ ¼ 0þ ε2 ε2 � N 0; T;C2ð Þ ð9:13Þ

where Y, L, θ, and ε1 have the same definition as in Eq. (9.1), though they are random
variables here.N(μ,T,C) represents a multivariate Gaussian distribution on a matrix,
namely, ε~N(μ,T,C), vec(ε)~N(μ,T� C), with mean μ and covariance T� C. vec
denotes the column-stacking operator, and � denotes the Kronecker tensor product.
The term ε2 represents random fluctuations in the source space. The temporal
correlations are denoted by T. The spatial covariances of ε1 and ε2 are the mixtures
of covariance component at sensor and source level, respectively. In the sensor level,
C1 ¼ α�1In was assumed to encode the covariance of sensor noise, where In denotes
the n-by-n identity matrix. In the source level, a covariance component form was
listed,

C2 ¼
Xk
i¼1

γiV i, ð9:14Þ

where γ � [γ1, γ2, . . ., γk]
T denotes a vector of k non-negative parameters that control

the contribution of Vi. The components set, V¼ {V1,V2, . . .,Vk}, is fixed and known.
The formulation in Eq. (9.14) is extremely flexible, as a rich variety of candidate
covariance bases can be easily combined in this framework (Mattout et al. 2006).
The parameters γ are unknown, and they are estimated using restricted maximum
likelihood (ReML) algorithm (Friston et al. 2007).
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9.3.2 Priors from Anatomic Information

PEB model provides a natural structure to include priors from other modalities. This
is based on the design of the covariance component form in Eq. (9.14). In the
classical MN solution as defined in Eq. (9.2), covariance component is an identity
matrix, i.e., V1¼ Id (Phillips et al. 2005). The Green function (Harrison et al. 2007) is
employed to consider the local anatomic coherence,

G ¼ exp δBð Þ ¼ g1; g2; g3; . . . ; gd½ �, ð9:15Þ

where B is an adjacency matrix in the solution space, and it encodes the neighboring
relationships among vertices of the cortical mesh. The source space has d vertices
that are approximately uniformly distributed over the cortex surface. The jth column
of G, gj, defines the weights based on their distances to the center, the jth vertex.
Then, we may consider LORETA-like prior as a more realistic model with two
components modeling independent and coherent sources, respectively, V ¼ {I, G}.
In a recent approach (Friston et al. 2008), multiple sparse priors (MSP) from the
columns of G are uniformly sampled to produce several hundred covariance com-
ponents at the source level, V ¼ q1q

T
1 ; q2q

T
2 ; . . . ; qkq

T
k

� �
.

9.3.3 Network-Based Source Imaging

The extendable structure of covariance component provides large potential to
contain other priors, such as the temporal coherent networks (TCNs) derived from
the BOLD signal. Based on the PEB framework, we developed NEtwork-based
SOurce Imaging (NESOI) (Lei et al. 2011). Different from the spatial activation
pattern derived from statistic parameter mapping, the priors generated by indepen-
dent component analysis (ICA) are free from all assumptions about the time courses
contributing to signal changes. In addition, both transiently task-related and non-
task-related components extracted by ICA can facilitate the EEG source imaging.

The novelty of NESOI includes the temporal coherent networks (TCNs) extracted
from task fMRI. TCNs can involve cortical areas that are spatially distant. As thus,
they differ from relations between spatially adjacent source information and local
functional activation information. In NESOI, both EEG and fMRI recordings should
be implemented on the same subject within the same paradigm, regardless of
whether they are obtained simultaneously or separately. To construct TCNs, ICA
was adopted to group brain areas that share response patterns (Beckmann et al.
2005). The spatial ICA decomposition of fMRI generates the spatial independent
components and their corresponding time course. The spatial IC represents the brain
activities, expressing the intensity distribution over all voxels. We re-scaled the IC to
z scores, to standardize the relative contribution of each voxel. Voxel with absolute
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z scores >3 is considered to be activated. Negative z scores indicate that the BOLD
signals are modulated oppositely to the IC waveform (McKeown et al. 1998).

And then the activated voxel was projected to the EEG source space as matrix
U (d � k), where d is the number of nodes and k is the number of spatial ICs. The
element Uij is set to 1.0 if the absolute z score of the nearest neighbor voxel is larger
than 3; otherwise Uij is set to 0.0. Obviously, U is sparse matrix with a small number
of nonzero elements. Because all the activated voxels in each IC would be expected
to have similar temporal dynamics, we consider each IC as a TCN. In this condition,
a simple way to define the covariance component from the ith IC is to set the
diagonal terms with a binary of the ith column of U and the other terms with zero.
Here, to consider the local coherence in source space, NESOI takes the covariance
component Vi as

Vi ¼ 1=niΣg j g j ð9:16Þ

where gj is the jth column of the Green function matrix in Eq. (9.15) and ni is the total
number of activated voxels in ith IC. Here, the covariance component with nonzero
off-diagonal terms in Eq. (9.16) could model locally correlated sources. Obviously,
the definition of our covariance component encodes a functional connectivity prior
that is distinct from the neuronal-anatomical information utilized in other methods.

9.3.4 Resting-State Cortex Rhythms

NESOI is designed to reconstruct the source of event-related potential (ERP), and its
spatial prior is the temporal coherent networks from the task-related fMRI with the
same subject and the same paradigm. Recently, the brain in resting state is an
attractive topic in neuroimaging studies. A natural extension of NESOI to resting-
state EEG is resting-state NESOI (rsNESOI, Lei 2012). In rsNESOI, a template of
resting-state networks (RSNs) was employed as spatial prior (Yeo et al. 2011). RSNs
involve multiple brain regions that have similar BOLD activations during resting
state, and they have been shown to be reproducible across large populations (Smith
et al. 2009). We think the rhythmic EEG has a good degree of spatial concordance of
the modules of large-scale functional networks. As the electrophysiological activity
of cortex in macro-scale follows the same spatial pattern, resting-state networks may
facilitate EEG source imaging (Lei et al. 2015).

The rsNESOI employs RSNs with fixed spatial template; hence it is free from any
extra fMRI scanning. Eight large-scale brain networks are used to construct the
covariance components of the EEG source reconstruction. Seven large-scale net-
works, i.e., visual, somatomotor, dorsal attention, ventral attention, limbic, fronto-
parietal, and default networks, were identified based on the segmentation of resting-
state fMRI (Yeo et al. 2011). We further considered the importance of the deep brain
structures, including thalamus, caudate, hippocampus, amygdala, and olfactory.
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Here the automated anatomical labeling (AAL) parcellation atlas (Tzourio-Mazoyer
et al. 2002) was used to construct the eight large-scale networks. The main difference
of the rsNESOI, when compared with the NESOI, is the utilization of RSNs instead
of the various task-related functional co-activation patterns. In addition, as RSNs are
fixed as some templates, the rsNESOI does not need any additional fMRI experi-
ments. It is to say that a major novelty of rsNESOI is the employment of RSNs
without any fMRI scanning (Lei 2012).

To define a pipeline for rhythmic EEG analysis, we developed a toolbox to
estimate the power of EEG rhythms in a template of resting-state networks (Lei
2012): resting-state cortex rhythms (RECOR, Fig. 9.4). RECOR included three steps
to calculate the power of EEG rhythms in each brain network. Firstly, the absolute
power values of seven rhythms are calculated in each channel of the EEG signal (see
Fig. 9.9). The rhythms include delta, theta, low alpha, high alpha, low beta, high
beta, and gamma. The spectrum is estimated via Welch’s method and the absolute
power value was log-transformed. Secondly, EEG source reconstruction was
implemented in each rhythm to estimate the cortical sources (Fig. 9.10). The default
algorithm is LORETA-like prior with two components V ¼ {I, G}. An alternative
algorithm is rsNESOI (Lei et al. 2012), which was introduced in the above section.
The last step of RECOR is averaging the solutions of source reconstruction across all
vertices of a given large-scale brain network.

The result of resting-state cortex rhythms (RECOR). For three groups, we
illustrated the estimated power of EEG alpha rhythms in the eight large-scale brain
networks. Obviously health control group (blue line) has the largest alpha power in
visual network.

Fig. 9.4 Resting-state cortex rhythms (RECOR) is a toolbox to estimate the power of EEG rhythms
in the eight large-scale brain networks. (a) The GUI interface of RECOR; (b) the power of each
rhythm can be shown as radar map with eight brain networks above
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In RECOR, the forward model is restricted to a high-density canonical cortical
mesh, which was extracted from a structural MRI of a neurotypical male in FieldTrip
software (http://fieldtrip.fcdonders.nl/download.php). The mesh has 8196 vertices,
which were uniformly distributed on the gray-white matter interface. Each vertex
node is assumed to have one dipole, oriented perpendicular to the surface. The 8196
vertices were further separated to eight subsets based on its nearest neighbor voxel in
the large-scale brain network templates. If rsNESOI was selected, eight covariance
components will be constructed. Vi is assigned the columns and rows with Green
function of the mesh adjacency matrix, if their corresponding vertices are involved in
ith network, and the other terms with zero (Lei et al. 2011). The electrodes were
registered to the scalp surface, and the lead field matrix was calculated within a three-
shell spherical head model including the scalp, skull, and brain. The intensities of the
neural electric sources of EEG rhythms are iteratively estimated by ReML algorithm.

Rather than estimation of the punctual EEG source patterns of each rhythm,
RECOR focused on the large-scale distribution of EEG source and calculated an
averaged current density at each network. This is in line with the low spatial
resolution of EEG recording. This averaging step may minimize the effects of
poor performance of reconstruction method in estimating the deep brain structure.
We recommend skip reporting precisely the location of the reconstructed source but
focus on the output with more macro-scale in the eight brain networks. Note that
RECOR is recommended to be used to analyze resting-state EEG, rather than task-
related EEG or event-related potential. This source imaging of the spontaneous EEG
may provide important findings in the understanding of brain functioning and
variations of these functions during rest, sleep, cognitive task, maturation, or psy-
chiatric diseases.

9.4 Limitation and Future Direction

9.4.1 Localization Accuracy

Simulation studies suggest that impressively high spatial localization accuracy in
source imaging – matching that of fMRI – can be obtained with accurate electrode
positions and realistic forward models (Brookes et al. 2010; Murzin et al. 2011).
However, such high accuracy is hard to obtain in practice. There are many uncer-
tainties such as skull and scalp conductivity, channel-to-MRI co-registration, brain
anatomy, and channel localization (Steinsträter et al. 2010). Source reconstruction
voxels are typically 5–10 mm3, and spatial smoothing and normalization to a
common brain space further reduce spatial precision. Thus, it is rare to see claims
about fMRI level anatomical accuracy of source localization results, and caution
should be applied when claiming of functional-anatomical dissociations of less than
a few centimeters based on the results of EEG source imaging. Although it is
possible to have higher spatial precision, particularly in hypothesis-driven research,
the “effective” spatial precision used in most source reconstruction studies is on the
order of several centimeters (Barnes et al. 2004). Developing a more realistic source
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reconstruction method is an important and active research topic, even though
standard head models can provide fairly accurate results (Fuchs et al. 2002).

9.4.2 Combination with Other Modalities

There are many available modalities to serve as complementary techniques, such as
MEG, magnetic resonance imaging (MRI), functional MRI (fMRI), positron emis-
sion tomography (PET), diffusion tensor imaging (DTI), transcranial magnetic
stimulation (TMS), etc. (Lei et al. 2015). From the perspective of source analysis,
the modality’s specific contributions are at three levels: head model construction,
spatial priors, and connectivity priors. In the above section, we had introduced the
contribution of MRI and CT in head model construction. For spatial priors,
EEG-correlated fMRI, temporally coherent networks, and resting-state fMRI are
systematically introduced as priors for source analysis. In addition, both the fiber
tracking (diffusion tensor imaging, DTI) and neuro-stimulation techniques
(transcranial magnetic stimulation, TMS) have the potential to be involved as
connectivity priors, because they can help to infer the neuroelectric connectivity in
the source space.

Recently, the simultaneous MEG and EEG recording are utilized as a common
practice. A long-lasting discussion concerning source analysis with MEG and EEG
stated that MEG is superior to EEG for source localization accuracy. Simulation
studies suggest that the localization accuracy of EEG can be as good as, or even
superior to, that of MEG (Murzin et al. 2011; Steinsträter et al. 2010), in part because
EEG is sensitive to radial and tangential dipoles, whereas MEG is maximally
sensitive to tangential dipoles. However, improved accuracy for EEG source recon-
struction requires many electrodes as well as precise electrode positions, head
shapes, brain-forward models, and accurate estimates of tissue conductivities.
Such precision in measurement is not typically done for EEG, whereas it is more
often done with MEG. Thus, in practice, localization accuracy of MEG is often
better than localization accuracy of EEG.

As EEG electrode technology improves and recording subject-specific electrode
positions becomes more commonplace, the accuracy of EEG source reconstruction
results will further improve. We conclude that combining EEG source imaging with
other complementary modalities is a promising approach toward the study of brain
networks in cognitive and clinical neurosciences.

9.5 Example Application

9.5.1 Experiment

Ten healthy subjects (6 females, age 20.9	 2.7 years) participated in the eyes-closed
resting-state EEG study. All participants completed a questionnaire package, which
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included Pittsburgh Sleep Quality Index (PSQI), Self-Rating Depression Scale
(SDS), and Self-Rating Anxiety Scale (SAS). After a detailed explanation of the
study protocol, a written informed consent was obtained. Our study was approved by
the Ethics Committee of Southwest University. In addition, all the related procedures
were in accordance with the sixth revision of the Declaration of Helsinki. The dataset
can be downloaded from the link (http://www.leixulab.net/data.asp).

EEG data was recorded about 3 min from the 64 electrodes mounted in an elastic
cap (Brain Products, Munich, Germany) around 9:00 to 11:00 in the morning. The
sampling frequency is set to 500 Hz. Before EEG recording, the impedance was kept
below 5 kΩ. The pre-processing was conducted using EEGLAB (http://sccn.ucsd.
edu/eeglab). The original EEG signal was filtered with band-pass between 0.1 and
45 Hz and referenced to common average. Then, data was fragmented into 2-s
segments, and segments with ocular, muscular, and other types of artifacts were
preliminarily identified and excluded. For all subjects, we selected the first 20 seg-
ments, i.e., 40 s of artifact-free EEG data.

We employed pwelch function to calculate the power spectrum of EEG record-
ing. Here, both eyes-closed and eyes-open conditions of subject #10 were analyzed.
A local maximum was observed in the frequency range of the alpha rhythm
(8–12 Hz), which was the most prominent rhythm during eyes-closed condition
(Fig. 9.5). In the following source localization, we will focus on this alpha rhythm.
Three software toolboxes were compared: DIPFIT, sLORETA, and RECOR. Notice
that the source analysis in frequency domain should base on cross-spectra, not the
log-transformed scalp electric potential spectral powers shown here. We just use the
power of alpha rhythm as mimic ERP distribution to show the main procedures of
different toolboxes, though it is an incorrect usage for frequency domain source
analysis (see Frei et al. 2001) (Code 9.1).

9.5.2 DIPFIT

We employed an EEGLAB plugin (Delorme and Makeig 2004) to localize equiva-
lent current dipole for alpha rhythm: DIPFIT. Note DIPFIT was usually used for
localizing independent component scalp maps, and its main functions are from the
FieldTrip toolbox. As illustrated in Code 9.2, we introduced in detail its main steps
for localizing the alpha rhythm.

To fit dipole models to the power of alpha rhythm, both the potential distribution
and channel location files need to be loaded. To follow the dipole fitting example
used in this tutorial, download a dataset (alphaRhythm.rar) from the link (http://
www.leixulab.net/data.asp). This sample dataset contains a channel location file and
an alpha power file.

As illustrated in Code 9.2, we first re-referenced the value to average.
“dipfit_erpeeg” is the main function for dipole fitting. There are three steps to create
equivalent current dipole. First is setting model and preferences. This involves
choosing the model (spherical or boundary element) and excluding some channels
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from the fitting procedure (e.g., eye channels). Here, we set the input values of
“dipfit_erpeeg” as the scalp potential we want to localize, channel location, assumed
dipoles model, coordination format, head model file, and MRI file. Second is grid
scanning the solution space. This involves scanning all the coarse 3-D grids to
determine an initiate searching point of equivalent dipoles. Third is non-linear
optimization processing. This involves running an optimization searching to obtain
the best position for each component. Note that the grid scanning and non-linear
optimization are performed automatically and you may only find the procedures as
output in the command window.

The next step is plotting the dipole in 3-D. This output was inset within a GUI
interface. The Talairach coordinate and residual variance are listed in the middle left
panel. There are some other display types that can be chosen. In this example, we
also plot the dipole in the surface of the scalp. The result of executing the script is
illustrated in Fig. 9.6.

As illustrated in Fig. 9.6, we may report our result as follows:
“Two symmetric dipoles were identified in the occipital regions; their Talairach

locations are [53 �65 50] mm and [�53 �65 50] mm. Their momentations are
[�3.4563 �0.0101 �1.3170] dB and [�4.9173 �0.8642 �0.3486] dB. From their
momentations, it is obvious that the left dipole is larger than the right dipole (1.35:1).
The residual variance was 27.46%.”

Fig. 9.5 Raw power spectra of resting-state EEG (a, b) and the topography (c, d) of alpha rhythm
(8–12 Hz) for a single subject (#10). Here, the alpha rhythm predominates in power spectra and
distributes around the occipital region
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9.5.3 sLORETA

We employed standardized low-resolution brain electromagnetic tomography
(sLORETA) to estimate the cortical distribution of current source density of alpha

eegFilePath='D:\\resting-state EEG\\';

% % Calculate the power spectrum for subject 10

for i=1:2 % eyes-open eyes-closed

    if i==1   % load the file

        subFile='sub10c.set';

    else

        subFile='sub10o.set';

    end

    EEG = pop_loadset('filename',subFile,'filepath',eegFilePath);

    signalRest=reshape(EEG.data,[61,100*240]);

    for j=1:61 % each channel

        [Pxx] = pwelch(signalRest(j,:),200,0,256,100);

        Pxx=20.*log10(Pxx);

        Px(:,j,i)=Pxx;

    end

end

% % Plot the spectrum and the topography in EC and EO

Fs=[0:128]./128*50;

figure

for i=1:2

    subplot(2,2,i)

    plot(Fs,Px(:,:,i));

    grid on;

    axis([3 40 -40 35]);

end

Pxm=squeeze(mean(Px(22:31,:,:))); % alpha band [8 12]

for i=1:2

    subplot(2,2,i+2)

    topoplot(Pxm(:,i), EEG.chanlocs,'maplimits',[-20 20]);

end

alphaRhythm=Pxm(:,1);    % alpha band for eyes-closed

save alphaRhythm.mat alphaRhythm;

chanlocs= EEG.chanlocs;   % channel location

save chanlocs.mat chanlocs;

Code 9.1 The MATLAB code to calculate the power spectrum and topography of resting-state
EEG. The functions of pwelch and topoplot were used to estimate the spectrum and topography,
respectively. The power of alpha band for eyes-closed condition and the channel localization were
saved for the analysis of the following section.
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rhythm. A unique property of sLORETA is that, under ideal conditions, it localizes
“test point sources” exactly. Both the electrode coordinates and the head model of
sLORETA are based on the average MRI brain map of the Montreal Neurological
Institute, i.e., the MNI152 (Mazziotta et al. 2001). The cortical gray matter con-
structs the solution space, with 6239 voxels and the spatial resolution of 53 mm3.

Before run sLORETA, the data file and channel location file need to be translated
into the sLORETA format. As illustrated in Code 9.3, we repeated our alpha rhythm
power 10 times to fake an EEG wave and saved it as an ASCII file
“Chapter9EEGdata.txt.” This step is necessary because sLORETA is a localization
method for wave. The channel location was saved to a separate file
“Chapter9channel.txt.”

First step, run the sLORETA setup program and a GUI interface opens
(Fig. 9.7a). This requires a password, which should be obtained from the homepage:
www.keyinst.unizh.ch/loreta. Then, click the main utilities, and click the button
“Electrode names to coordinates.” Based on the left file management panel, folders
and files could be viewed. Open the folder that saved our alpha rhythm dataset.
Select the file “Chapter9channel.txt” containing the list of electrode names. Note that
electrode order must correspond to the recordings. Otherwise, this software will
produce errors. Drag and drop this file to the input box of “File with electrode
names.”Automatically, the filename for the output is created as 
.sxyz and then Run.
Then, the Talairach electrode coordinates are created.

% % dipole fitting

load alphaRhythm.mat;  % eyes-closed

alphaRhythm=alphaRhythm-mean(alphaRhythm); % re-reference to average

load chanlocs.mat;

templateFile='D:\matlab tool\eeglab13_5_4b\plugins\dipfit2.3\standard_BESA\';

[ dipole,model] = dipfit_erpeeg(alphaRhythm, chanlocs,'dipoles',2,'settings',...

    {'coordformat','spherical','hdmfile', [templateFile,'standard_BESA.mat'],...

    'mrifile', [templateFile,'avg152t1.mat']});

% % plot the dipole in 3-D

dipplot(dipole, 'image', 'mri', 'sphere', 85, 'normlen', 'on','projimg', 'on', ...

    'projlines', 'on', 'gui', 'off');

% % plot the dipole plus the scalp map

dipolefortopoplot = [dipole(1).posxyz(:,1:2) dipole(1).momxyz(:,1:3)]/85;

figure

topoplot(alphaRhythm, chanlocs, 'dipole', dipolefortopoplot, 'dipnorm', 'on', ...

    'electrodes', 'off');

title([ 'Alpha rhythm, fit with two symmetric dipoles (RV '…

    num2str(dipole(1).rv*100,2) '%)']);

Code 9.2 The MATLAB code to estimate equivalent current dipole for alpha rhythm using
DIPFIT plugin of EEGLAB. The functions of dipfit_erpeeg and dipplot were used to estimate
and plot dipole, respectively
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Next step, click the tab for making the sLORETA transformation matrix. Drag
and drop the Talairach coordinate file of electrode 
.sxyz, and run the program. The
output file is the sLORETA transformation matrix: Chapter9channel.spinv.

Then run sLORETA Viewer/Explorer, and click the File button. And then select
electrode coordinate file “Chapter9channel.sxyz” and transformation matrix file
“Chapter9channel.pinv.” Then open EEG/ERP file “Chapter9EEGdata.txt.” Then
click the SamplingRateHz button and define it as 10 Hz. As we repeat our alpha
rhythm 10 times, this setting means data has 1-second recording. We also reset the
“Number of time frame per page” with 10. Click ViewInfo to check the information
loaded up to now in the program. Then, click arbitrary point in the EEG/ERP signals
window; a cursor appears. All other windows are locked to this cursor, displaying as
follows: scalp maps of electric potentials, sLORETA in 3-D cortex, and sLORETA
in Slice Viewer (Fig. 9.7b–d).

Fig. 9.6 The dipole fitted by DIPFIT in EEGLAB. (a) The dipole in 3-D with template MRI; (b)
the dipole in the surface of the scalp. Two symmetric dipoles were reconstructed in the occipital
region

% % Prepare data and channel files for LORETA

alphaSig=repmat(alphaRhythm',10,1);% repeat 10 times to fake an EEG wave

save -ascii Chapter9EEGdata.txt alphaSig;

fid = fopen('Chapter9channel.txt','w');

fprintf(fid,'%s\n',chanlocs.labels);

fclose(fid);

Code 9.3 The code for the prepared date and channel files for sLORETA. The one time point was
repeated to 10 times, to fake an EEG wave with 10 time-bin recording in the scalp. Channel location
was a file only listing the channel names.
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Slice Viewer is the main output interface; here we introduce it in more detail. As
illustrated in Fig. 9.8, the upper panel shows the axial, sagittal, and coronal slice of
the whole brain. Use up menu to jump to other special locations. In the down left
panel, the output text box lists some other parameters: the power value and the MNI
coordinate. It also reports the best match number of Brodmann area.

You may save image as the report figure and report result of sLORETA as
follows:“The distributed sources (cortex current potential) of sLORETA are local-
ized around the occipital region. The MNI coordinate of central localization is [�50,
�60 40], with Brodmann area being 40 in the inferior parietal lobule.”

9.5.4 RECOR

Resting-state cortex rhythms (RECOR) is a toolbox to estimate the power of EEG
rhythms in the eight large-scale brain networks (Lei et al. 2011; Lei 2012). This

Fig. 9.7 The main IGU interface of sLORETA. (a) The main menu of sLORETA, (b) window of
Viewer/Explorer, (c) scalp map of EEG/ERP signals, and (d) 3-D cortex view of sLORETA
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toolbox is thoroughly tested and works on MATLAB R2008a and higher. RECOR
can be downloaded from http://www.leixulab.net/recor.asp. After uncompressing
the WinRAR file, add RECOR directories to the MATLAB search path.

Before run RECOR, we need to prepare our data to follow the RECOR format.
EEG data should be saved as a “.mat” file, which contains only one variable: data.
Data is a matrix, with the row being the number of channels and the column being
the number of time points. In our example, we first use EEGLAB to load the existing
dataset of “sub10c.set.” Then we run command data ¼ EEG.data in the command
window of MATLAB. And data was saved as a single file, sub10c.mat, which is the
input data for RECOR. After the RECOR path is set, input lei_recor in the command
window. RECOR toolbox (Fig. 9.4a) opens in a new figure window. There is also an
option to run RECOR using a batch script (Code 9.4). Batch script is very useful for
running large datasets.

Here we have the following sets in the main GUI interface. For the channel name,
the default input is the electrode name, separated by commas. Note that the electrode
order must correspond to the recordings. Otherwise, this software will produce
errors. Here we input the following: “Fp1, AF3, AF7, Fz, F1, F3, F5, F7, FC1,
FC3, FC5, FT7, Cz, C1, C3, C5, T7, CP1, CP3, CP5, TP7, TP9, Pz, P1, P3, P5, P7,
PO3, PO7, Oz, O1, Fpz, Fp2, AF4, AF8, F2, F4, F6, F8, FC2, FC4, FC6, FT8, C2,

Fig. 9.8 Slice Viewer of sLORETA. The colored squares represent the reconstructed sources
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C4, C6, T8, CPz, CP2, CP4, CP6, TP8, TP10, P2, P4, P6, P8, POz, PO4, PO8, O2.”
The inputs for sample, path, and signal file are “100,” “recor result\,” and “sub10c.
mat,” separately.

The bottom right has four buttons; “RECOR” means all the steps are run at once.
The analysis can also be run by selecting steps from “Scalp Rhythm,” “LORETA,”
and “Cortex Rhythms” in order. Here we selected RECOR. RECOR will generate
9 figures and 12 files in current file path. In the following text, we introduce the main
results.

First output is the power spectrum and topography in scalp surface (Fig. 9.9).The
average power spectrum and topography of EEG rhythms are as follows: delta
(2–4 Hz), theta (4–8 Hz), low alpha (8–10.5 Hz), high alpha (10.5–13 Hz), low
beta (13–20 Hz), high beta (20–30 Hz), and gamma (30–40 Hz).

Second output is the current density in the cortex for each rhythm (Fig. 9.10).
This is the inverse solution of LORETA or NESOI, based on your selection. Here,
the current densities of both alpha1 and alpha2 are shown.

srate=100;               % sample rate 100 Hz

signal='sub10c.mat';       % signal file with variance “data”

path='recor result\';        % sample rate 100 Hz

prefix = '';               % no prefix will be added to the output file

label={'Fp1','AF3','AF7','Fz','F1','F3','F5','F7','FC1','FC3','FC5',...

'FT7','Cz','C1','C3','C5','T7','CP1','CP3','CP5','TP7','TP9','Pz',...

'P1','P3','P5','P7','PO3','PO7','Oz','O1','Fpz','Fp2','AF4','AF8',...

    'F2','F4','F6','F8','FC2','FC4','FC6','FT8','C2','C4','C6','T8',...

    'CPz','CP2','CP4','CP6','TP8','TP10','P2','P4','P6','P8','POz',...

    'PO4','PO8','O2'};     % channel name of the 61 electrodes

inverseType='LORETA';   % reconstruction algorithm

%                  'NESOI'  NEtwork-based SOurce Imaging

%                  'LORETA'    LORETA-like model

template = 'RSN';         % output template is RSN

%                  'RSN'    Resting-state network (8 network)

%                  'BRM'    Brodmann areas (6 areas)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

recorpath = which('lei_recor.m');

recorpath = recorpath(1:end-length('lei_recor.m'));

load(signal);

EEG.data=data;

EEG.srate=srate;

rhythmScalp=lei_step1_extractRhythm(EEG,label,prefix,path,recorpath);

rhythmCortex=lei_step2_NESOI(label,prefix,path,inverseType,recorpath);

rhythmNetwork=lei_step3_ReCor(prefix,path,template,recorpath);

Code 9.4 Batch analysis code for RECOR. The main input is the sample rate, signal file, output
folder, and channel name. Inverse algorithm and output template have multiple choices
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Third output is the EEG spectral power density for each network (Fig. 9.11).
There are eight panels corresponding to eight large-scale networks, each with seven
power values of rhythms from delta to gamma.

The output folder has three mat files: ReCoR_rhythmScalp.mat,
ReCoR_rhythmCortex.mat, and ReCoR_rhythmNetwork.mat. These files are the
rhythm power in scalp surface, cortex, and large-scale brain network and are the
main resources for further quantitative analysis. The corresponding dimensions of
these files are [61 � 7], [8196 � 7], and [8 � 7]. All the second dimensions are
7, i.e., the seven rhythms. Here, we may be interested in finding the maximum
activity of alpha rhythm; hence we load ReCoR_rhythmCortex.mat. In the third and
fourth columns, we found the maximum (absolute) values as �190.44 and � 90.36,

Fig. 9.9 Power spectrum and topography. Note that the alpha rhythm (8–12 Hz) in above Fig. 9.5
is separated to low (8–10.5 Hz) and high (10.5–13 Hz) alpha in RECOR

Fig. 9.10 Current densities in the cortex for alpha1 (8–10 Hz) and alpha2 (11–13 Hz) rhythms
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respectively, and the corresponding subscript is 282. This means the 282nd dipole
has the largest activity. We can further find its location in file of forward\ mesh8196.
mat: [�48.23–81.07 5.11] mm, which is based on MNI coordinate.

The batch analysis in Code 9.3 has the same output as our prior setting in GUI.
Here, you can find that the inverse type and template both have two options. The
output networks template can be based on resting-state network template and the
Brodmann areas.

9.5.5 Comparing of the Three Methods

In this tutorial we reconstruct the sources of alpha rhythm with three toolboxes:
DIPFIT, sLORETA, and RECOR. DIPFIT is based on the equivalent dipole model,
and the last two are based on the distributed source model. Note that all the source
reconstructions are usually based on the time wave, not for power spectrum which is
shown here. Source reconstruction in frequency domain should consider the phase
and usually be based on cross-power spectrum. Our application is an incorrect usage
for frequency domain source analysis (see Frei et al. 2001).

Fig. 9.11 EEG spectral power density of eight large-scale networks in rhythm from delta to gamma
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When comparing these three methods, we found the localizations as follows
(mm): DIPFIT [53–65 50], sLORETA [�50, �60 40], and RECOR
[�48.23–81.07 5.11]. Thinking the first one to be a Talairach coordinate, it is
obvious that the sources of DIPFIT and sLORETA are close to each other, and the
result of RECOR is far away. Both methods are based on distributed source model,
and the main inter-dipole distance is 5 mm. However, there are many differences
between them. First, the dipole is assumed to be radial to the cortex surface in
RECOR, but the dipole in sLORETA has free direction. Second, dipoles in RECOR
are mainly localized in the cortex surface, but dipoles in sLORETA are scattered all
over the gray matter. In addition, RECOR has more dipoles (8196) than sLORETA
(6239), resulting a more detailed subdivision of the whole brain. In this result, the
maximum dipole of RECOR is far away from that of DIPFIT and sLORETA; this
may imply that RECOR has the worst result. However, the source reconstruction is
only its intermediate step for RECOR, and the final report of brain network is based
on the average value within a large-scale network.

9.6 Conclusion

Algorithms for source analysis have been rapidly evolved into many directions over
the last 20 years: from equivalent current dipole to distributed source model, from
the prior of task-evoked activity (Henson et al. 2010) to the prior of task-free
connectivity (Lei et al. 2011), and from single model source reconstruction to the
multimodal fusion (Baillet et al. 2001a). There are some free and open-access
toolboxes for EEG source analysis. Some main properties of these toolboxes include
the support for MATLAB and the connectivity analysis. Another property is that
some toolboxes are more specialized for component analysis and time series, such as
EEGLAB. However, others specialize in scalp topographical analysis and clustering,
such as CARTOOL. OpenMEEG can be used to make subject-specific BEM models
(Gramfort et al. 2010). SPM supports dynamic causal model, which identifies
effective connectivity in source space. eConnectome provides some causality anal-
ysis methods (He et al. 2011). Brainstorm (Tadel et al. 2011) and FieldTrip
(Oostenveld et al. 2011) are popularly utilized for their strong function in EEG
source analysis. We introduced only a few examples of the better-known toolboxes
to guide the reader. All of the toolboxes introduced above have extensive online
tutorials and user guides and are relatively easy to set up and work with.

Given its current advances and continuing development, EEG source analysis
will increasingly be used for clinical and basic applications. The inexpensive EEG
setups available in most clinical settings, the availability of computers, and the
accessible open-source source analysis tools will enable broad applications of
EEG source imaging. Furthermore, the capability of imaging dynamic brain activity
from the whole brain makes EEG source analysis a desirable means for studying
large-scale brain networks in humans.
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While EEG source analysis can provide highly valuable information about brain
networks and dynamics, it also has the advantage of being integrated with other
modalities, such as fMRI, to combine the high temporal resolution of EEG with the
high spatial resolution of fMRI (see Chap. 18 for more details). Efforts to increase
the spatiotemporal resolution in imaging brain function are ongoing. It is envisioned
that developments in designing better source reconstruction algorithms and combin-
ing EEG with other neural imaging or modulation techniques, such as MEG and
fMRI, will be at the frontier of advances in functional neuroimaging.
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Chapter 10
Single-Trial Analysis

Li Hu

Abstract In modern neuroscience, accurate estimations of single-trial parameters in
event-related brain responses have been set as a highly desirable goal, since the
traditionally used across-trial averaging approach could lead to the loss of the
information concerning across-trial variability of both phase-locked ERP and non-
phase-locked ERS/ERD responses. In this chapter, we provided the technical details
of single-trial analysis methods both in the time domain and the time-frequency
domain to enhance the signal-to-noise ratio of event-related brain responses and
estimate their single-trial parameters (e.g., latency and amplitude of ERP peaks, as
well as latency, frequency, and magnitude of EEG oscillatory features). These
methods included probabilistic independent component analysis and common spa-
tial pattern for spatial filtering, continuous wavelet transform for time-frequency
filtering, as well as multiple linear regression without/with a dispersion term for
feature extraction. Finally, we emphasized the importance of single-trial analysis and
discussed its promising applications in basic studies and clinical practice.

Keywords Spatial filtering · Wavelet filtering · Multiple linear regression ·
Variability · Single trial

10.1 Introduction

Human electroencephalogram (EEG) mostly reflects the synchronous changes of
slow postsynaptic potentials occurring inside a variety of similarly oriented pyrami-
dal neurons in the cerebrum (Nunez and Srinivasan 2006). Brisk sensory, motor or
psychological events can elicit transient changes within the spontaneous EEG
activity. Such changes are traditionally detected as event-related potentials (ERPs)
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that are time-locked and phase-locked to the onset of stimulus (Pfurtscheller and
Lopes da Silva 1999; Mouraux and Iannetti 2008). The same events can also induce
non-phase-locked modulations of ongoing EEG oscillations, consisting of transient
decreases (event-related desynchronization, ERD) or increases (event-related syn-
chronization, ERS) of oscillatory power, which usually confine to a specific fre-
quency band. The functional significance of ERD and ERS differs tremendously at
the frequency bands of their occurrence. However, the magnitude of almost all these
brain responses is often much smaller than the magnitude of the background EEG
activities. Therefore, the identification and characterization of these brain responses
rely on signal processing techniques to improve their signal-to-noise ratio (SNR).

The most widely used approach to detect event-related brain responses both in the
time domain (Dawson 1951, 1954) and the time-frequency domain (Pfurtscheller
and Lopes da Silva 1999) is the across-trial averaging. Notably, this across-trial
averaging approach is based on the assumption that single-trial brain responses are
stationary, i.e., the latency, amplitude, and morphology are invariant across different
trials (Spencer 2005). However, this assumption is invalid in practice. The phase-
locked ERP responses are composed of multiple waves whose latency, amplitude,
and morphology could remarkably and independently vary from trial to trial (Spen-
cer 2005; see Fig. 10.1). Likewise, the same situation holds for the non-phase-locked
ERS and ERD responses. Consequently, such an across-trial averaging approach
could lead to the loss of the information concerning across-trial variability of both
phase-locked ERP and non-phase-locked ERS/ERD responses (Mouraux and
Iannetti 2008). It should be noted that the across-trial variability usually includes
physiologically relevant information, which could reflect the changes of stimulus
features (e.g., duration, intensity, and location) (Iannetti et al. 2005b, 2006; Mayhew

Fig. 10.1 Trial-by-trial variability of ERP latency, amplitude, and morphology
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et al. 2006) and the fluctuations of mental states (e.g., alertness, expectation, and
attention) (Legrain et al. 2002, 2003; Lee et al. 2009). Hence, to reliably estimate
brain responses at the level of single trial, which include features both in the time and
time-frequency domains, is particularly demanding and necessary, as we could
explore such physiologically relevant information in a range of follow-up analyses.
These analyses include within-subject comparisons between single-trial brain
responses and behavioral indicators (e.g., the perceived intensity of sensation,
reaction time) (Iannetti et al. 2005b), single-trial correlations with features of
pre-stimulus EEG oscillations (Tu et al. 2016), and integration of simultaneously
recorded EEG and functional magnetic resonance imaging (fMRI) data (Debener
et al. 2006).

In modern neuroscience, accurate estimations of single-trial parameters in event-
related brain responses have been set as a highly desirable goal. Advanced single-
trial analysis techniques have been proposed to (1) greatly enhance the SNR of
single-trial brain responses and (2) accurately estimate the single-trial parameters of
brain responses. The use of these advanced techniques could provide new insights
into the functional significance of the information processing underlying these brain
responses (Mouraux and Iannetti 2008).

10.2 How to Do the Single-Trial Analysis?

How to enhance the SNR of event-related brain responses effectively and reliably is
the main challenge in obtaining a reliable estimate of these responses at the single-
trial level. Actually, various methods for the single-trial analysis of phase-locked
ERPs have been proposed in previous literature (Quiroga 2000; Jung et al. 2001;
Quiroga and Garcia 2003; Tang et al. 2005; Barbati et al. 2006, 2008; Mayhew et al.
2006; Tecchio et al. 2007; Porcaro et al. 2008, 2009; Hu et al. 2010; Mayhew et al.
2010; Porcaro et al. 2010; Hu et al. 2011b). Based on their rationales, these methods
could be roughly divided into four main categories. The first primary category is the
temporal filtering that removes or attenuates frequencies that do not contain the ERP
signals. In this category, the simplest and most widely adopted strategy is the
bandpass filtering, such as Wiener filtering (Walter 1968; Doyle 1975), time-varying
Wiener filtering (de Weerd 1981; de Weerd and Kap 1981; Yu and McGillem 1983),
and adaptive filtering (Hu et al. 2005; Lam et al. 2005). These strategies showed a
considerable prospect in improving the SNR of ERP responses at the single-trial
level. With regard to the second category, spatial filtering based on blind source
separation (BSS) methods (e.g., independent component analysis (Ab Aziz and
Ahmad 2006) and second-order blind identification (Tang et al. 2005)) has been
demonstrated to be effective in isolating stimulus-related responses from back-
ground EEG activities (Makeig et al. 1997; Hyvarinen 1999; Bingham and
Hyvarinen 2000; Hyvarinen and Oja 2000; Jung et al. 2001; Tang et al. 2005).
The third category is the time-frequency filtering that was based, for instance, on a
continuous or discrete wavelet transform (Quiroga 2000; Quiroga and Garcia 2003;
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Mouraux and Plaghki 2004; Jongsma et al. 2006; Hu et al. 2010, 2011b). The time-
frequency filtering can also be used to isolate stimulus-related, phase-locked
responses from the background EEG activities and non-cerebral artifacts effectively.
The last category of single-trial analysis is aimed at estimating single-trial ERP
features. For instance, multiple linear regression that was proposed by Mayhew et al.
(Mayhew et al. 2006) was used to estimate ERP latencies and amplitudes. This
technique was further refined by including a dispersion term to improve the estima-
tion accuracy of single-trial parameters through increasing the number of regressors
to capture more dynamic information in ERPs (Hu et al. 2011a).

Importantly, most of the available single-trial analysis methods were aimed at
estimating stimulus-evoked phase-locked responses in the time domain (i.e., ERP
responses), but remained entirely blind to estimate stimulus-induced non-phase-
locked modulations of ongoing EEG oscillations (i.e., ERD and ERS). Extending
these approaches to explore the dynamic information of stimulus-induced non-
phase-locked activity at the single-trial level is particularly necessary. Indeed, this
analysis involves two crucial steps: feature isolation in the time-frequency domain
and parameter estimation at the single-trial level. In a previous study, we showed that
different time-frequency features (i.e., ERP, ERD, and ERS) elicited by transient
sensory stimuli can be isolated and characterized using principal component analysis
(PCA) decomposition with Varimax rotation (Hu et al. 2015). Time-frequency
multiple linear regression approaches (TF-MLR without dispersion term and
TF-MLRd with dispersion term) were developed to enhance the SNR of
ERP/ERD/ERS in single trials, thus providing an unbiased estimation of their
latency, frequency, and magnitude at single-trial level.

In the following sections, we provided the technical details of widely used single-
trial analysis approaches both in the time domain and the time-frequency domain.

10.2.1 Single-Trial Analysis in the Time Domain

10.2.1.1 Spatial Filtering

Spatial filtering could isolate EEG/ERP components by incorporating information
from multiple channels into a weighted combination. Recently, spatial filtering
approaches have been extensively investigated, and the most generally adopted
strategy is the ICA, which can decompose a multivariate signal into additive sub-
components based on the assumption of mutual statistical independence of the
non-Gaussian source signals (Makeig et al. 1997; Hyvarinen and Oja 2000). When
applied to multichannel EEG or ERP data, ICA could decompose the signal into a
series of independent components (ICs) equaling to the total number of these
recording electrodes (Makeig et al. 1997; Mouraux and Iannetti 2008), which is
referenced to as unconstrained ICA. ICA could be reliably used in isolating stimulus-
related components from artifacts (e.g., eye blinks, eye movements, and muscle
activity) and the background EEG activity, thus enhancing the SNR of event-related
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responses in single trials (Jung et al. 2001). Several novel algorithms have also been
developed to improve the performance of the spatial filtering, including the proba-
bilistic ICA (PICA) (Beckmann and Smith 2004; Mouraux and Iannetti 2009), the
common spatial pattern (CSP) (Koles et al. 1990; Koles 1991), the second-order
blind identification (SOBI) algorithm (Tang et al. 2005), the functional source
separation (FSS) (Barbati et al. 2006, 2008; Tecchio et al. 2007; Porcaro et al.
2008, 2009, 2010), and the ICA with reference (James and Gibson 2003; Lu and
Rajapakse 2006; Huang and Mi 2007). In the following section, we provided the
technical details of both PICA and CSP.

Probabilistic Independent Component Analysis (PICA)

The PICA (aims to constrain the total number of estimated ICs to an effective
number) could resolve the overestimation problem of the unconstrained ICA in the
case that the real number of sources is less than the number of recording electrodes,
thus providing a more accurate estimation of ICs (Beckmann and Smith 2004;
Mouraux and Iannetti 2009). Theoretically, PICA is an effective combination of
probabilistic principal component analysis (PPCA) (Tipping and Bishop 1999a, b;
Minka 2001; Beckmann and Smith 2004) and an information maximization algo-
rithm (Infomax ICA) (Bell and Sejnowski 1995; Delorme and Makeig 2004).
Specifically, PPCA was applied to decompose an EEG signal into a designated
number of principal components (PCs) and a Gaussian noise residual. The subspace
of the PCs was then orthogonalized by Infomax ICA (Bell and Sejnowski 1995) to
obtain the temporally independent ICs. More detailed processes were showed as
follows.

PPCA decomposed the EEG/ERP data into a lower-dimensional source subspace
and a noise subspace using the maximum-likelihood density estimation (Tipping and
Bishop 1999b). The PPCA model was characterized by defining a high-dimensional
vector of observations as a linear combination of low-dimensional PCs and an
additive Gaussian noise:

x ¼ Ayþ μþ n ð10:1Þ

where x is a d-dimensional vector of multichannel EEG data, y represents a k-
dimensional (k � d ) vector of PCs with distribution yeN 0; Ikð Þ, μ is the mean of
x, A represents the mixing matrix, and n is the Gaussian noise with distribution
neN 0; σ2Idð Þ. The inverse of the mixing matrix A gives the unmixing matrix Wp.
Within this model, the distribution of the observed data x is

xeN μ;AAT þ σ2Id
� �

: ð10:2Þ

Based on the maximum-likelihood density estimation (Tipping and Bishop
1999a, b; Minka 2001), we have
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μML ¼ 1
N

XN

i¼1
xi ð10:3Þ

S ¼ 1
N

XN

i¼1
xi � μð Þ xi � μð ÞT ð10:4Þ

AML ¼ Uk Λk � σ2Ik
� �1=2

R ð10:5Þ

σ2ML ¼ 1
d � k

Xd

j¼kþ1
λ j ð10:6Þ

where the column orthogonal matrix Uk contains the top k eigenvectors of S, Λk

denotes the diagonal matrix containing the top k eigenvalues of S, λj is the ( j, j)th

entry of Λk, and R represents an orthogonal matrix, which is generally taken as
R ¼ I. A more complicated expectation-maximization (EM) algorithm (Roweis
1998) can also be used for an efficient calculation of R.

Please note that the number of sources that determine the valid subspace should
be provided prior to the PC estimation, and this could be achieved using a Laplace
approximation algorithm (Beckmann and Smith 2004). Once the PCs were identified
by PPCA, multidimensional orthogonal vectors would be transformed into ICs with
maximal statistical independence from each other. The orthogonal procedure could
be performed on the obtained PCs using the Infomax ICA, which has been specified
in previous literature (Bell and Sejnowski 1995; Delorme and Makeig 2004).

Common Spatial Pattern (CSP)

Different from the blind source separation algorithms, CSP is a mathematical tool to
decompose two populations of multivariate signals into a set of spatial patterns,
which maximize their differences in terms of variance (Muller-Gerking et al. 1999;
Ramoser et al. 2000). This approach was first used to detect abnormalities during
intraoperative neurophysiological monitoring in EEG analysis (Koles et al. 1990;
Koles 1991) and has been proved to be a powerful strategy to discriminate different
mental intentions in the research field of brain-computer interface (Blankertz et al.
2008). Additionally, this approach could enhance the SNR of single-trial EEG/ERP
responses for the prediction of pain perception (Huang et al. 2013).

When adopting the CSP to the single-trial analysis, one population consisted of
EEG activity before the stimuli (i.e., pre-stimulus EEG activity), and the other
population consisted of EEG activity after the stimuli of the same trial (i.e., post-
stimulus EEG activity). The pre- and post-stimulus EEG activities over all channels
of the same trial could form two matrices Xpre, Xpost 2 RN � T, where N is the number
of channels and T is the number of samples in each trial. To maximize the difference
between the variability of Xpre and Xpost, CSP aims to estimate the generalized
eigenvector or the projection vector w by solving the generalized eigenvalue prob-
lem as follows:
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XpostX
T
postw ¼ λXpreX

T
prew ð10:7Þ

where h�i is the averaging operator across trials for the same population and λ is the
generalized eigenvalue. The matrix W ¼ [w1, � � �,wN] 2 RN � N is the spatial filter,
wherew1, � � �,wN areN eigenvectors estimated fromEq. (10.7), andA¼W�12RN� N

is the spatial pattern represented as a weighting of EEG channels. It should be noted
that CSP provided an ordered list of spatial patterns according to the discriminative
power between two populations. As a result, the spatial pattern with the maximal
variance of Xpostwill capture the minimal variance of Xpre, and vice versa. Typically,
only a few spatial patterns were sufficient to discriminate two populations (Muller-
Gerking et al. 1999). These few spatial patterns, which could isolate the stimulus-
evoked EEG responses (contained only in Xpost) from the spontaneous EEG activity
(contained in Xpost as well as Xpre), worked as an effective spatial filter. In practice, a
limited number of eigenvectors corresponding to the largest eigenvalues of Xpost and
lowest eigenvalues of Xpre could be selected to reconstruct the spatial-filtered single-
trial EEG responses.

10.2.1.2 Time-Frequency Filtering

Time-frequency filtering (Quiroga 2000; Quian Quiroga and Garcia 2003; Mouraux
and Plaghki 2004; Jongsma et al. 2006; Wang et al. 2007), which based on the time-
frequency decomposition methods, such as windowed Fourier transform or wavelet
transform, can isolate stimulus-induced and phase-locked brain responses from
the background EEG activities and noise-related artifacts, thus enhancing the SNR
of single-trial ERP waveforms. For wavelet transform, the discrete wavelet trans-
form (DWT) and the continuous wavelet transform (CWT) are the commonly used
approaches. The DWT-based time-frequency filtering could retain only wavelet
coefficients correlating with the ERP signal and thereby generate a denoised average
ERP waveform (Quiroga 2000; Quiroga and Garcia 2003; Jongsma et al. 2006).
Different from the DWT that is only operated at specific scales and transitions
(generally, at dyadic scales and transitions), we have developed a CWT-based
time-frequency filtering (Hu et al. 2010), which can be performed at every possible
time and frequency scale, thus providing a better performance in enhancing the
single-trial SNR of stimulus-evoked brain responses (Tognola et al. 1998; Mouraux
and Iannetti 2008).

Specifically, the CWT-based time-frequency filtering was achieved in the fol-
lowing three steps (see Fig. 10.2). First, single-trial EEG/ERP waveforms were
decomposed into time-frequency representations using the CWT. Second, specific
areas on the time-frequency plane corresponding to the ERP response were charac-
terized and used as the wavelet filtering model. Third, time-domain ERP waveforms
were reconstructed from the time-frequency domain to the time domain using an
inverse continuous wavelet transform (ICWT) (Hu et al. 2010).

10 Single-Trial Analysis 197



Fig. 10.2 The flowchart describing the procedures of time-frequency filtering based on continuous
wavelet transform. (Reproduced from Hu et al. 2011a)
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Continuous Wavelet Transform

The CWT is used to estimate the time-frequency representation of EEG or ERP
signals that could offer an optimal compromise of time and frequency resolutions by
adapting the window width as a function of the estimated frequency (Mouraux et al.
2003; Iannetti et al. 2008; Mouraux and Iannetti 2008). The CWT is defined as
follows (Tognola et al. 1998):

WT τ; fð Þ ¼
Z
t
x tð Þ �

ffiffiffiffiffiffiffiffiffi
f =f 0

p
� ψ� f =f 0 � t � τð Þð Þdt ð10:8Þ

ψ tð Þ ¼ 1ffiffiffiffiffiffiffi
πf b

p e2iπf oxe�
x2
f b ð10:9Þ

where τ and f are the time and frequency indices, respectively, and x(t) represents the
original signal in the time (t) domain; ψ(t) denotes the mother wavelet function with
the central frequency f0. The mother wavelet ψ(t) is a complex Morlet wavelet
(Eq. 10.9). Bandwidth parameters fb and f0 could be set to 0.05 and 6, respectively,
which displays a good time-frequency resolution when detecting frequencies rang-
ing from 1 to 30 Hz. The squared magnitude of WT(τ, f ) is the scalogram or power
spectrum.

Wavelet Filtering Model

In order to apply time-frequency filtering to enhance the SNR of ERP responses at
single-trial level, a weighted, binary time-frequency template Wf was generated to
identify the distribution of ERP responses evoked by the stimuli in the time-
frequency plane. This template was used to filter out the contribution of non-
stimulus-related background EEG activity and noise-related artifacts, thus enhancing
the SNR of single-trial ERP responses.

For each single-trial EEG activity, time-frequency filtering was achieved by
Eq. (10.10):

FWTi τ; fð Þ ¼ W f �WTi τ; fð Þ ð10:10Þ

where WTi is the time-frequency representation of trial i obtained by CWT, and
FWTi is the filtered time-frequency representation that is calculated by multiplying
WTi with the binary time-frequency template Wf.

Inverse Continuous Wavelet Transforms (ICWT)

The time-frequency filtered signal yi(t) was reconstructed into the time domain by
applying the ICWT to the filtered time-frequency distribution FWTi(τ, f ) according
to the following equation (Tognola et al. 1998):
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yiðtÞ ¼ Cψ

Z
τ

Z
f
FWTiðτ, f Þ �

ffiffiffiffiffiffiffiffiffi
f =f 0

p
� ψðf =f 0ðt � τÞÞ � ðf =f 0Þ2 � dτ � df ð10:11Þ

where Cψ denotes a coefficient that depends on the Fourier transform of ψ(t).

10.2.1.3 Parametric Approaches

Multiple Linear Regression (MLR)

The single-trial detection method based on multiple linear regression (MLR) was
firstly proposed byMayhew et al. (2006) to estimate latency and amplitude of single-
trial ERPs automatically (Mayhew et al. 2006). This method has been successfully
applied to detect single-trial parameters of the N2 and P2 waves of the LEP
responses (Mayhew et al. 2006) and the N1 and P2 waves of the AEP responses
(Mayhew et al. 2010). Recently, we have combined the wavelet filtering and MLR to
enhance the SNR of single-trial ERP responses and estimate more accurately the
single-trial parameters of even smaller ERP components (i.e., the N1 wave of the
LEP responses) (Hu et al. 2010). Such a MLR approach is a procedure commonly
used to analyze fMRI data (Friston et al. 1998), where not only the canonical
hemodynamic response function (analogous to the average ERP in this case) but
also its temporal derivative (to account for the temporal variability of the hemody-
namic response) is fitted to the data in a general linear model (GLM) framework.
Thus, the inclusion of the temporal derivative in the regressors allows capturing not
only the amplitude variability but also the latency jitter of the single-trial ERP
responses.

Taking N2 and P2 waves of the LEP responses as an example, the variability of
latency and amplitude of both waves can be described as follows:

f tð Þ ¼ kNyN t þ aNð Þ þ kPyP t þ aPð Þ ð10:12Þ

where f(t) denotes a single-trial ERP waveform that varies as a function of time. f(t)
can be modeled by the sum of the varied version of the N2 wave (kNyN(t + aN) and P2
wave (kPyP(t + aP). kN and kP are the weighted constants of the N2 wave and P2
wave, while aN and aP represent the latency jitter of the N2 wave and P2 wave,
respectively. Please note that the N2 and P2 waves were modeled separately, since
the N2 and P2 peaks of the LEP responses reflect the activities of different neural
generators (Garcia-Larrea et al. 2003), and their amplitudes can be differentially
modulated by several experimental factors (e.g., spatial attention and probability of
perception) (Legrain et al. 2002; Lee et al. 2009). Using the Taylor expansion, the
MLR model can be detailed as

f tð Þ � kNyN tð Þ þ aNkNy
0
N tð Þ þ kPyP tð Þ þ aPkPy

0
P tð Þ ð10:13Þ
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where yN(t) and yP(t) represent the averages of N2 and P2 waves. y0N tð Þ and y0P tð Þ
denote the temporal derivatives of N2 and P2 waves, respectively. Briefly, the
single-trial ERP waveform is approximated as the sum of the weighted averages of
the N2 and P2 waves and their respective temporal derivatives.

Based on the fitted waveform, latency and amplitude of the ERP response in each
single trial were estimated by calculating: for the N2 wave, the most negative peak if
kN > 0 (positive fit) or the most positive peak if kN < 0 (negative fit), and for the P2
wave, the most positive peak if kP > 0 (positive fit) or the most negative peak if kP < 0
(negative fit), within a predefined time window centered at the N2 and P2 latencies in
the average ERP waveform for each subject. Single-trial latencies were estimated
from the latencies of the corresponding amplitudes.

Multiple Linear Regression with Dispersion Term (MLRd)

In addition to the trial-by-trial variability of ERP latency and amplitude, the mor-
phology of the ERP waveform is not constant across trials (Jung et al. 2001;
Casarotto et al. 2005; Mouraux and Iannetti 2008). The trial-by-trial variability of
ERP morphology could be clearly identified in clinical ERP data, as many abnormal
conditions (e.g., optic neuritis in multiple sclerosis) are characterized by the
so-called “desynchronized” ERPs. In these cases, ERP waveforms capture reduced
amplitude, longer latency, and, importantly, increased width of their waves (Pelosi
et al. 1997; Orssaud 2003). When using ERPs as a diagnostic tool in clinical practice,
these variations in ERP morphology (i.e., wave width) could be important parame-
ters to be considered and quantified. In addition, to obtain a more accurate estimation
of single-trial ERPs, it would be desirable to take into account not only the variability
of ERP latency and amplitude (Mayhew et al. 2006; Hu et al. 2010) but also the
variability of ERP morphology (Hu et al. 2011a).

To achieve this objective, we included a dispersion term (representing the
variability of ERP morphology) in the MLR model, thus obtaining a dispersed
version of MLR (MLRd):

f tð Þ ¼ kNyN sNt þ aNð Þ þ kPyP sPt þ aPð Þ ð10:14Þ

where sN and sP denote the time dispersion coefficients that determine the compres-
sion ratios of the width of N2 and P2 waves in the single-trial ERPs compared to
those in the average ERPs, respectively.

However, it is difficult to estimate these single-trial parameters (i.e., s, a, and k),
as the real function expressing ERP waveforms is unknown. For this reason, we
adopted a nonparametric data-driven approach, named PCA, to define a basic set of
regressors to fit the single-trial ERP waves. This method is similar to the procedure
that has been used to model the hemodynamic response in some BOLD-fMRI
studies (Friman et al. 2003; Hossein-Zadeh et al. 2003; Woolrich et al. 2004). Please
note that PCA can transform the ERP data into several uncorrelated principal
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components (PCs) (Jolliffe 2002). When performing PCA on the variability matrix
(see Hu et al. 2011a for the generation of the variability matrix), three main PCs for
each ERP wave representing (1) the average ERP wave across trials, (2) the vari-
ability of ERP latency, and (3) the variability of ERP morphology, respectively,
could be identified to model the single-trial N2 and P2 waves. To include the
variability of ERP latency and morphology of each wave as regressors in the linear
model, the MLRd procedure is mainly composed of four steps (Fig. 10.3, bottom
panel), and the details of these steps have been specified in our previous publication
(Hu et al. 2011a).

Please note that the decision of selecting the first three PCs of the variability
matrices was based on the fact that the first three PCs were capable of explaining
most of the variability of single-trial ERPs, namely, their latency, amplitude, and
morphology (Spencer 2005). These first three PCs were compared with the three
Taylor expansion series (i.e., a basic Gamma function, a temporal derivative of the
Gamma function, and a morphological derivative of the Gamma function) and were
demonstrated to be quite similar to the Taylor expansion series in previous literature
(see Fig. 11 in (Hossein-Zadeh et al. 2003)). The inclusion of a dispersion term in the
multiple linear regression is crucial to capture the physiological information reflected
in the variability of ERP morphology. Importantly, we observed that including a
regressor to capture the variability in ERP morphology could significantly improve
the accuracy of single-trial parameter estimation when the noise level of the single-
trial EEG activity is low (Hu et al. 2011a). This observation is valid since introduc-
ing the variability of ERP morphology as a regressor to model the noisy data might
increase the possibility of fitting noise. Indeed, the performance of MLR and MLRd
in extracting single-trial amplitudes was comparable when modeling the data with a
high level of noise. Therefore, the use of MLRd is beneficial either (1) when the
noise level of the raw data is low or (2) when the noise level of the data has been
effectively reduced by additionally filtering the data (e.g., the wavelet filtering)
(Hu et al. 2011a).

10.2.2 Single-Trial Analysis in the Time-Frequency Domain

As introduced previously, the techniques to perform single-trial analysis in the time
domain can only be able to detect the phase-locked information (i.e., ERP responses)
and be entirely blind to detect the non-phase-locked information (i.e., modulations of
ongoing EEG oscillations, ERD and ERS). Therefore, advanced signal processing
techniques are highly needed to explore the dynamic information of non-phase-
locked information at the level of single trials. Different from the time-domain
analysis, single-trial analysis in the time-frequency domain involves two important
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steps: feature separation in the time-frequency domain and parameter estimation at
the single-trial level (Hu et al. 2015).

As successfully implemented in several previous studies (Bernat et al. 2005,
2007; Mayhew et al. 2010), PCA decomposition with Varimax rotation is effective
in separating physiologically distinct TF-features (i.e., ERP, ERD, and ERS) within
the TFDs of single-trial EEG responses (Kayser and Tenke 2003; Bernat et al. 2005;
Dien 2009). The procedure of PCA with Varimax rotation consists of five crucial
steps (Hu et al. 2015): (1) data concentration, (2) PCA decomposition of the
covariance matrix, (3) Varimax rotation, (4) rearrangement of PC vectors to TFDs,
and (5) TFD thresholding. Firstly, the TFD of every single trial was rearranged as a
vector, and all vectors from all single trials of all subjects were stacked sequentially
to form a single matrix. Then, the generated matrix was decomposed into a set of PC
using PCA. Following, the decomposed PCs were further rotated by the Varimax
algorithm, which maximizes the sum of the variances of the squared loadings to
ensure that the matrix can be optimally described by a linear combination of a few
basic functions (Kaiser 1979; Richman 1986; Kayser and Tenke 2003). Fourthly, the
three decomposed PCs that explained the maximal variance in the matrix
(representing the stimulus-elicited ERP, ERD, and ERS) were rearranged into
three-dimensional matrices (i.e., having the same number of dimensions with the
single-trial TFDs). Finally, the time-frequency representations of each PC were
thresholded using a cutoff at two standard deviations from the mean of all time-
frequency points to isolate signal changes from the background EEG noise (Mayhew
et al. 2010).

10.2.2.1 Time-Frequency Multiple Linear Regression (TF-MLR)

When extending the MLR method in the time domain to the time-frequency domain,
the time-frequency MLR (TF-MLR) approach should take not only the latency jitter
of the isolated TF-feature but also its frequency variability into account (see
Fig. 10.4). Thus, the variability of TFDs in single trials can be modeled as follows:

F t; fð Þ ¼ k1F1 t þ a1ð Þ; f þ b1ð Þ½ � þ k2F2 t þ a2ð Þ; f þ b2ð Þ½ �
þk3F3 t þ a3ð Þ; f þ b3ð Þ½ � þ ε ð10:15Þ

where F(t, f ) denotes the TFD of a single-trial EEG response, which represents as a
joint function of time t and frequency f. F1(t, f ), F2(t, f ), and F3(t, f ) are the averages
of ERP, ERD, and ERS, respectively. F(t, f ) can be modeled as the weighted sum of
the ERP, ERD, and ERS, and the background noise ε, k1, k2, and k3 are the weighted
constants; a1, a2, and a3 are the values representing the latency variability; and b1, b2,
and b3 are the values representing the frequency variability of ERP, ERD, and ERS,
respectively.

Using the Taylor expansion, the TF-MLR model can be detailed as
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F t; fð Þ � k1F1 t; fð Þ þ k1a1
∂F1 t; fð Þ

∂t
þ k1b1

∂F1 t; fð Þ
∂ f

þk2F2 t; fð Þ þ k2a2
∂F2 t; fð Þ

∂t
þ k2b2

∂F2 t; fð Þ
∂ f

þk3F3 t; fð Þ þ k3a3
∂F3 t; fð Þ

∂t
þ k3b3

∂F3 t; fð Þ
∂ f

ð10:16Þ

where∂F1 t; fð Þ
∂t ,∂F2 t; fð Þ

∂t , and∂F3 t; fð Þ
∂t represent the temporal derivatives of ERP, ERD, and

ERS; ∂F1 t; fð Þ
∂ f , ∂F2 t; fð Þ

∂ f , and ∂F3 t; fð Þ
∂ f denote the frequency derivatives of ERP, ERD, and

ERS, respectively. A single-trial TFD can be modeled as the sum of a set of weighted
bases (average, its temporal derivative and its frequency derivative). Single-trial
parameters (latency, frequency, and magnitude) of each TF-feature were calculated
based on the fitted single-trial TFD (Hu et al. 2015).

Fig. 10.4 The flowchart describing the procedure of time-frequency multiple linear regression
(TF-MLR). (Reproduced from Hu et al. 2015)
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10.2.2.2 TF-MLR with Dispersion Term (TF-MLRd)

To estimate single-trial time-frequency responses more accurately, not only their
variability in latency and frequency but also their variability in morphology should
be considered. For this reason, in addition to the basic set of TF-MLR, two more
regressors representing the scaling of the single-trial response in time or frequency
are also considered, which leads to the TF-MLRd model (Fig. 10.5):

Fðt, f Þ ¼ k1F1½ðs1t þ a1Þ, ðc1f þ b1Þ� þ k2F2½ðs2t þ a2Þ, ðc2f þ b2Þ�
þ k3F3½ðs3t þ a3Þ, ðc3f þ b3Þ� þ ε ð10:17Þ

where s1, s2, and s3 represent the coefficients that code the compression ratios of the
time width of ERP, ERD, and ERS of each single-trial TFD compared to those of the
average TFD, respectively. c1, c2, and c3 are the coefficients that code the compres-
sion ratios of the frequency width of ERP, ERD, and ERS of each single-trial TFD
compared to those of the average TFD, respectively.

To estimate the parameters k, s, c, a, and b of each single-trial TFD, we generated
a basic set of regressors to fit the ERP, ERD, and ERS using PCA (Jolliffe 2002).
Specifically, for each TF-feature, we generated five PCs representing (1) the average
of the response, (2) the latency variability, (3) the frequency variability, (4) the
morphology variability in the time domain, and (5) the morphology variability in the
frequency domain. The whole procedure for generating the TF-MLRd regressors is
detailed in Fig. 10.5 and in our previous publication (Hu et al. 2015).

Whereas the TF-MLR approach that uses fewer regressors is more specific when
detecting the stimulus-related responses (Friman et al. 2003), the TF-MLRd
approach is able to capture the variability of the response morphology both in the
time domain and the frequency domain. In other words, the TF-MLR provides a
simple and robust approach to estimate single-trial parameters and is more appro-
priate when the SNR of EEG responses is relatively low. In contrast, the TF-MLRd
approach is more sensitive in detecting response variability (Hu et al. 2011a) with
the possibility of fitting some noise (Friman et al. 2003). For this reason, the
TF-MLRd approach is more suited to accurately estimate single-trial responses
when the SNR of EEG responses is relatively high (e.g., intracranial recordings,
interictal spikes in epilepsy patients).

In addition, to improve the performance of single-trial estimation of TF-features,
the SNR of the responses could be enhanced beforehand using other techniques (e.g.,
the use of spatial filtering or the use of tensor decomposition that could span the EEG
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signal into the spatial-temporal-spectral domain) (Cichocki 2013). Afterward,
TF-MLR and TF-MLRd could be performed on the cleaned signals to obtain a
more accurate estimation of single-trial parameters of brain responses at the level of
single trials.

10.2.3 Single-Trial Analysis Toolbox

Most of the discussed single-trial analysis methods that could be used to greatly
enhance the SNR of event-related brain responses at the level of single trials have
been developed into user-friendly software running under the MATLAB environ-
ment, named STEP1 (Fig. 10.6). STEP1 could also be used to automatically extract
single-trial parameters (e.g., latency and amplitude of ERP waves) of different
features in event-related brain responses. The toolbox can be freely downloaded
from the following websites: http://www.hulilab.com and http://www.iannettilab.net.

Fig. 10.6 Single-trial analysis toolbox (left) and a representative performance of single-trial
analysis to enhance the signal-to-noise ratio. (right: top, raw EEG data; bottom, filtered EEG data)
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10.3 What’re the Possible Applications of Single-Trial
Analysis?

Single-trial analysis would help us explore the single-trial dynamics of stimulus-
elicited brain responses, thus providing a rich source of dynamic information to be
applied in a series of basic and clinical researches.

First, the single-trial dynamics of both phase-locked and non-phase-locked infor-
mation would enable us to perform within-subject correlation analysis with, for
example, stimulus parameters and behavioral variables, thus providing the possibil-
ity to improve our understanding of the functional significance of the brain responses
(Mouraux et al. 2003; Mouraux and Plaghki 2004; Iannetti et al. 2008). This is
particularly relevant in the field of cognitive neuroscience, since event-related brain
responses exhibit high across-trial variability (Iannetti et al. 2005a; Purves and Boyd
1993). Please note that the across-trial variability is determined by both peripheral
(e.g., stimulus intensity and duration) and central factors (e.g., fluctuations in
vigilance, attentional focus, and task strategy) (Legrain et al. 2002, 2003; Lee
et al. 2009). Importantly, since the within-subject correlation analysis would not
be influenced by the between-subject variability (e.g., age, gender, and weight), the
exploration of single-trial dynamics of brain responses would help increase the
power of statistical analysis, thus providing new insights into brain functions.

Second, when the single-trial analysis was applied in simultaneous EEG and
fMRI, the single-trial dynamics of both phase-locked and non-phase-locked infor-
mation would enable us to better exploit the neurovascular coupling between EEG
and fMRI signals. This analytic strategy would help us disclose brain functions with
an optimal combination of temporal and spatial resolutions for two reasons. Firstly,
EEG data collected simultaneously with fMRI are contaminated with substantial
artifacts in the fMRI environment (Allen et al. 1998). For this reason, several
algorithms have been developed to remove (or attenuate) these artifacts (Allen
et al. 2000; Debener et al. 2007). However, event-related brain responses both in
the time domain and the time-frequency domain would still suffer from reduced
SNR (Debener et al. 2005; Iannetti et al. 2005a; Niazy et al. 2005). Therefore, single-
trial analysis is highly needed to enhance the SNR of event-related brain responses at
the level of single trials. Secondly, the single-trial parameters of event-related brain
responses can be used to build a function of the predicted hemodynamic response,
which is included as an additional regressor in the general linear model analysis
(Iannetti et al. 2005a; Mayhew et al. 2010). In this case, voxels whose BOLD signal
correlates in the time course with the across-trial variability of event-related brain
responses would be identified, and the obtained results would reflect physiological
information about the dynamic cortical processing (Bagshaw and Warbrick 2007;
Goldman et al. 2009).

Third, the single-trial dynamics of both phase-locked responses and non-phase-
locked responses would provide useful information, which could be used in machine
learning to predict, for example, the subjective perception of pain (Huang et al.
2013). The strategy that combines single-trial analysis and machine learning
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techniques (e.g., binary classification and continuous regression) could be applied to
predict subjective experience, thus satisfying the most requirement of various basic
and clinical applications (Huang et al. 2013). In the field of pain neuroscience, this
technique to decode subjective pain experience is profoundly important, as it could
help optimize the diagnosis, monitoring, and treatment of pain for
noncommunicative patients and patients with disorders of consciousness (Schnakers
et al. 2010; Schulz et al. 2012).

Finally, single-trial analysis to explore dynamics of both phase-locked responses
and non-phase-locked responses could also be used in some crucial clinical appli-
cations. For example, it is widely accepted that abnormalities of somatosensory-
evoked potentials (SEPs) provide direct evidence for the functional impairment of
the ascending somatosensory pathway (Cruccu et al. 2008). For this reason, SEPs
have been widely used both in clinical diagnosis (Aminoff et al. 1988; Zeman and
Yiannikas 1989; Yiannikas and Vucic 2008) and in intraoperative neurophysiolog-
ical monitoring (Nuwer 1998; Luk et al. 2001; Deletis and Shils 2002; Minahan
2002; Hu et al. 2003; Devlin et al. 2006). The availability of single-trial analysis
could provide dynamic information for the intraoperative monitoring to detect the
temporary malfunctioning at an early stage, which could help prevent the possible
irreversible spinal cord damage (Wiedemayer et al. 2002; Rossi et al. 2007).
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Chapter 11
Nonlinear Neural Dynamics

Yang Bai, Xiaoli Li, and Zhenhu Liang

Abstract Brain activities measured by EEG exhibit complex behavior with
nonlinear dynamic properties. Therefore, methods derived from nonlinear theory
could contribute to the understanding of the EEG dynamics and the underlying brain
processes. Until now, a number of nonlinear dynamic methods have been proposed.
These methods reveal various nonlinear properties of the EEG signals. Among them,
“complexity” and “entropy” are the widely used concept in the EEG analysis.
Moreover, entropy-based measures have been applied into clinical practice of
monitoring depth of anesthesia. This study selects three classical types of nonlinear
dynamic measures (total 12), introducing their basic theory and giving examples of
applying them in real EEG analysis. All the MATLAB codes can be downloaded
from https://pan.baidu.com/s/1ro2VEJWdsb5X6dCtueGUOA with password: hf4x.
Although previous studies compared the performance of various nonlinear dynamic
measures at different situations, it is still improper to determine which measure is the
best one. The measure selection in your study should take a number of factors into
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account, such as the parameter selection, robust to artifacts, compute consumption,
the correlation of the nonlinear characteristics with the underlying neural process,
and so on.

Keywords EEG · Complexity · Entropy · Nonlinear dynamics

11.1 Introduction

Detection of dynamic properties in complex systems is one of the most important
issue in physical, medical, engineering, and biological sciences (Cao et al. 2004b).
Especially, in neurophysiology, accurate assessing the underlying neuronal process
may contribute to the diagnosis and treatment. Nonlinear dynamic analysis focuses
on the revealing of the changes of dynamic properties in complex systems. The
nonlinear dynamic theory considers the brain as a multiple dimensions’ dynamic
system. The neuronal activities represent properties of dynamic; thus, human brain
could be simulated as a complex nonlinear dynamic system. The nonlinear and
chaotic behavior characteristics of the neuronal systems make it reasonable to apply
methods derived from theory of nonlinear dynamics to capture the neuronal activ-
ities. Since the nonlinear dynamics was firstly used in analyzing EEG of human
sleeping, more and more researchers pay attention to expand nonlinear dynamic
measures in EEG analyzing. For example, nonlinear measures based on the EEG in
anesthesia gives an important reference guide in assessing anesthesia state of patients
(Anier et al. 2010; Olofsen et al. 2008; Schultz et al. 2008).

During the last two decades, various nonlinear algorithms have been proposed for
extracting EEG nonlinear characteristics to assess brain activities. Among them, the
first important nature of the EEG lies in its dynamic “complexity,” which can be
characterized quantitatively by complexity analysis. The complexity analysis mainly
represents the degree of randomness in time series. In the EEG analysis, the
complexity measures the capacity of information in the signal fragment and then
reflects the underlying activeness of the neurons. For example, the “complexity” of
resting-state EEG with opening eyes will markedly be higher than that with closing
eyes. The difference of capacity of information in EEG comes from the visual
senses, which make the brain in a vigilant state with more information in the
neuronal activities. When the eyes are closed, the brain comes to a relatively resting
state with decreased active degree of neurons, which represents lower “complexity”
in EEG signals. Lempel-Ziv complexity (LZC) was proposed by Lempel and Ziv
(Lempel and Ziv 1976). As it is a nonlinear dynamic measure indicating the rate of
appearance of new patterns in time series, only the activities adding or reducing the
patterns of underlying system are considered by LZC. It does not matter whether the
system is deterministic or stochastic (Li et al. 2008d). LZC as well as its derivatives
has found numerous applications in characterizing the randomness of biological
signals. In EEG analysis, LZC was applied to estimate levels of consciousness
during anesthesia (Jouny and Bergey 2012) and to detect seizure onset (Zhang
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et al. 2001), depression (Li et al. 2008d), Parkinson’s disease (Chen et al. 2010),
schizophrenia (Sabeti et al. 2009), and Alzheimer’s disease (Abasolo et al. 2006;
Dauwels et al. 2011).

The “entropy,” which was originally derived from thermodynamics, was firstly
proposed by Clausius in 1865. When considered as a physical concept, it was used to
describe the distribution probability of molecules of gaseous or fluid systems. In
1949, Claude E. Shannon introduced entropy to the information theory (Shannon
and Weaver 1949). The Shannon entropy (ShEn) measures the predictability of later
amplitude values of the signal based on the probability distribution of amplitude
values former in the signal (Yoon et al. 2011; Bruhn et al. 2001). Up to now, the
entropy theory undergoes development more than 100 years. It has been continu-
ously improved with various definition derived. During its development, several
entropy measures have been used in various neuron information processing. For
example, in a study of the depth of anesthesia, several entropy measures have
showed good performance, such as the spectral entropy (SpEn) (which includes
response entropy (RE) and state entropy (SE)) (Klockars et al. 2012; Viertiö-Oja
et al. 2004), wavelet entropy (WE) (Särkelä et al. 2007), Hilbert-Huang spectral
entropy (HHSE) (Li et al. 2008b), phase space reconstruction-based entropy (sample
entropy (SampEn), fuzzy entropy (FuzzyEn), and approximate entropy (ApEn)
(Bruhn et al. 2000). Permutation entropy (PE) was proposed by Bandt and Pompe
based on measuring the symbolic dynamics for time series analysis (Bandt and
Pompe 2002a), and then it has been widely used in EEG signal analysis (Cao et al.
2004a; Li et al. 2007; Li et al. 2008a). Overall, all the entropy measures describe the
capacity of information at different perspective, and the successful clinical applica-
tion is to monitor the depth of anesthesia. Generally, the anesthetics will suppress the
neural activities and result in a fading of consciousness. Therefore, an increasing of
anesthetics would lead to a reducing of capacity of information interaction in the
brain, which shows decreasing of entropy in EEG signals.

In addition to the complexity and entropy measures, many other nonlinear
dynamic measures have also been proposed to analyze the characteristics of EEG,
such as recurrence quantification analysis (RQA) methods (Webber and Zbilut
1994), Lyapunov exponents (Röschke et al. 1995), correlation dimension (Shayegh
et al. 2014), and detrended fluctuation analysis (DFA) (Matic et al. 2015). In
particular, the Hurst exponent (H), which measures the smoothness of a fractal
time series derived from rescaled range analysis or DFA, has been successfully
applied to evaluate the self-similarity and correlation properties of EEG recordings
(Rajendra et al. 2005). It is an index describing the self-affine characteristics of
irregular time series, which characterizes the persistence/anti-persistence properties
of signals. The RQA measures is demonstrated as a suitable tool to characterize EEG
signals because it does not require any assumption on stationarity, length, or noise of
time series (Schinkel et al. 2009; Webber and Zbilut 1994). Due to its advantages,
RQA has been used to reveal sleep stages (Song et al. 2004), condition of con-
sciousness/unconsciousness (Klaus et al. 2010), and pre-ictal activity in epileptic
subjects (Ouyang et al. 2008).
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In this study, we select several nonlinear dynamic measures to introduce their
algorithm and give examples of applying them in analyzing EEG signals during
awake and anesthesia states. The measures include complexity methods of LZC as
well as its derivatives; entropy methods of ShEn, ApEn, SampEn, PE, WE, HHSE,
and HE; and indexes derived from RQA. All the MATLAB codes correlating with
this study are also attached.

11.2 Complexity

Lempel-Ziv complexity was proposed by Lempel and Ziv (Lempel and Ziv 1976)
and along with its derivatives has found numerous applications in characterizing the
randomness of biological signals, especially in EEG analysis (Abasolo et al. 2006;
Aboy et al. 2006; Huang et al. 2003; Zhang and Roy 2001).

11.2.1 Lempel-Ziv Complexity

LZC analysis is based on a coarse-graining, which transformed the signal {s(n)} into
a finite sequence with a few symbols (Zhang et al. 2001). The coarse-graining
process conventionally converted the signal s ið Þ into a binary x ið Þ. It determines
how much information is in the original signal. Here, we give four types of LZC
measures which depend on commonly used coarse-graining methods (mean,
LZCmean; median, LZCmedian; midpoint, LZCmid � p; k-means, LZCk � means).

The coarse-graining approaches convert the original signal into 0–1 sequence
through comparing the amplitude values with the threshold(s) (LZCmean, LZCmedian,
and LZCmid � point only need one threshold Td, while the LZCk � means needs two
threshold values). Then, the complexity of the signal counts the number of different
patterns in the sequence.

• LZCmean

In this coarse-graining approach, the mean value of the amplitude values will be
selected as Td (Zhang et al. 2000). Then, the coarse-graining can be expressed as

x ið Þ ¼ 0, if s ið Þ < Td

1, otherwise

�
ð11:1Þ

• LZCmedian

For the LZCmedian, the median value of the amplitude values will be chosen as Td.
After comparing each data point with the Td (s(i) � Td), we define the positive value
as 1 and the others as 0 (Zhang et al. 2001).
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• LZCmid � p

The midpoint value of the amplitude values is determined by the smallest value
smin and the largest value smax,

Td ¼ smin þ smax
2

ð11:2Þ

Then, the subsequent step is exactly the same as explained in Eq. (11.1).

• LZCk � means

The LZCk � means estimates the grouping of data points around centroids
corresponding to points around which most of the data is agglomerated. In the initial
iteration of the method, we set the two initial centroids as z1(1) ¼ sm + ε � sm and
z2(1) ¼ sm � ε � sm. The ε, which relates with the stationarity of the signal, actually
determines the up and down thresholds. Here, we set it as 0.05 with experience
following previous studies (Linde et al. 1980; Zhou et al. 2011). sm is the mean of the
amplitude values. Then, the distance between the centroid to each data point can be
obtained,

Di
1 ¼ s ið Þ � z1 1ð Þk k2

Di
2 ¼ s ið Þ � z2 1ð Þk k2

�
ð11:3Þ

Then, the signal is converted into a binary sequence as follows:

x ið Þ ¼ 1 if D i
1 < Di

2
0 if D i

1 � Di
2

�
ð11:4Þ

11.2.2 Permutation Lempel-Ziv Complexity

Permutation approach considers the order relation within the values but not the
absolute amplitude values. Previous studies have shown that the permutation
approach has several advantages, such as simplicity, robustness, and low complexity
in computation (Bandt and Pompe 2002b; Bandt 2005). Facilitated by these advan-
tages, in addition to the PLZC, several other nonlinear methods such as permutation
entropy (Bandt and Pompe 2002b; Bruzzo et al. 2008; Li et al. 2010, 2008c),
permutation conditional mutual information (Li and Ouyang 2010), and permutation
transfer entropy (Li and Li 2013) have been proposed to describe the chaotic
systems.

PLZC was proposed as an improved LZC measure by using permutation process
to enhance the robust to noise (Bai et al. 2015). The permutation scheme is illustrated
in Fig. 11.1. The patterns are also referred as motifs (Olofsen et al. 2008). m is the
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number of data points in each motif, so the total number of possible motifs is m!.
m ¼ 3 means three points in each motif and total six (m!) possible motifs can be
obtained. By this way, the EEG signal could be transformed into a finite symbolic
sequence with possible elements of 1 to 6. In order to ensure that all data points are
mapped into one of the possible permutations, the equal values were arranged by the
index of data involved. For example, if x ið Þ ¼ x iþ 1ð Þ, it would regard as x ið Þ < x
iþ 1ð Þ for permutation. The most important parameters for this permutation proce-
dure are m and τ.

There are generally two definitions for the complexity parsing. The primary LZC
measure (Lempel and Ziv 1976) is most widely used in applications with two or
more symbols. The detailed PLZC indexes could be calculated following the eight
steps.

1. Step 1: Transform the signals into a finite sequence {x(n)} with permutation
procedure before mentioned. In this way, the signals will be replaced by no more
than m! kinds of symbols representing permutation patterns.

2. Step 2: Initialize the PLZC measure. Let Sand Q denote the first and the second
symbol, respectively, of the {x(n)} and set the complexity factor c(n) ¼ 1.

3. Step 3: Merge S and Q intoSQ. SQv denotes the string derived from SQ with
operation of deleting the last character ofSQ. For example, S¼x(1), x(2), ..., x(i),
Q¼x(i + 1) , ..., x(i + j � 1) ,x(i + j) , then SQ¼x(1), x(2), ..., x(i), x(i + 1), . . ., x
(i + j � 1), x(i + j) and SQv¼x(1), x(2), ..., x(i), x(i + 1), . . ., x(i + j � 1).

Fig. 11.1 Illustration of the permutation process with m¼ 3. (a) The possible motifs for m¼ 3. (b)
Transform the signal into the symbol sequence using permutation
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4. Step 4: Judge whether Q has reached the last symbol of the sequence. If reached,
this measure will go on with normalization.

5. Step 5: List the subsequence of SQv and collect all of them in a vocabulary
denoted as SQvsub. Then, if Q belongs to SQvsub, go to Step 6; otherwise, Q is a
new sequence and go to step 7.

6. Step 6: Update Q by adding the next symbol to it and go to step 3.
7. Step 7: Update S as SQ and Q equal to the next symbol of {x(n)}. Meanwhile, the

complexity factor c(n)is increased by one.
8. Step 8: Now c(n) is the complexity of the symbol sequence {x(n)} which denote

the number of distinct patterns in the source sequence. The total number of
subsequences present in {x(n)} has an upper bound (Hu et al. 2006), denoted
as L(n):

L nð Þ ¼ c nð Þ logm! c nð Þf g þ 1½ � ð11:5Þ

Then, PLZC can be indicated as a normalized c nð Þ, defined as

PLZC ¼ c nð Þ logm!c nð Þ þ 1½ �
n

ð11:6Þ

where ndenotes the total length of the symbol sequence. When n is very large, PLZC
can be simplified as

PLZC ¼ c nð Þ logm!nf g
n

ð11:7Þ

Figure 11.2 shows the results of the five LZC measures in describing the EEG
signals during the awake and anesthesia states. All the measures show lower
complexity of patterns during the anesthesia than the awake state. Among them,
PLZC represents better stability especially during the awake state. Similar with the
other four LZC measures, PLZC also evaluates the number of new patterns and their
rate of occurrence along a given sequence. However, the coarse-graining approaches
of the traditional LZC measures use the absolute values of the amplitude. Therefore,
the coarse-graining approach makes the four LZC measures more sensitive to the
artifacts in the signal. On the other hand, the thresholds used in the traditional LZC
procedures have a distinct limitation. Since the binary sequence is simply
constructed using a threshold value, it would result in a loss of frequency informa-
tion in the original signal. However, the permutation in PLZC reflects the mutual
relation of the signal points (described as motifs), and the variation of these motifs
indicates the changes of the signal itself. Changes in both high and low frequency
will alter these motifs, and variations in both will be present in the permutation. This
property is particularly useful in characterizing the neuronal dynamic changes in the
EEG signals, because brain activities are more likely to represent in EEG frequency
domain. Hence, these led to better performance of the PLZC in distinguishing the
awake and anesthesia states based on EEG.
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Fig. 11.2 Lempel-Ziv complexity methods in analyzing EEG signals. (a) EEG signals of awake
(blue) and anesthesia (red). (b) Results of the LZCmean, LZCmedian, LZCmid � p, LZCk � means, and
PLZC during awake and anesthesia states
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11.3 Entropy

11.3.1 Entropy Based on Time Domain: ShEn, ApEn,
SampEn, and PE

11.3.1.1 Shannon Entropy

Claude E. Shannon was the first to propose entropy to measure for information
theory (Shannon 1922). Shannon entropy measures the probability density based on
the probability distribution of amplitude values. It may be used globally, taking all
data into account, or locally, around certain points. This measure can provide
additional information about specific events, for example, outliers or rare events.
Information entropy Sen of a random variable S that takes the values s1, s2, . . ., sN is
defined as

Sen ¼
Xn
i¼1

p sið Þloga
1

p sið Þ ¼ �
Xn
i¼1

p sið Þlogap sið Þ,a > 1 ð11:8Þ

where p(si) are probabilities of acceptance by the random variable S values si.

11.3.1.2 Approximate Entropy

ApEn is a modification of the Kolmogorov-Sinai entropy introduced by Pincus in
1991 (Pincus 1991). ApEn measures the predictability of future amplitude values of
the signal based on the information of previous amplitude values. It can be used to
the finite length signal, and it belongs to nonlinear dynamics which describes the
unpredictability or randomness of the signal. Its computation involves embedding
signal into phase space and estimates the rate of increment in the number of phase
space pattern within a predefined value r when the embedding dimension of phase
space is increasing from m to m + 1.

For a time series x(i)(1 � i � N ) of finite length N to reconstitute the N-m + 1
vectors Xm(i) following the form:

Xm ið Þ ¼ x ið Þ; x iþ 1ð Þ; . . . x iþ m� 1ð Þf g,
i ¼ 1,2, . . .N � mþ 1

ð11:9Þ

where m is the embedding dimension.
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Let Cm
i rð Þ be the probability that any vector Xm( j) is within r of Xm(i); it can be

defined as

Cm
i rð Þ ¼ 1

N � mþ 1

XN�mþ1

j¼1

Θ dm
ij � r

� �

i,j ¼ 1,2, . . .N � mþ 1

ð11:10Þ

where d is the distance between the vectors Xm(i) and Xm( j), defined as

dm
ij ¼ d Xm

i ;X
m
j

h i
¼ max x iþ kð Þ � x jþ kð Þj jð Þ

k ¼ 0,1, . . . ,m
ð11:11Þ

and Θis the Heaviside function.
After that, define a parameter Φm(r):

Φm rð Þ ¼ N � mþ 1ð Þ�1
XN�mþ1

i¼1
lnCm

i rð Þ ð11:12Þ

Next, when the dimension changes to mþ 1, it will repeat above process.

Φmþ1 rð Þ ¼ N � mð Þ�1
XN�m

i¼1
lnCmþ1

i rð Þ ð11:13Þ

Finally, the approximate entropy is defined by:

ApEn m; r;Nð Þ ¼ Φm rð Þ �Φmþ1 rð Þ ð11:14Þ

The detail algorithm is shown in (Bruhn et al. 2000). And the ApEn index is
easily influenced by data length (N ), similar tolerance (r), and embedding dimension
(m). According to Pincus (1991) and Bruhn et al. (2000), N is recommended as about
1000 of the standard deviation of the signal, r as 0.1~0.25, and m as 2~3.

11.3.1.3 Sample Entropy

The SampEn is proposed by Richman and Moorman (Richman and Moorman 2000)
based on the ApEn but differs from it in three ways, which all remove bias existing in
ApEn.

1. SampEn eliminates self-matches.
2. To avoid ln 0 caused by removing self-matches, SampEn computes the addition

operation of the total number of template well-matches prior to logarithmic
operation.
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3. In order to have equal number of patterns for both embedding dimension m and
mþ 1, the time series reconstitution in SampEn have N � m rows instead of N
�mþ 1 in ApEn in embedding dimension m.

The first step is the same as ApEn. When the embedding dimension ism, the total
number of template matches:

Bm rð Þ ¼ N � mð Þ�1
XN�m

i¼1
Cm
i rð Þ ð11:15Þ

Similarly, the embedding dimension is mþ 1, and the total number of template
matches:

Am rð Þ ¼ N � mð Þ�1
XN�m

i¼1
Cm
i rð Þ ð11:16Þ

Finally, the SampEn of the time series is estimated by:

AampEn r;m;Nð Þ ¼ �ln
Am rð Þ
Bm rð Þ ð11:17Þ

The SampEn is based on ApEn, so its parameters and their selection procedure
are the same as ApEn.

11.3.1.4 Permutation Entropy

PE is a quantitative complexity measure that explores the local order structure of a
dynamic time series. It transforms given time series into series of ordinal patterns,
each describing the order relation between the present and a fixed number of
equidistant past values at a given time (Bandt 2005). The advantages of the method
are simplicity, robustness, and low computational complexity (Li et al. 2007).

Given a scalar time series, {x(i) : 1 � i � N}. Firstly, reconstruction time series:

Xi ¼ x ið Þ; x iþ τð Þ; . . . ; x iþ m� 1ð Þτð Þf g
i ¼ 1,2, . . .N � m� 1ð Þτ ð11:18Þ

where τ is time delay, and m is the embedding dimension.
Then, rearrange Xi in an increasing order:

�
x iþ j1 � 1ð Þτð Þ � x iþ j2 � 1ð Þτð Þ � . . . � x iþ jm � 1ð Þτð Þ ð11:19Þ

There arem! permutations form dimensions. Each vector Xi can be mapped to one
of the m! permutations.
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Next, the probability of the jth permutation occurringp j can be defined as

p j ¼
n j

Pm!
j¼1

n j

ð11:20Þ

where n j is the number of times the jth permutation is occurring.
The permutation entropy of the time series {x(i) : 1 � i � N} is defined by:

Hx mð Þ ¼ �
Xm!

j¼1
p jln p j ð11:21Þ

when the time series is random, the Hx(m) approaches its maximum value of ln(m!);
when the time series is regular, the Hx(m) approaches to zero.

Finally, normalizing Hx(m) by diving ln(m!):

PE ¼ Hx mð Þ
ln m!ð Þ ð11:22Þ

Figure 11.3 shows the indexes of ShEn, AE, SampEn, and PE in analyzing the
EEG signals. It can be seen that the AE, SampEn, and PE could distinctly distinguish
the two EEG states. The anesthesia state shows lower entropy than the awake state.
Although the ShEn shows capability of estimating depth of anesthesia in previous
studies, the ShEn indexes show indiscriminate between the awake and anesthesia
state in this EEG data set. From the view of algorithm, ShEn simply measures the
distribution of signal amplitude values, which would be easily contaminated by
artifacts in the EEG signals, while AE, SampEn, and PE firstly reconstruct the signal
and then investigate the ordinal relationship of the amplitude values. Thus, these
measures are more sensitive to the changes of covert components in the EEG signal
and are more robust to the artifacts.

11.3.2 Entropy Based on Time-Frequency Domain: WE
and HHSE

Spectral entropy is a somewhat confusing but an important term in the nonlinear
analysis. It uses spectral analysis to firstly transform the signal into time-frequency
domain and then apply Shannon function to measure the distribution of spectral
power. Although it uses Shannon entropy concept, spectral entropy reflects the
power distribution of the transformations of EEG signal, which has been normalized
to unit power so as to reduce the individual difference effects (Inouye et al. 1991).
Therefore, the efficiency of spectral entropy extremely depends on the spectral

226 Y. Bai et al.



measurement. Normally, Fast Fourier transformation is frequently used to identify
the power spectrum with time window moved stepwise. Besides, wavelet transform
and Hilbert-Huang transform are the favorite approaches in signal processing area.
Here, we present the wavelet entropy and Hilbert-Huang spectral entropy as
examples.

11.3.2.1 Wavelet Entropy

In the recent years, WE is physiologically meaningful because it differentiates
specific physiological brain states under spontaneous or stimulus-related conditions.
When EEG signal behave more regularly and there is a symptom of synchronization
in neuron activities, WE value reduces. Moreover, WE can recognize the time

Fig. 11.3 Results of ShEn, AE, SampEn, and PE in analyzing EEG signals during awake (blue)
and anesthesia (red) states
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localizations of a dynamic process. To calculate the WE, wavelet energy E
N jð Þ
j of

signal is determined at each scalej as follows:

E
N jð Þ
j ¼

Xm jþN j�1

k¼m j

d j kð Þ2 ð11:23Þ

where mj and Nj are running index and the length of running windows within each
level j, respectively. The total energy over all scales is obtained by:

Etot ¼
X
j

E
N jð Þ
j ¼

X
i

Xm jþN j�1

k¼m j

d j kð Þ2 ð11:24Þ

The wavelet energy is divided by total energy to obtain relative wavelet energy at
each scale j and length of running windowsN j:

p
N jð Þ
j ¼ E

N jð Þ
j

Etot
¼ E

N jð Þ
jP

jE
N jð Þ
j

¼
Pm jþN j�1

k¼m j
d j kð Þ2P

j

Pm jþN j�1
k¼m j

d j kð Þ2
ð11:25Þ

The WE is calculated from entropy of p
N jð Þ
j distribution between scales as

follows:

WE ¼ �
X
j

p
N jð Þ
j logp

N jð Þ
j ð11:26Þ

The detail of the algorithm used in this study can be seen in Särkelä et al. (2007).
In addition, the values of WE are dependent on the wavelet basis function, the
numbers of decomposed layers ( n ), and the data length (N ). Among them, the
wavelet basis function is the most important for the WE. For the lack of fixed
criterion, it is very difficult to select an appropriate wavelet basis function in practical
applications, and many studies are based on experiments.

11.3.2.2 Hilbert-Huang Spectral Entropy

To overcome some shortcoming of wavelet transform, Huang et al. in 1998 proposed
empirical mode decomposition (EMD) in conjunction with Hilbert transform
(Hilbert-Huang transform) method to process nonlinear and nonstationary signals
(Huang et al. 1998). Now, it has been widely used to extract the features of EEG
recordings (Liang et al. 2000; Rilling et al. 2003; Li 2006; Shalbaf et al. 2012). In
particular, Li et al. had developed HHSE and successfully applied it to the anesthetic
EEG signals (Li et al. 2008b). The HHSE is based on the transform, which applies
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the Shannon entropy concept to the Hilbert-Huang spectrum (Li et al. 2008b). For a
given nonstationary signal x tð Þ, by the EMD method, decompose the signal into a
series of intrinsic mode functions (IMFs), Cn(1, 2, . . .,N ), where N is the number of
IMFs. A signal x(t) can be written by:

x tð Þ ¼
Xn�1

i¼1

imf tð Þi þ rn tð Þ ð11:27Þ

Applying the Hilbert transform to the IMF components,

Z tð Þ ¼ imf tð Þ þ iH imf tð Þ½ � ¼ a tð Þei
R

ω tð Þdt ð11:28Þ

in which a tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
imf 2 tð Þ þ H2 imf tð Þ½ �

q
,ω tð Þ ¼ d

dt arctan H imf tð Þ½ �=imf tð Þð Þ½ �,

h ωð Þ ¼
Z

H ω; tð Þdt ð11:29Þ

where ω(t) and a(t) are the instantaneous frequency and amplitude of IMF,
respectively.

To simplify the representation, the Hilbert-Huang spectrum is denoted as a
function of frequency ( f ) instead of angle frequency (ω). The marginal spectrum
is normalized by:

ĥ fð Þ ¼ h fð Þ=
X

h fð Þ ð11:30Þ

Next, apply the Shannon entropy concept to the Hilbert-Huang spectrum; Hilbert-
Huang spectral entropy can be obtained by:

HHSE ¼ �
X
f

ĥ fð Þlog ĥ fð Þ� � ð11:31Þ

where HHSE is called Hilbert-Huang spectral entropy.
The HHSE values are mainly affected by frequency resolution and data length

(N ). To compute accurately, the frequency resolution is chosen as 0.1 Hz. The N
directly influences the EMD. In general, that the N is too long or too small may
induce the boundary effect, which can contaminate data and make power spectrum
distortion.

Figure 11.4 shows results of WE and HHSE indexing the EEG signals. Both the
WE and HHSE can show the trend of decreasing spectral entropy from the awake
state to the anesthesia state. Comparing with WE, HHSE shows better consistency at
each state and more distinct changes during the state transition. The wavelet trans-
form has been suggested as a useful tool for presenting EEG signals in different time
and frequency scales (Zoughi et al. 2012). In particular, entropy of signals in the
wavelet domain (WE) indicates the variation of signal in each frequency scale
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Fig. 11.4 Time-frequency spectrum and spectral entropy of the EEG signal at awake and anesthe-
sia states. (a) The EEG signals. (b) Time-frequency spectrum measured by continuous wavelet
transform and Hilbert-Huang transform. (c) Results of WE and HHSE indexing the awake (blue)
and anesthesia (red) states
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(Rosso et al. 2001). Although WE has been used to study the frequency contents in
many studies, the wavelet transform algorithm presents some limitations. Wavelet
transform can only deal with linear nonstationary signals in practical application. It is
difficult to exactly localize a single oscillatory content contemporarily in time and
frequency. In comparison with wavelet transform, the Hilbert-Huang transform
could provide higher resolution simultaneously in time and frequency domains,
which gives HHSE better ability of capturing the frequency changes in EEG signals.
Moreover, the Hilbert-Huang transform can break down a complicated signal into
several oscillatory modes without a basis function, such as sine or wavelet functions.
Thus, it will not lead to a distortion of oscillatory modes in the instantaneous
amplitude. Therefore, the advantages of the Hilbert-Huang transform make the
HHSE more precise for estimating the complexity of the frequency components.

11.4 Hurst Exponent

Recently, studies found that the neural processing in human brain obey the power-
law scaling relations (Worrell et al. 2002). The Hurst exponent concept is always
employed to describe the dynamic change in power-law characteristics. It has been
used to extract informative features from EEG recordings to indicate the effect of
anesthetic drugs (Liang et al. 2012). The Hurst exponent analysis is based on
spectrum. In this study, the harmonic wavelet was used to provide an unbiased
and consistent estimation of the EEG power spectrum. The wavelet transform passes
a filter ψ(∙) over a time series x(t):

Wx a; τð Þ ¼ 1ffiffiffiffiffiffi
aj jp

Z
x tð Þψ t � τ

a

� �
dt ð11:32Þ

where ψ(∙) means the basic or mother wavelet function. a and τ denote the scale
factor and the translation of the origin, respectively. Then, the harmonic wavelet
function can be given by:

ψm,n tð Þ ¼ e jn2πt � e jm2πt

j n� mð Þ2πt ð11:33Þ

where m and n are the real-scale parameters, but not necessarily integers. Then, the
wavelet transform can be denoted as

Ws nð Þ ¼
XN�1

n¼0

xnψ
�
0

n� N

s

	 

ð11:34Þ
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where � indicates the complex conjugate. Then, the wavelet spectrum of the xn time
series can be defined by replacing s using f:

S fð Þ ¼ �W2 fð Þ ð11:35Þ

Then, the power-law could be analyzed by:

S fð Þ ¼ αf�β ð11:36Þ

Considering the brain neural activities following the fractional Brownian motion
random field model, the Hurst exponent H could be defined by:

H ¼ β � 1ð Þ=2 ð11:37Þ

where 0 < H < 1, characterizing the persistence or anti-persistence of the xn.
Figure 11.5 shows the Hurst exponent analysis for the EEG signal during awake

and anesthesia states. In this study, the Hurst exponent was calculated using a 16 s
time window with 75% overlap following a previous study (Yan et al. 2016). With a
sliding time window, Hurst exponents could be calculated by each 16 s EEG
recording. It shows that the Hurst exponents stay below 0.5 and rapidly increase to
upper 0.5 after anesthetics given. Following the power-law concept, H < 0.5 sug-
gests anti-persistence behavior, while 0.5 < H < 1 suggests the persistence of the
EEG recording. H ¼ 0.5 is a criticality state, which indicates a random fluctuation in
the neural behaviors. The result suggests that the anesthetics could alter the neural
oscillation model, which could be captured by power-law characteristics of EEG
recordings. Thus, the Hurst exponents could be used to index the consciousness
states in anesthesia. However, it should be noted that the power-law characteristics
relay on a hypothesis that the brain neural behaviors obey the fractional Brownian
motion random field model. It should be taken into consideration when using Hurst
exponents for monitoring the altered states of a neural system.

11.5 Recurrence Plots

In the framework of nonlinear methods, the recurrence quantification analysis
(RQA) is a suitable tool to characterize the dynamics of nonlinear systems through
the recurrence plot, which provides a pictorial representation of recurrences in
complex time series (Facchini et al. 2007; Mocenni and Stanley 2010). The recur-
rence plot is analyzed by RQA measures able to automatically extract and quantify
recurrences.

Step 1: For a given time series x1, x2, � � �xL, the phase space vector Xi can be
reconstructed by using the Takens’ time delay method,
Xk ¼ xk; xkþτ; � � �; xkþ m�1ð Þτ

� �
(Takens 1981), based on the observations xk.
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Step 2: Determine the parameters m,τ, and r.
Step 3: Recurrence plotting (RP) is a new tool to visualize the time-dependent

behavior of orbits Xi in a phase space. The key step of RP is to calculate the
following N � N matrix:

Ri, j ¼ 1 : Xi � Y j

�� �� � r
0 : otherwise

�
i,j ¼ 1, � � �,N ð11:38Þ

where N is the point number of the times series for analysis and k•kis the norm (the
L1-norm is selected, because it is computationally faster and allows study of
some features in RPs analytically). r is the cutoff distance defining an area
centered at Xi.

Fig. 11.5 Hurst exponent characteristic for power-law analysis of the EEG recording during the
awake and anesthesia states. (a) EEG signals during the awake and anesthesia states. (b) Epochs of
the EEG signal and corresponding harmonic wavelet spectrum, Hurst exponents, and linear
correlation coefficient. (c) Hurst exponents for the EEG signal
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Step 4: In order to further investigate the properties of RP, several measures of
complexity quantify the small-scale structures in RP called recurrence quantifi-
cation analysis (RQA). More details of RP and RQA can be found in several
previous studies (Marwan 2003; Eckmann et al. 1987). Firstly, the simplest
measure of RQA is the recurrence rate (RR), calculated by:

RR ¼ 1

N2

XN
i,j¼1

Ri, j ð11:39Þ

which simply counts the black dots in the RP. The RR is a measure of the density of
recurrence points.

The ratio of recurrence points on the diagonal structures to all recurrence points is
called determinism (DET) and is calculated by:

DET ¼
XN
l¼lmin

lP lð Þ=
XN
i,j¼1

Ri, j ð11:40Þ

where P(l ) is the frequency distribution of the lengths of the diagonal structures in
the RP. lmin is the threshold, which excludes the diagonal lines formed by the
tangential motion of a phase space trajectory. The DET is a determinism
(or predictability) measure of a system.

The ENTR refers to the Shannon entropy of the frequency distribution of the
diagonal line lengths; it is

ENTR ¼ �
XN
l¼lmin

p lð Þ ln p lð Þ ð11:41Þ

where ENTR is considered as a complexity measure of a deterministic structure in a
dynamic system. The more complex the deterministic structure, the larger the ENTR
value.

Figure 11.6 shows the estimators derived from the RQA. All the measures could
distinctly represent the difference between the awake and anesthesia states as well as
the decreasing trend during the state transition. In addition to the anesthesia,
measures of RQA have been used in assessing pathological brain activities based
on EEG (Ouyang et al. 2008). One of the advantages of the RQA method is that it
can measure the dynamic characteristics of a short and nonstationary signal with
noise (Li et al. 2004). In addition, RQA can deal with a linear and nonlinear time
series to quantify the activity of a system irrespective of the number or dynamic
nature of the individual sources (Marwan et al. 2007).
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Fig. 11.6 (a) EEG signals during the awake and anesthesia states and corresponding recurrence
plot patterns. (b) Recurrence plot patterns during awake (blue box) and anesthesia (red box) states.
(c) The RR, DET, and ENTR index during awake (blue) and anesthesia (red) states
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11.6 Conclusions

This study includes total 12 nonlinear dynamic measures which are frequently used
in EEG studies. These measures could be simply divided into three classes: com-
plexity, entropy, and pictorial analysis. The complexity measures the information
contents by extracting the covert components in the signals. The entropy measures
the distribution of characteristics of the signal based on Shannon information theory.
Therefore, a number of entropy measures have been proposed based on statistic of
different characteristics, which reflect various properties of the signals. In this study,
there includes time domain-based measures (such as ApEn, SampEn, PE, and RQA)
and time-frequency domain-based measures (such as the WE and HHSE). Among
the 12 measures, the ApEn and SampEn are all based on the phase space analytical
methods (Chen et al. 2009), while the PE and PLZC are based on the ordinal patterns
(Bandt 2005).

All the measures but ShEn in this study show good ability in distinguishing the
awake and anesthesia states based on EEG signals. However, all the results are based
on the specific parameters for the measures, which are selected arbitrarily in this
study. In practice, the parameter selection determines the efficiency of the measures.
The details of the parameter selection of these measures could be found in previous
studies (Liang et al. 2015). On the other hand, each of the measures has its
advantages and limits. Some researchers have made efforts in comparing the per-
formance of these measures (Bein 2006; Sleigh et al. 2001; Sleigh et al. 2005).
However, from our point of view, there is no measure that could be simply
considered as the best one. Generally, it just to say that there is a relatively more
appropriate measure for the application in a specific situation. The parameter selec-
tion, robust to artifacts, compute consumption, and the requirements of the signals
are all the valuable issues in the comparison of the measures.

Overall, nonlinear dynamic measures are suitable for describing the nonlinear
property of the EEG signals. However, the comprehensive consideration of the
signal properties as well as the relationship of the EEG characteristics with the
underlying neural process is necessary in the selection of nonlinear dynamic
measures.
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Chapter 12
Connectivity Analysis

Huibin Jia

Abstract The EEG signals could be used to assess the communication between
brain regions. Various techniques have been developed in order to quantify the EEG
connectivity of scalp-level EEG signals or source-level activities. Briefly speaking,
four kinds of EEG connectivity measures are evaluated in literatures, including
coherence-based measures, phase synchronization-based measures, generalized
synchronization-based measures, and granger causality-based measures. All mea-
sures have their own advantages and disadvantages. Here, we illustrated the com-
mon sources problem in EEG analysis, the measures in EEG connectivity analysis,
how to conduct EEG connectivity analysis using resting-state EEG signals and
event-related EEG signals, and source-level connectivity. Moreover, we provided
two examples of EEG connectivity, along with the EEG datasets and MATLAB
codes, which are focused on the EEG connectivity of resting-state signals and event-
related signals, respectively.

Keywords Functional connectivity · Source localization · Synchronization ·
Granger causality

12.1 Introduction

Each part of the human brain has its own function in human behaviors; thus, dozens
of brain areas are commonly involved in even very easy tasks. Moreover, it has been
well recognized that even during task-free resting state, the brain regions in default
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mode network (DMN) are still active (Buckner et al. 2008). Efficient communication
between function-specific brain regions is essential for healthy cognitive functioning
(Abrams et al. 2013). In macroscopic scale, this connectivity can be quantified by
modern neuroimaging techniques. For example, we could detect and investigate the
anatomical connections using MRI and DTI (Rasero et al. 2017; Ercan et al. 2016).
On the other hand, the EEG technique is applied to quantify the statistical depen-
dency, i.e., temporal coupling/dependency, between the EEG signals of spatially
remote brain regions (O’Reilly et al. 2017).

In order to make full use of the rich temporal-spatial-spectral information of EEG
signals and overcome the inherent limitations (e.g., low spatial resolution and
reference dependent) of EEG techniques, researchers have developed many different
measures in EEG connectivity. According to the ability whether the measures could
detect the causal relationship between brain regions, they could be divided into two
categories: functional connectivity (FC) and effective connectivity (EC). The mea-
sures in FC could assess the linear or nonlinear statistical dependence between the
signals without providing any causal information, whereas the measures in EC could
assess the causal relationship between signals. According to the logic of how to
define statistical dependence, they could be divided into coherence-based measures,
phase synchronization-based measures, generalized synchronization-based mea-
sures, and granger causality-based measures (Niso et al. 2013). A large number of
studies have been conducted in the past decades using these EEG connectivity
measures. These studies have enriched our understanding of how the human brain
operates in normal or pathological conditions and found that several factors (e.g.,
age, gender, task operation, cognitive processing, and neuropsychological diseases)
could modulate the connectivity between different brain regions (Abrams et al.
2013; Duann and Ide 2009; Huster et al. 2014; Heise et al. 2014).

Below, we will illustrate the common sources problem in EEG analysis, the
measures in EEG connectivity analysis, how to conduct EEG connectivity analysis
using resting-state EEG signals and event-related EEG signals, and source-level
connectivity.

12.2 Common Sources Problem

The common sources problem in EEG analysis refers to two kinds of problems: the
active reference electrode(s) and the volume conduction.

A very important operation in EEG preprocessing is selecting appropriate active
reference electrode(s). Several different types of reference, including the nose tip
reference (NT), the vertex reference (the electrode Cz), the linked mastoids reference
(LM), the common average reference (CAR), and the left mastoid reference (L), are
currently used in literatures (Yao et al. 2007). It has been shown in many studies that
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the selection of reference electrode(s) can affect estimation of certain EEG measures,
such as EEG spectral power, amplitude and latency of ERP component, and some
measures in EEG connectivity (Yao et al. 2007; Yao et al. 2005; Nunez et al. 1997).

Volume conduction is the phenomenon that electromagnetic fields generated at a
location in the brain will propagate through tissues (brain, skull, skin, etc.) and will
be recorded by several electrodes (van den Broek et al. 1998). Volume conduction is
a double-edged sword. Without it, noninvasive EEG would not be possible; because
of it, EEG connectivity measurements can be confounded (Cohen 2015). In order to
overcome the disadvantage of volume conduction and recover the true connectivity
between brain regions, we could use either of the following two approaches (Cohen
2015). In the first approach, we could apply spatial filters (e.g., the surface Laplacian
transform and source localization), which could strongly attenuate volume conduc-
tion and therefore permit the valid interpretation of standard connectivity analysis
methods, to scalp EEG data, and then estimate the measures in connectivity analysis
(Srinivasan et al. 2007; Sun et al. 2014). In the second approach, the EEG connec-
tivity measures which are insensitive to the volume conduction are applied to the
scalp EEG signals (Vinck et al. 2011; Stam et al. 2007; Nolte et al. 2004). Note that
these two different approaches are used in combination in some studies, i.e.,
computing the volume conduction insensitive measures on spatial filtered signals.

12.3 The Measures in EEG Connectivity Analysis

Below, four kinds of EEG connectivity measures are illustrated: coherence-based
measures, phase synchronization-based measures, generalized synchronization-
based measures, and granger causality-based measures. Note that the simplest
measure in EEG connectivity is Pearson’s correlation coefficient between EEG
signals of two electrodes/brain regions. Although this measure is very simple and
fast to compute, it is rarely used in literatures due to its inherent limitations (e.g.,
failing to use the rich spectral information of EEG signals, and difficulty in
interpreting the negative correlation coefficients). Thus, this measure is not
explained below.

12.3.1 Coherence-Based Measures

The magnitude-squared coherence (or, simply, the coherence) could assess the linear
relationship between two signals at each frequency bin evaluated (Niso et al. 2013).
Suppose X(t) and Y(t) represent the EEG signals over electrodes (or brain regions)
X and Y, respectively. Firstly, the time domain signals X(t) and Y(t) are converted to
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frequency domain using fast Fourier transform (FFT) or discrete/continuous wavelet
transform (DWT/CWT). Then, for each frequency bin f, the individual spectral
power density Sxx( f ) and Syy( f ) and their cross spectral power density Sxy( f ) are
estimated. The coherency function Kxy( f ) is calculated as the ratio between cross
spectral power density and individual spectral power density of two signals.

Kxy fð Þ ¼ Sxy fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx fð ÞSyy fð Þp ð12:1Þ

Lastly, the coherence at frequency bin f is computed as

COHxy fð Þ ¼ Kxy fð Þ�� ��2 ð12:2Þ

The range of coherence value is 0–1. COHxy( f ) ¼ 0 means that there is no linear
dependence between X(t) and Y(t) at frequency f. Larger coherence value suggests
higher statistical dependence between the two signals, and vice versa.

The coherence has been widely used in EEG connectivity studies. However, it has
some limitations. Firstly, it could only assess the linear dependence between two
signals thus fails to detect their nonlinear relationship. Secondly, it is significantly
influenced by the amplitudes of signals. Thirdly, it could not dissociate volume
conduction from true interactions between brain regions.

To overcome some limitations of the coherence, Nolte et al. (2004) proposed that
the imaginary part of the coherency function (ImC) can serve as an alternative EEG
connectivity measure, which could eliminate the influence of volume conduction
based on the hypothesis that volume conduction of uncorrelated sources cannot
create a nonzero ImC. Note that this ImC also has a crucial disadvantage. As has
been shown in Stam et al. (2007), this measure is strongly influenced by the phase of
the coherency function, since it is most effective in detecting connectivity with a
phase lag corresponding to a quarter cycle (i.e., π/4), and breaks down if the two
sources of interest are in phase or in phase opposition (Stam et al. 2007).

These two coherence-related measures could not provide any causal information
about the EEG signals; thus, they are regarded as FC measures. In the family of
coherence-based measures, researchers developed the Phase Slope Index (PSI),
which is an EC measure that could assess the causal dependence between signals.
The basic idea behind PSI is that interactions between neural processes require some
time, and if the speed at which different waves travel is similar, then the phase
difference between the sender and recipient increases with frequency, and we expect
a positive slope of the phase spectrum (Nolte et al. 2007).

In Nolte et al. (2007), the PSI is defined as

~Ψ xy ¼ I
X
f EF

K�
xy fð ÞKxy f þ δfð Þ

 !
, ð12:3Þ
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where Kxy( f ) is the coherency function, δf is the frequency resolution of FFT, F is
the set of frequencies over which the slope is summed, andI ∙ð Þ is the imagery part.

It is convenient to normalize ~Ψ xy by an estimate of its standard deviation, i.e.,

Ψ xy ¼ ~Ψ xy=std
�
~Ψ xy
� ð12:4Þ

The std
�
~Ψ xy
�
can be estimated by the jackknife method. Normally, a Ψ xy value

larger than 2 indicates statistically significant time delay between X(t) and Y(t) in the
frequency range considered, i.e., EEG signal X(t) could significantly influence Y(t).
Nolte et al. (2007) proved that this method outperformed traditional EC measures,
i.e., the Granger causality, in the detection of directionality.

12.3.2 Phase Synchronization-Based Measures

The coherence-based measures could not separate the amplitude and phase of EEG
signals during assessing connectivity, whereas the phase synchronization-based
measures illustrated here could separate the phase component and amplitude com-
ponent of EEG signals for a given frequency or frequency band.

The phase synchronization has been widely used to explore the nonlinear dynam-
ics in chaotic systems (Yu 2013). If the phases of two oscillatory activities synchro-
nize with a constant phase difference, we could say that phase synchronization
exists. Suppose ϕx(t) and ϕy(t) are the phase time series of EEG signals X(t) and Y
(t) at time point t, respectively, and Δϕxy(t) is their phase difference or relative phase
at time point t. If, for each time point, the following equation holds,

Δϕxy tð Þ ¼ ϕx tð Þ � ϕy tð Þ�� �� � constant ð12:5Þ

then phase synchronization is detected. For practical analysis, the relative phase
difference should be wrapped to the interval [0, 2π) through the following equation:

Δϕrel tð Þ ¼ Δϕxy tð Þmod2π ð12:6Þ

where mod means the remainder after division.
In practical EEG connectivity analysis, firstly we need to obtain the instantaneous

phase time series of the EEG signal at each electrode (or brain region) through
classical frequency domain transform methods, such as combining band-pass filter-
ing and the Hilbert transform, short-time Fourier transform (STFT), and DWT/CWT.
Below we will show how to extract instantaneous phase time series through band-
pass filtering and the Hilbert transform and compute phase synchronization-related
measures.

Before the Hilbert transform, a band-pass filtering is needed since the Hilbert
transform requires a narrowband signal for the phase and amplitude components of
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the signal to be straightforward to separate. One of the most commonly used filters is
the finite impulse response (FIR) filter. It is suggested that the filter order of the FIR
filter is at least three cycles of the lower-frequency component of the interested
frequency band.

Suppose the band-pass filtered signals at two electrodes (or brain regions) are X(t)
and Y(t), respectively. Through the Hilbert transform, we can obtain their analytic
signals Xan(t) and Yan(t), as

Xan tð Þ ¼ X tð Þ þ iXH tð Þ ð12:7Þ
Yan tð Þ ¼ Y tð Þ þ iYH tð Þ ð12:8Þ

where XH(t) and YH(t) are the Hilbert transform of band-pass filtered signals X(t) and
Y(t), respectively. Namely,

XH tð Þ ¼ 1
π
P:V:

Z þ1

�1

X τð Þ
t � τ

dτ ð12:9Þ

YH tð Þ ¼ 1
π
P:V:

Z þ1

�1

Y τð Þ
t � τ

dτ ð12:10Þ

where P. V. is the Cauchy principal value.
Using the analytic signal Xan(t), we can calculate the instantaneous amplitude

Ax(t) and instantaneous phase ϕx(t) (similar for Yan(t)).

Ax tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X tð Þ2 þ XH tð Þ2

q
ð12:11Þ

ϕx tð Þ ¼ tan �1 XH tð Þ
X tð Þ ð12:12Þ

After the instantaneous phase time series ϕx(t) and ϕy(t) are computed, we can
compute their phase difference Δϕrel(t) using Eqs. (12.5) and (12.6).

Lachaux et al. (1999) proposed that the phase synchronization between EEG
signals can be quantified using the phase difference, resulting in an index called the
Phase Locking Value (PLV) (Lachaux et al. 1999). Suppose Δϕrel(t) is the phase
difference between X(t) and Y(t), then their PLV is evaluated as

PLVXY ¼ 1
N

XN
n¼1

eiΔϕrel tnð Þ
�����

����� ð12:13Þ

where N is the length (i.e., number of points) of Δϕrel(t).
This PLV actually assesses the distribution of phase difference time series over

[0, 2π). A larger PLV indicates that the phase difference time series occupies a small
portion of the unit circle of [0, 2π).

246 H. Jia



The range of PLV value is [0, 1]. If the PLV is 1, then the phase difference time
series is constant across the entire time series. If the PLV is 0, then the phase
difference is uniformly distributed over [0, 2π). Although this measure has been
widely in traditional EEG connectivity, it has an important limitation, i.e., sensitive
to the common sources problem.

The phase lag index (PLI) proposed by Stam et al. (2007) can provide reliable
estimate of phase synchronization that is robust against the presence of common
sources. A basic idea underlying EEG connectivity analysis is that the true interac-
tions between neural oscillations (as opposed to volume conduction effects) need
some period; thus, we could observe a certain time lag between these two neural
signals with true connectivity (Stam et al. 2007). A lagged interaction with fixed
time, as opposed to instantaneous interaction which may be caused by the common
sources problem, should produce a constant phase difference between two neural
signals at a value different from 0 and π. This is also the basic hypothesis of the ImC
illustrated above. Irrespective of the magnitude of the phase leads and lags, the PLI
discards phase distributions that centered on 0 mod π and assesses the asymmetry of
phase difference distribution. If the number of time points with phase difference
Δϕrel(t) in the interval (�π, 0) is different from that with phase difference Δϕrel(t) in
the interval (0, π), then asymmetry of phase difference distribution exists, suggesting
that true connectivity is present between the two neural signals. Larger asymmetry
suggests larger EEG connectivity, whereas symmetric distribution (i.e., the number
of time points with phase difference Δϕrel(t) in the interval (�π, 0) is equal to that
with phase difference Δϕrel(t) in the interval (0, π)) indicates no true coupling.
Formally, the PLI is computed using the following equation:

PLI ¼ 1
N

XN
n¼1

sign Δϕrel tnð Þð Þ
�����

����� ð12:14Þ

The range of PLI is between 0 and 1. A PLI of zero indicates either no coupling or
coupling with a phase difference centered around 0 mod π. A PLI of 1 indicates
perfect phase locking at a value different from 0 mod π.

Stam et al. (2007) showed that compared to the ImC, the PLI performed better in
detecting the true connectivity and was more robust to the common sources problem.
However, the discontinuity of this measure is an important disadvantage, since small
perturbations turn phase lags into leads and vice versa, a problem that may become
serious for small-magnitude synchronization effects (Vinck et al. 2011). In order to
overcome this limitation, Vinck et al. (2011) introduced a related index, namely, the
weighted phase lag index (WPLI). In WPLI, the contribution of the observed phase
leads and lags is weighted by the magnitude of the imaginary component of the
cross-spectrum. Compared to the PLI, the WPLI has at least two advantages, in
terms of reduced sensitivity to additional, uncorrelated noise sources and increased
statistical power to detect changes in phase synchronization. Assuming S is the
cross-spectrum between X(t) and Y(t), the WPLI can be calculated as
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WPLI ¼ I Sð Þh ij j
I Sð Þj jh i ¼

I Sð Þj jsign I Sð Þð Þh ij j
I Sð Þj jh i ð12:15Þ

The range of WPLI is between 0 and 1. Higher WPLI value indicates higher
coupling between neural oscillations, and vice versa.

The three phase synchronization-based measures (i.e., PLV, PLI, and WPLI)
could not assess the causal relationship between the EEG signals of two electrodes
(or brain regions).

12.3.3 Generalized Synchronization-Based Measures

Apart from the coherency and phase synchronization-based measures, some
researchers argued that the EEG connectivity could be evaluated by the generalized
synchronization-based measures (Stam and van Dijk 2002). For two dynamical
systems X and Y, if the state of the response system Y is a function of the state of
the driving system X, i.e., Y ¼ F(X), the generalized synchronization exists.
Although several algorithms have been introduced to detect the generalized syn-
chronization between physiological signals, the most commonly used measure in
brain connectivity analysis is the synchronization likelihood (SL) proposed by Stam
and van Dijk (2002), which could avoid the bias of other generalized
synchronization-based measures and provide a normalized estimation of dynamical
interaction between multi-electrode EEG signals (Stam and van Dijk 2002).

Assuming the number of electrodes or brain regions is M and the total number of
time point is N in our EEG signals, the EEG data is xk, i, where k is electrode or
region index (k ¼ 1, . . ., M ) and i is the time point (i ¼ 1, . . ., N ). From this multi-
electrodes or multi-regions EEG signal, the embedded vectors Xk, i are constructed as
following:

Xk, i ¼ xk, i ; xk, iþτ ; xk,iþ2τ; . . . ; xk, iþ d�1ð Þτ
� � ð12:16Þ

where τ and d are the time lag and embedding dimension, respectively.
Then, for electrode (or brain region) k and time point i, P ε

k, i, which could assess
the probability that embedded vectors are closer to each other than a given distance ε,
is defined:

P ε
k, i ¼

1
2 w2 � w1ð Þ

XN
j ¼ 1

w1 < i� jj j < w2

θ ε� Xk, i � Xk, j
�� ��� � ð12:17Þ

where θ is the Heaviside step function (θ(x) ¼ 1 when x � 0, otherwise 0), w1 is the
Theiler window which is used to avoid the autocorrelation effects and should be at

248 H. Jia



least of the order of autocorrelation time, and w2 is a window that sharpens the time
resolution of the synchronization measure and is chosen such that w1 � w2 � N.

For each electrode (or brain region) and each time point, a critical distance εk, i is
determined according to P

εk, i
k, i ¼ Pref , where Pref � 1. Then, for each pair of time

point (i, j) within the window being considered (w1 < |i� j| < w2), we could compute
the number of channels Hi, j where the distance between Xk, i and Xk, j is smaller than
the critical distance εk, i. This Hi, j is calculated as:

Hi, j ¼
XM
k¼1

θ εk, i � Xk, i � Xk, j
�� ��� � ð12:18Þ

The synchronization likelihood SLk, i, j, where k denotes a given electrode
(or brain region) i and j denote two distinct time points, is evaluated using the
following criterion:

if Xk, i � Xk, j
�� �� < εk, i,then SLk, i, j ¼ Hi, j � 1

M � 1
: Otherwise SLk, i, j ¼ 0: ð12:19Þ

Through averaging over all the j, we could obtain the synchronization likelihood
SLk, i, which describes how strongly electrode k at time i is synchronized to all the
other M � 1 electrodes:

SLk, i ¼ 1
2 w2 � w1ð Þ

XN
j ¼ 1

w1 < j� ij j < w2

SLk, i, j ð12:20Þ

The range of SL value is between Pref and 1. If the calculated SL is Pref, then all
theM electrodes (or brain regions) are unrelated with each other. If the calculated SL
is 1, we could say that a maximum synchronization between these M electrodes
(or brain regions) is revealed. Note that this measure could not provide any causal
information about the M time series.

12.3.4 Granger Causality-Based Measures

All of the measures illustrated above could not assess the causal relationship or
direction of information flow between different neural oscillations, except the PSI. In
order to assess the causal dependence or directed information flow between brain
regions, researchers have developed several methods that have been applied to the
fMRI, EEG, and MEG connectivity, such as the dynamic causal modeling, structural
equation modeling, transfer entropy, and the Granger causality methods (Friston
et al. 2003; Astolfi et al. 2004; Vicente et al. 2011; Gao et al. 2011).
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The theory behind Granger causality (GC) was first developed by Wiener (1956),
and later reformulated and formalized by Granger (1969) through linear stochastic
autoregressive models (Wiener 1956; Granger 1969). Granger defined the causality
between time series based on the following two assumptions: (1) the cause must
happen prior to its effect; (2) the cause has information that could improve the
prediction of the effect, above and beyond the information contained in the past of
the effect. The basic idea of GC is that if time series X(t) is the GC of another time
series Y(t), then predictions of the further value of Y(t) based on its own past values
and the past value of X(t) are better than predictions of the further value of Y(t) only
based on its own past values. Below, we will illustrate the GC using mathematical
statement.

Assuming we want to test whether time series X(t) is the GC of another time series
Y(t), we need to construct the first autoregressive (AR) model with Y(t) as dependent
variable and its past values as independent variables:

Y tð Þ ¼ a0 þ a1Y t � 1ð Þ þ a2Y t � 2ð Þ þ . . .þ apY t � pð Þ þ εYjY� ð12:21Þ

Then, the second AR model is constructed with Y(t) as dependent variable, too.
Different from the first AR model, both the past values of X(t) and Y(t) are used as
independent variables.

Y tð Þ ¼ b0 þ b1Y t � 1ð Þ þ b2Y t � 2ð Þ þ . . .þ bpX t � pð Þ þ c1X t � 1ð Þ
þ c2X t � 2ð Þ þ . . .þ cpX t � pð Þ þ εYjX�,Y� ð12:22Þ

In the above two ARmodels, ai(i¼ 1,2,. . ., p), bi(i¼ 1,2,. . ., p), and ci(i¼ 1,2,. . .,
p) are the model parameters, which can be estimated through least-squares methods,
lattice algorithms (e.g., Vieira-Morf), or state-space methods (e.g., Kalman filtering).
The p in the AR models is model order, which needs to be determined before AR
model fitting. Commonly, the model order is determined by selecting a model order
that could minimize one or more information criteria evaluated over a range of
model orders. The information criteria that have been used in literatures include
Akaike information criterion (AIC), Bayesian information criterion (BIC), Akaike’s
final prediction error criterion (FPE), and Hannan-Quinn criterion (HQ) (Lutkepohl
2005). Since the model order is the only one parameter needed to be defined by user,
it is crucial that a proper model order must be selected. In practice, the model order
should be selected by examining the results of multiple information criteria. More-
over, it should be noted that the model order selection can be a time-consuming
iterative process. In the above two AR models, εYjY� and εYjX�,Y� are the residuals
associated to the models.

After the AR models have been fitted, the variances of residuals were computed
over time:

VYjY� ¼ var εYjY�
� � ð12:23Þ
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VYjX�,Y� ¼ var εYjX�,Y�
� � ð12:24Þ

where var(∙) denotes variance over time.
If X(t) Granger-causes Y(t), then the variance of residuals of the second AR model

(i.e.,VYjX�,Y�) should be smaller than that of the first AR model (i.e.,VYjY�). From the
variances of residuals of two AR models, we could calculate a classical time-domain
GC measure, which is defined as:

GCX⟶Y ¼ ln
VYjY�

VYjX�,Y�

� �
ð12:25Þ

The range of this GCX ⟶ Y measure is [0, + 1 ). If GCX ⟶ Y equals 0, the past
information of X(t) could not improve the prediction of Y(t). If GCX ⟶ Y is larger
than 0, X(t) Granger-causes Y(t).

It should be noted that the traditional GC tests are designed to test the causal
relationship between pairs of processes, which may introduce misleading results
since their relationship may be affected by another or more processes. In order to
solve this problem, multivariate Granger causality analysis has been developed,
which is performed by fitting a vector autoregressive (VAR) model to multi-
electrodes or multi-regions EEG signals. Consider a VAR model of order p with
dimension M (i.e., the number of electrodes or brain regions considered in GC
analysis is M ):

X1 tð Þ
:
:
:

XM tð Þ

0
BBBB@

1
CCCCA ¼

Xp
τ¼1

Aτ

X1 t � τð Þ
:
:
:

XM t � τð Þ

0
BBBB@

1
CCCCAþ

ε1 tð Þ
:
:
:

εM tð Þ

0
BBBB@

1
CCCCA ð12:26Þ

where Aτ (τ ¼ 1, . . ., p) are M � M coefficient matrices.
If the coefficient matrices of VAR model are Fourier transformed, we could

compute more complex frequency-domain GC measures, such as the partial directed
coherence (PDC) and directed transfer function (DTF) (Baccalá and Sameshima
2001; Kamiński and Blinowska 1991).

Note that the VAR modeling has two crucial assumptions of the signals being
investigated, which are stationary and stability. A stochastic process X(t) is weakly
stationary if its mean and covariance do not change over time. A stable process will
not “blow up” (i.e., diverge to infinity). An important fact is that stability implies
stationarity; thus, it is sufficient to test the stability to ensure that a VAR process is
both stable and stationary. It should be noted that the EEG signals, especially those
containing prominent evoked potentials, are usually nonstationary time series,
exhibiting large fluctuations in both the mean and variance over time. Many methods
have been proposed for fitting VAR models to nonstationary series. These methods
include segmentation-based adaptive VAR (AMVAR) approaches, the Kalman
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filtering approach, and nonparametric methods based on minimum-phase spectral
matrix factorization (Ding et al. 2000; Sommerlade et al. 2009; Dhamala et al. 2008).
Apart from these methods, some preprocessing procedures could improve the
stationarity of EEG signals, such as filtering, differencing, and detrending. If EEG
data contains low-frequency drift or pronounced artifacts within certain frequency
bands, the signal filtering can dramatically improve data stationarity. Since the phase
difference in frequency domain are key element in information flow modeling, it is
critical to apply a zero-phase (acausal) filter, which does not introduce phase
distortion. The differencing can also improve the stationarity of signals. A first-
order differencing for time series X(t) is calculated as ∇X1(t) ¼ X(t) � X(t � 1). This
operation can extend to nth order differencing: ∇nX(t)¼ ∇n � 1X(t)� ∇n � 1X(t� 1).
Note that differencing is a high-pass filter and may influence the magnitude of
frequency-domain GC measures. If linear trend is present in the signals, we may
need to linearly detrend the signals using a least-squares fit, which will act as a high-
pass filtering.

12.4 Summary

Above, the classical measures in EEG connectivity are explained in four sections:
coherence-based measures, phase synchronization-based measures, generalized
synchronization-based measures, and Granger causality-based measures. The pipe-
line of estimating these measures has been shown in Fig.12.1. Note that many other

Fig. 12.1 The pipeline of estimating four classical kinds of functional connectivity measures
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measures still exist in literatures, such as the directionality phase indexes (DPI),
mutual information (MI), and transfer entropy (TE). In this chapter, we only
explained how to compute the most frequently used measures in the field of EEG
connectivity.

According to whether they can provide any information about the causal rela-
tionship or the direction of information flow, they can be divided into FC measures
and EC measures. The FC measures include coherence, ImC, PLV, PLI, WPLI, and
SL, whereas the EC measures include PSI and Granger causality-based measures.

Some of these measures, including the ImC, PSI, PLI, and WPLI, were designed
to overcome the common sources problem. Before using other measures influenced
by this problem, it is suggested that we should apply spatial filters (e.g., the surface
Laplacian transform and the source localization) to the scalp EEG signals, which
could strongly attenuate volume conduction.

Specifically, the surface Laplacian transform could estimate the current source
density (CSD), which is a reference-free measure and is the second spatial derivative
of the electric field. The CSD could enhance and separate focal activity and remove
low spatial frequency assumed to originate from deeper sources; thus, you cannot
use the surface Laplacian transform when you expect deep or widely distributed
coherent sources. This method should be conducted on time-domain EEG signals,
not frequency-domain data. In order to conduct the surface Laplacian transform, we
can use the CSD toolbox (http://psychophysiology.cpmc.columbia.edu/software/
csdtoolbox/).

The CSD is surface- or electrode-based measures and thus cannot provide the
electric activity of each cerebral region. In order to obtain the source activity of each
brain region, source localization should be conducted before measure computation.
More information about the techniques in source localization can be seen in Chap. 7.
Some excellent free-available toolboxes exist, such as the LORETA software (http://
www.uzh.ch/keyinst/loreta.htm), the fieldtrip software (http://www.fieldtriptoolbox.
org/), and the Brainstorm software (https://neuroimage.usc.edu/brainstorm/).

12.5 Computation of Connectivity Measures in Resting-
State and Event-Related EEG Signals

All these measures shown above can be applied to both resting-state and event-
related EEG signals. However, there are some differences between the two types of
EEG datasets.

12.5.1 EEG Connectivity for Resting-State EEG Signals

In resting-state EEG studies, the subjects are asked to keep eye-closed or eye-open
for a certain length of time (such as 5 min). In these studies, we are not interested in
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the timing information of human cognitive processing. This is the fundamental
difference between resting-state and event-related experimental design.

Before the measures in EEG connectivity are evaluated, the resting-state EEG
data should be properly preprocessed. In my opinion, the continuous EEG data
should be segmented into dozens of epochs with equal length. The rationales for this
operation can be summarized as following: Firstly, although the continuous EEG
signals have been preprocessed, they may still contain artifacts that cannot be
corrected by typical preprocessing operations. In this situation, we could delete
those artifacts contaminated epochs by setting a threshold (such as �75 μV).
Secondly, the measures using Fourier transform and Granger causality-based mea-
sures require stationarity of the signal. It has been widely recognized that the resting-
state EEG can be regarded as quasi-stationary only on the order of a few seconds.
Several epoch lengths have been used in previous studies, such as 1 sec, 2 sec, and
5 sec. Moreover, due to details of the implementation of the FFT algorithm, to
increase computational speed, it is also desirable that the epoch length (i.e., point
number) is a power of 2 (e.g., 64, 128, and 256).

After the continuous EEG data have been segmented into artifact-free epochs, the
phase synchronization-based measures, generalized synchronization-based mea-
sures, and Granger causality-based measures were computed for each epoch, each
frequency band, and each electrode pair (or pair of brain regions). Then, for each
frequency band and each electrode pair (or pair of brain regions), the measures are
averaged across all the epochs. However, this is not the case for coherence-based
measures. During the computation of these measures (e.g., coherence, ImC, and
PSI), the FFT is conducted on each epoch; then for each pair of electrodes, the power
spectral density of each electrode and their cross spectral density are computed.
Then, the power spectral densities of electrodes and cross spectral densities of pairs
are averaged across epochs. Lastly, the coherence-based measures are evaluated
based on these epoch-averaged power spectral densities and cross spectral densities.

12.5.2 EEG Connectivity for Event-Related EEG Signals

As has been explained above, a fundamental difference between resting-state and
event-related experimental design is that we need to extract the timing information of
human cognitive processing in event-related EEG signals.

Before the measures in EEG connectivity are evaluated, the event-related EEG
signals should be properly preprocessed and should be segmented into epochs
according to the experimental conditions. For each condition, those artifact-
contaminated epochs should be deleted.

When the interested measures are those based coherency and phase synchroni-
zation, we should compute the analytic signal for each frequency bin and each time
point. These analytic signals can be calculated through combining band-pass filter-
ing and the Hilbert transform. They could also be extracted through classical time-
frequency techniques, such as STFT and CWT/DWT. Similar to ERD/ERS analysis,
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the epoch length should be relatively larger than typical ERP analysis, such as 3 sec
(1 sec before stimuli onset and 2 sec after stimuli onset).

When we want to compute the coherence-based measures in event-related sig-
nals, the power spectral densities of electrodes and cross spectral densities of
electrode pairs are computed for each frequency bin, each time point, and each
epoch. Then, for each time-frequency point, the power spectral densities and cross
spectral densities are averaged across epochs. Lastly, the coherence-based measures
are evaluated, which will result in a time-frequency representation of coherence-
based measures for each pair of electrodes. You can see that the procedures are very
similar compared to those for resting-state EEG signals. The only difference is that
for event-related EEG signals we should not only compute the measures for each
frequency but also for each time point (latency).

When we want to compute the phase synchronization-based measures in event-
related signals, we should extract the phase information for each frequency bin, each
time point, each epoch, and each electrode through combining band-pass filtering
and Hilbert transform and typical time-frequency analysis techniques (e.g., STFT
and CWT/DWT). When the measure to be computed is the WPLI, we should also
compute the imagery part of cross spectral densities for each pair of electrodes. Note
that, for resting-state EEG signals, the consistency of phase difference or that of the
sign of phase difference is evaluated across all the time points within a given epoch.
However, for event-related EEG signals, this consistency is evaluated across all the
epochs for each time-frequency point, respectively, which will result in a time-
frequency representation of phase synchronization-based measures for each pair of
electrodes.

In Granger causality-related measures, data stationarity is a necessary precondi-
tion for accurate VAR estimation. However, it is well known that EEG signals
containing ERP waveforms are highly nonstationary. In neuroscience researches,
many methods have been proposed in order to solve this problem. Among these
methods, the simplest method is called segmentation-based adaptive VARmodeling,
which is rather similar to the concept behind the STFT or other windowing tech-
niques (Ding et al. 2000). Namely, a window with length N is extracted from the
time-domain multi-electrodes EEG dataset, and the VAR model is fitted to the data
in this window. Then, the window is incremented by a short step. The VAR model is
fitted to this new time window. These procedures will continue until the last point of
the sliding window reaches the end of the epoch.

12.6 Source-Level Connectivity

EEG connectivity can be conducted both on scalp potentials and source-localized
activities. Performing EEG connectivity on the source signals may make the results
more interpretable, since we are investigating the connectivity between certain brain
regions, not that between electrodes over the scalp. In order to perform source-level
connectivity, we need to compute the source-level activities (i.e., current source
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densities) of all the voxels of the grey matters or those of dipoles in human brain,
depending on whether distributed source analysis (e.g., LORETA\sLORETA
\eLORETA, MNE, Beamforming) or discrete source analysis (e.g., BESA) is
conducted. Then, the activities of user-defined regions of interest (ROIs) are
extracted according to classical brain atlas, such as the Automated Anatomical
Labeling (AAL) and Brodmann areas. Lastly, we could compute the connectivity
measures between ROIs using the methods illustrated above.

In source-level connectivity, the following points should be mentioned. Firstly,
the results of source-level connectivity are heavily related with the quality and
accuracy of source activities, which depend on the signal-to-noise ratio (SNR) of
scalp EEG signals and source localization techniques. Secondly, the accuracy of
source activities is significantly influenced by the depth of brain structures. Thus, it is
recommended by some researchers that we should not investigate the connectivity
between deep brain structures. Thirdly, the source activities obtained from some
source localization techniques (e.g., LORETA\sLORETA\eLORETA and MNE) are
highly correlated between adjacent voxels. In these cases, using measures which
could overcome the common sources problem (e.g., PLI, WPLI) should produce
more reasonable results.

12.7 Statistical Test in EEG Connectivity

Although the basic principles of statistical test in EEG connectivity is the same for
the resting-state EEG signals and event-related EEG signals, there are some differ-
ences in actual operations.

For resting-state EEG signals, the connectivity measures will be computed for
each frequency band, each pair of electrodes, and each EEG dataset. The statistical
test should be conducted on each frequency band, each pair of electrodes, respec-
tively, which is named as mass-univariate testing. In typical resting-state EEG
analysis, several frequency bands are commonly defined, such as delta band, theta
band, alpha band, beta band, and gamma band. Assuming the number of electrodes
is N, the number of electrode pairs is C2

N (i.e., N N�1ð Þ
2 ). This will make the multiple

comparisons problem very serious in connectivity analysis. Traditionally, this prob-
lem can be corrected by controlling the family-wise error rate (FWE) or the false
discovery rate (FDR). The advantage of this approach is that it does not require
interpretation of any abstract organizational or topological properties. Its main
disadvantage though is the inherent massive number of multiple comparisons that
must be performed. However, with such a large number of multiple comparisons,
together with a potentially low contrast-to-noise ratio, this approach may not offer
sufficient power. An alternative approach is the network-based statistic (NBS),
which is a validated statistical method to deal with the multiple comparisons problem
on a graph (Zalesky et al. 2010).
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Briefly speaking, this NBS method consists of the following steps. Firstly,
univariate testing (such as t-test and ANOVA) is conducted on all the connections
or pairs. Secondly, the pairs exceeding a given threshold (such as p < 0.01) are
admitted to a set of supra-threshold pairs. Thirdly, “connected graph components”
are identified among these supra-threshold pairs. A connected graph component is
defined as a set of supra-threshold pairs for which a path can be found between any
two electrodes (or brain regions). The size of each component is assessed by the total
number of pairs it comprised. Fourthly, the null distribution of size of connected
component is empirically derived using a permutation approach with 5000 permu-
tations. The component with largest size is recorded for each permutation, which
yields an empirical null distribution for the size of the largest component size. Lastly,
the FWER corrected p-value for an originally identified component of given size is
then estimated as the proportion of permutations for which the largest component is
of the same size or greater. The NBS toolbox, which could conduct NBS, can be
downloaded from https://www.nitrc.org/projects/nbs.

For event-related EEG signals, the situation is more complex, since not only the
connectivity measures will be computed for each frequency bin and each pair of
electrodes but also will be computed for each time point. Typically, the statistical
tests and the multiple comparisons correction afterward are conducted for each time-
frequency matrix, respectively, using similar methods as the typical ERD/ERS
analysis in time-frequency analysis. Since the number of electrode pairs is very
large, it is usually not practical to test for all the time-frequency matrices. Thus, pairs
of interest should be selected based the research hypothesis.

For event-related EEG signals, we can also use another approach. Firstly, we need
to define a time-frequency region of interest (ROI) based on the research hypothesis
or observation of the time-frequency representation. Then, the values within this
time-frequency ROI are averaged. Through these procedures, the complexity of
statistical tests is largely reduced. Then, we could statistically test each pair of
interest.

12.8 Example: Connectivity Analysis for Resting-State
EEG Signals

Basic Information of the Demo Datasets In the experiment, both eyes-closed and
eyes-open resting-state EEG data were recorded about 5 min from the 64 scalp tin
electrodes mounted in an elastic cap (Brain Products, Munich, Germany), with the
sampling frequency of 500 Hz around 9:00 to 12:00 in the morning. Subject was
introduced to eyes-closed first, and then eyes-open. The EEG datasets consist of
20 four-minute EEG recordings (eye-closed and eye-open condition), obtained from
10 volunteers in the Sleep and Neuroimaging Center of Southwest University,
China. In preprocessing, the continuous EEG data were down-sampled to 250 Hz
and digitally filtered within the 0.1–45 Hz frequency band using a Chebyshev II-type
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filter. The filtered EEG recordings were re-referenced to average reference and then
segmented to 2 sec. The segmentations with ocular, muscular, and other types of
artifact were identified and excluded. We only retained the first 120 segmentations,
constituting a four-minute EEG recording for each subject.

The preprocessed EEG signals contain the electrodes TP9 and TP10 which were
located over left mastoid and right mastoid, respectively. Since the signals collected
through these two electrodes may not contain the EEG signals produced by the
human brain, these two electrodes were removed before further analysis
(In EEGLAB, this could be done through “Edit >> Select data”). After these two
electrodes have been removed, the signals of the remaining electrodes were
re-referenced to their common average. The name, number, and spatial location of
each electrode are shown in Fig.12.2.

In order to solve the common sources problem, the surface Laplacian transform,
which was based on the second spatial derivative of the recorded surface potentials,
was conducted through CSD toolbox. The application of surface Laplacian trans-
form in the CSD toolbox has the following steps:

1. Obtain the label of each electrode. In the original preprocessed EEG datasets, the
number of electrodes is 61. Thus, the number of electrodes is 59 after removing
the electrodes TP9 and TP10. If your preprocessed EEG datasets have been
imported into the EEGLAB, using the following command, you can obtain the
labels: electrodes ¼ {EEG.chanlocs.labels}’. Note that the labels of electrodes
should be a column vector in CSD toolbox; thus, transposition is conducted.

2. Get the EEG montage. Since the scalp surface Laplacian estimates are based on
the second spatial derivative of the recorded surface potentials, we need to get the
spatial locations of the electrodes (i.e., the EEG montage). In the CSD toolbox,
the head is represented as a unit sphere (i.e., a sphere with a radius of 1) and all the

Fig. 12.2 The spatial location of each electrode. The name and number of each electrode is shown
in panel A and B, respectively
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electrodes located on the surface of this sphere. If the Cartesian coordinates are
used, the x-y plane is marked by the great circle combining the locations Fpz, T7,
Oz, and T8, with the x-axis running through T7 (�1.0) and T8 (+1.0), the y-axis
running through Oz (�1.0) and Fpz (+1.0), and the z-axis running through the
origin of the x-y plane (0) and Cz (+1.0). For spherical coordinates, the angle
theta denotes the rotation from the x-axis toward the y-axis (positive poles,
respectively), whereas phi denotes the angular displacement from the x-y plane
toward the positive pole of the z-axis. The CSD toolbox contains a look-up file
(i.e., “10–5-System_Mastoids_EGI129.csd”) which has 330 standard scalp sites
based on the classical 10-20 system and 129 scalp locations of a first-generation
geodesic sensor net (GSN). Getting the EEG montage or electrodes, locations
should use the function “ExtractMontage” in CSD toolbox. Supposing the vari-
able “electrodes” contains the labels of electrodes, the following command can
help us obtain the EEG montage: Montage ¼ ExtractMontage(‘10–5-
System_Mastoids_EGI129.csd’,electrodes). To verify the integrity and correct-
ness of the identified EEG montage, we could use the function “MapMontage” in
CSD toolbox by entering “MapMontage(Montage)” in the MATLAB command
window, which will produce a topographical plot of the EEG montage.

3. Generate the transformation matrices “G” and “H.” The surface Laplacian trans-
form in CSD toolbox is based on two “electrodes-by-electrodes” transformation
matrices “G” and “H”. The “G” and “H” can be derived by the following
command: [G,H] ¼ GetGH(Montage). Then, we could save these two matrices
for further usage using the MATLAB function “save.”

4. Load the EEG datasets into EEGLAB, apply the surface Laplacian transform, and
save the CSD estimates. For each EEG dataset, we should firstly import the EEG
data. If your EEG datasets are in EEGLAB format, you could use the
“pop_loadset” function to import the EEG data. In EEGLAB, the imported
EEG data, which can be found in the field “data” of variable “EEG” (i.e., EEG.
data), is an “electrodes-by-samples” matrix or an “electrodes-by-samples-by-
epochs” matrix, depending on whether the EEG data is continuous data or
segmented data. The function “CSD” can be used to apply the surface Laplacian
transform in the CSD toolbox through the following command: X ¼ CSD (D, G,
H), where “D” is the EEG signals to be transformed, “G” and “H” are the
transformation matrices computed in the last step, and “X” is the CSD estimates
of “D.” Note that the “D” should be an “electrodes-by-samples” matrix. Thus, if
EEG signals are three-dimensions segmented EEG signals (i.e., electrodes-by-
samples-by-epochs), you should conduct the CSD estimates for each epoch,
respectively. The size of the CSD estimates is exactly the same of the original
EEG signals. For convenience, the CSD estimates “X” should be saved in
EEGLAB format. Since in EEGLAB, the EEG signals are saved in the field
“data” of variable “EEG” (i.e., EEG.data), we could replace the EEG signals by
CSD estimates through MATLAB command: EEG.data ¼ X. Then, the updated
variable “EEG” can be saved using the function “pop_saveset” in EEGLAB. Note
that the saved files contain the CSD estimates, not the EEG signals.
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In this example, the following EEG connectivity measures are computed: coher-
ence, PLV, PLI, and WPLI. In order to compute the coherence between electrodes,
the following steps should be performed for each subject:

1. Load the CSD estimates. In our example datasets, the CSD estimates for each
subject is a 59 � 200 � 120 matrix.

2. Perform FFT on the CSD of each electrode and each epoch using the MATLAB
function “fft.” An example is B ¼ fft(A, NFFT, N). The input variables “A,”
“NFFT,” and “N” are the CSD estimates of a given electrode and a given epoch,
the next power of 2 from length of “A,” and the length of “A,” respectively. The
output variable “B” is the FFT of vector “A.” Here, the “N” is 200, and “NFFT” is
256.

3. Compute the coherence between each pair of electrodes for each frequency bin
through Eq. (12.1) and (12.2). Note that the coherence is computed for each
frequency bin, respectively. Thus, in order to get the coherence of a given
frequency band (such as delta band, theta band, alpha band, beta band, and
gamma band), we need to average the coherence of frequency bins within this
frequency band.

In order to compute the PLV and PLI, the following steps should be performed
for each subject and each frequency band:

1. Load the CSD estimates.
2. Band-pass filtering on the CSD estimates. A band-pass filtering, such as 8~13 Hz

(i.e., the alpha band), is needed. In this example, the function “eegfilt” in
EEGLAB is used. Note that the input data of this EEGLAB function should be
a two-dimension data; thus, the CSD estimates should be reshaped into a
two-dimension data (electrodes-by-samples) before band-pass filtering.

3. Get the instantaneous phase time series of band-pass filtered CSD estimates
through the Hilbert transform. Supposing the band-pass filtered CSD estimates
is “X,” the phase time series “Y” is computed using the following command:
Y ¼ angle(hilbert(X)). Since the calculation of the Hilbert transform requires
integration over infinite time, 10% of the calculated instantaneous phase values
are discarded on each side of the time series. Then, the remaining instantaneous
phase time series is reshaped into a three-dimension matrix (electrodes-by-sam-
ples-by-epochs).

4. Compute the PLV and PLI for each pair of electrodes and each epoch using
Eq. (12.13) and (12.14). Then, you should average the PLV and PLI values across
epochs.

In order to compute the WPLI, the following steps should be performed for each
subject and each frequency band:

1. Load the CSD estimates and conduct band-pass filtering on the CSD estimates.
2. Compute analytic signal through the Hilbert transform, and discard the 10% of

the calculated analytic signal on each side. Then, the remaining analytic signal is
reshaped into a three-dimension matrix (electrodes-by-samples-by-epochs).
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3. Compute the WPLI for each pair of electrodes and each epoch using Eq. (12.15),
and then average the WPLI values across epochs.

Two example scripts, which could compute the CSD estimates and EEG connec-
tivity measures (i.e., coherence, PLV, PLI, and WPLI), respectively, have been
provided by us.

After these EEG connectivity measures have been computed across all the sub-
jects and two conditions, the NBS toolbox is used to test the conditional effect (i.e.,
comparing the measures in EC condition and those in EO condition). Note that the
band of interest is alpha band (8~13 Hz) in our example. The grand-average EEG
connectivity matrices across all the subjects for each measure (coherence/PLV/PLI/
WPLI) and each condition (EC/EO), along with the results of NBS, have been shown
in Fig.12.3. From this figure, we could find that the PLI and WPLI could signifi-
cantly attenuate the value of connectivity between adjacent electrodes, which may be
caused by the common sources problem. Moreover, the NBS showed that dozens of
pairs of electrodes have significant conditional effect with the measures of EC
condition significantly larger than those of EO condition.

12.9 Example: Connectivity Analysis for Event-Related
EEG Signals

Here, the datasets in folders “S” and “L” under folder “Data_AVSP_20”will be used
as demo datasets. Firstly, the EEG datasets were re-sampled to 250 Hz in order to
reduce the computational efforts. Secondly, the CSD were estimated through the
CSD toolbox for each subject and each condition. Thirdly, EEG connectivity
measures (i.e., PLV, PLI, and WPLI) were computed for each subject and each
condition.

For the CSD dataset of each subject and each condition, the procedures of
connectivity measures computation can be summarized as the following steps:

1. Load the CSD dataset, which was saved as EEGLAB format, through the
“pop_loadset” function in EEGLAB.

2. Get the complex time-frequency representation through STFT. The MATLAB
function “sub_stft” was used to conduct the STFT. The following parameters
were used: window size 0.3 sec, the time points evaluated �1:0.004:1.996 sec
(i.e., the same as the original time axis of EEG data/CSD), the frequency bins
evaluated 1:1:30 Hz. The CSD for each dataset is an “electrodes-by-samples-by-
epochs” matrix. Through STFT, we could obtain a complex time-frequency
matrix with dimensions “frequency bins-by-time points-by-epochs-by-
electrodes.”

3. Compute the phase synchronization-based measures (i.e., PLV, PLI and WPLI).
In order to compute the PLV and PLI, the phase information for each frequency
bin, each time point, each epoch, and each electrode were derived from the
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complex time-frequency matrix computed in the last step using the MATLAB
function “angle.” Suppose the phase information of electrode i and j are stored in
variables Phasei and Phasej, respectively, with dimensions “frequency bins-by-
time points-by-epochs.” Then, we computed the relative phase (i.e., phase dif-
ference) between Phasei and Phasej: relative_phase ¼ Phasei� Phasej. The PLV
between electrode i and j is computed using the following MATLAB command:

Fig. 12.3 The group-level coherence, PLV, PLI, and WPLI of alpha band under EC condition and
EO condition and links with significant conditional effect (EC > EO)
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PLV ¼ abs(sum(exp(1i�relative_phase),3)/size(relative_phase,3)). The PLI
between electrode i and j is computed using the following MATLAB command:
PLI ¼ abs(mean(sign((abs(relative_phase)- pi).�relative_phase),3)). In order to
compute the WPLI between electrode i and j, we need their complex time-
frequency representation Si and Sj. Then, the imagery part of their cross-spectrum
is computed: crossspec_imag ¼ imag(Si.� conj(Sj)). Then, the WPLI between
electrode i and j is computed using the following MATLAB command:
WPLI ¼ abs(mean(crossspec_imag,3))./mean(abs(crossspec_imag),3).

Although the connectivity measures of all the pairs of electrodes can be com-
puted, we may need to define electrodes of interest and pairs of interest before further
statistical tests. In the current example, the electrodes of interest are C3 and C4. The
grand-average connectivity measures (i.e., PLV, PLI, and WPLI) across all subjects
in condition “L” and “S” are shown in Fig.12.4. The following conclusions can be

Fig. 12.4 The group-level PLV, PLI, and WPLI under condition “L” and condition “S”
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seen from this figure. For condition “L,” the PLV between electrode C3 and C4 can
be clearly seen in two time-frequency regions: 1~8 Hz & 100~400 ms and 1~8 Hz &
700~900 ms, whereas for condition “S,” the PLV between electrode C3 and C4 can
be clearly seen in time-frequency regions 1~16 Hz & 50~500 ms. Note that the
PLI/WPLI could attenuate the common sources problem through discarding the
phase synchronization caused by consistent phase lag 0 or π across epochs. For
condition “L,” the PLI/WPLI between electrode C3 and C4 can be clearly seen in
two time-frequency regions: 4~8 Hz and 100~300 ms and 4~8 Hz and 600~800 ms,
whereas for condition “S,” the PLI/WPLI between electrode C3 and C4 can be
clearly seen in time-frequency regions 1~16 Hz and 50~300 ms.

After these EEG connectivity measures (i.e., PLV, PLI, and WPLI) have been
computed across all the subjects and two conditions, we statistically tested whether
there were significant conditional effects. Here, two approaches were used. In the
first approach, the paired samples t-test was conducted on each time-frequency point.
Then the FDR procedure is used to control the multiple comparisons problem.
Unfortunately, we did not detect any significant results for all the three measures
being investigated. In the second approach, the regions-of-interest (ROIs) in the
time-frequency plane were predefined through observing the grand-average time-
frequency representations. Here, three time-frequency ROIs are defined: ROI #1
(4~8 Hz and 100~300 ms), ROI #2 (12~16 Hz and 100~250 ms), and ROI #3
(4~8 Hz and 600~800 ms). After the PLV/PLI/WPLI values within each ROI have
been averaged across time-frequency points, the paired samples t-test was conducted
on each time-frequency ROI.

12.10 Remarks and Conclusions

Here, the basic theories and measures in EEG connectivity, along with an example
for resting-state EEG signals and an example for event-related EEG signals, have
been presented. For the EEG connectivity, several points should be mentioned.
Firstly, the common sources problem should be considered in practical researches.
In the examples, all the functional connectivity measures were computed on the
reference-free CSD estimates. If the EEG connectivity is conducted on the
preprocessed EEG signals, the effect of reference electrodes should be considered.
Secondly, EEG connectivity can be conducted both on scalp potentials and source-
localized activities. Performing EEG connectivity on the source signals may make
the results more interpretable. Thirdly, all the measures in EEG connectivity have
their own advantages and disadvantages, which should be kept in mind.
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Chapter 13
Spatial Complex Brain Network

Dong Wen, Zhenhao Wei, Yanhong Zhou, Yanbo Sun, Fengnian Li,
and Jiewei Li

Abstract This chapter introduces the research status of spatial complex brain
networks from the perspective of graph theory and complex networks. Firstly, we
review the theoretical concepts of graph theory and complex networks, and com-
bined them with spatial complex brain networks. We focused on a variety of
important network topological properties, and then introduced them based on struc-
tural connections, functional connections, and cost-effective connections. Three
different types of brain networks were established, and further studies on the
relationship between structural brain networks and functional brain networks, as
well as brain network research based on computational models. Finally, we
discussed the future research directions of spatial complex brain networks.

Keywords Spatial complex brain · Graph theory · Complex networks · Topological
property
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13.1 Introduction

The human brain is one of the most complex and functionally efficient organs in
nature. It is considered to be a complex system. Its ingenious and perfect structure
and functional connection mode make the brain have powerful information differ-
entiation and integration functions (Murre and Sturdy 1995). The brain is made up of
a large number of neurons with sparse connections between them, which operate at
multiple organizational levels, and each level has its own temporal and spatial scale.
Therefore, it is possible to analyze from multiple levels: neurons; local circuits;
specific regions of the brain; large-scale organization of the cortex; the entire brain.
Early neuroscience research focused on the localization of the function of each brain
region, while modern perspectives tend to use complex network methods to analyze
the structural and dynamic behavior of different levels of neural networks (Mesulam
1998).

We can divide the brain network according to different scales while considering
temporal and spatial properties (Betzela and Bassett 2017). Complex network theory
is a pioneering representation by the small world network (Watts and Strogatz 1998)
and the scale-free network (Barabási and Albert 1999). It has developed into a
multidisciplinary research frontier for many years, and it is also a hot spot in the
field of brain science research. Existing brain imaging technologies based on EEG,
MEG, fMRI, and DTI also provide powerful tools for the study of spatial complex
brain networks. For example, the study of EEG signals in patients with epilepsy
found that the topological properties of the brain’s functional network show dynamic
behaviors that vary with disease status (Schindler et al. 2008). An fMRI-based study
found that the small world features of functional brain networks in patients with
Alzheimer’s disease are degraded relative to normal controls (Supekar et al. 2008).
In addition to brain diseases, the researchers divided the subjects into high IQ groups
and general IQ groups through IQ scores. Based on the DTI data of the subjects, the
structural brain network was analyzed. It was found that the global efficiency of the
structural brain network of the high IQ group was significantly higher than that of the
general IQ group (Li et al. 2009).

At present, there are many analytical methods that can describe spatial complex
brain networks. Among them, graph theory analysis methods can describe and
evaluate brain functional networks and structural networks. As a branch of scientific
computing, graph theory quantifies the brain network topology by defining brain
network nodes and edges, and the introduction of attributes, such as “small world”,
effective network and degree distribution, provide a new basis for the structural
segmentation and functional integration of the brain, which help us to understand the
spatially complex networks of the brain more deeply. Below we will introduce the
knowledge of graph theory and complex brain networks.

For ease of understanding, the main content of this chapter is shown in Fig. 13.1.
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13.2 Graph Theory and Complex Networks

In the field of brain network research, the best practices for constructing and
analyzing brain networks are still evolving. At present, people realize that brain
networks are basically multi-scale physical spaces. Multi-scales include the repre-
sentation of networks on a spatial scale, characterization on time scales, and at
different topological scales. The spatial scale of a network is the granularity at
which its nodes and edges are defined, ranging from single cells, synaptic granular-
ity, brain regions, and large-scale fiber bundles. The time scale of the network refers
to the measured time accuracy from sub-milliseconds to the entire life span to
evolutionary changes in different species.

Complex brain network research is also known as brain network research based
on graph theory analysis. This section introduces graph theory and complex net-
works. Graph theory is one of the branches of mathematics developed in the
eighteenth century. It is a hotspot of complex brain network research because it
can provide powerful network analysis methods to study the computational model of
brain networks. A complex network is a network with complex topology character-
istics. The two most famous complex networks are small world networks and scale-
free networks. Small world networks have both large clustering coefficients and
small feature path lengths. At present, the network has been widely confirmed to
have small world characteristics, but it is controversial to have scale-free
characteristics.

In graph theory, a complex network is represented by a graph, which consists of a
series of nodes and edges between a series of nodes. According to whether the side
has direction, the network can be divided into undirected networks and directed
networks.

If the sides of the network have different weights, the network may be referred to
as an undirected weighted network (as shown in Fig. 13.2 a), if the edges between

Fig. 13.1 The main content of this chapter

13 Spatial Complex Brain Network 269



nodes have both directions and weights, the network may be referred to as a directed
weighted network (as shown in Fig. 13.2 b). The degree of a node is defined as the
number of edges that the node is connected to. The nodes in the directed network are
divided into out-degree and in-degree. The out-degree refers to the number of edges
from the node to other nodes, and the in-degree refers to the number of edges
pointing from other nodes to the node. In a weighted network, the concept
corresponding to degree is the node strength, defined as the weight sum of the
edges connected to the node.

For brain networks, they can be depicted from different spatial scales, such as
macro, micro, or large scales. However, due to limitations in technology and
computing power, macro- or large-scale networks are currently studied. In a macro
network, the electrodes of the EEG are usually used as nodes, and the definition of
edges is the connection of functions or structures between nodes. Once the nodes and
edges of the network are determined, the correlation matrix can be obtained, and the
graph theory features are further analyzed.

The important features of the network topology mainly include the characteristic
path length, the clustering coefficient, and the betweenness centrality.

The characteristic path length is defined as the shortest length of the path between
two nodes in the network. In undirected and unprivileged networks, the distance
between nodes is defined as the number of shortest paths connecting the two nodes.
The characteristic path length of the network is the average of the characteristic path
lengths between any two nodes in the network, and measures the global transmission
capability of the network. When there is a part of the non-uniform part in the
network, the value of the characteristic path length is infinite. To avoid this problem,
efficiency can be used to characterize the connection characteristics of the network.
Efficiency is defined as the reciprocal of the harmonic mean of the distance between
all nodes in the network. The greater the efficiency, the less expensive it is for
information or energy to be exchanged on the network.

Fig. 13.2 According to whether there is direction between nodes, a network can be classified as an
undirected weighted network or a directed weighted network
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The clustering coefficient is used to indicate the closeness of the neighbor nodes
of the nodes in the network. The clustering coefficient is defined as the ratio of the
number of edges actually present between a node and the k nodes connected to it to
the total number of edges between these nodes. The clustering coefficient of the
whole network is the average of the clustering coefficients of all nodes in the
network, which can measure the local information transmission capability of the
network. If ki is the average network degree and two neurons i and j are connected to
another one, then there is a probability that i and j are also connected with each other.
This probability can be quantified using the clustering coefficient cci of a node i,
which is defined by the fraction between the total number of links li between the
vertices within its neighborhood and the number of links that could possibly exist
between them:

ki ki � 1ð Þ
2

ð13:1Þ

The clustering coefficient is computed as:

cci ¼ 2li
ki ki � 1ð Þ ð13:2Þ

The importance of each node or edge in the network can be expressed in
betweenness. The number of shortest paths through a node or edge is called the
node’s or the side’s betweenness. A node with a high betweenness becomes a hub.
Nodes or edges with high betweenness are usually important to maintain the
effectiveness of the entire network communication. The importance of a node or
edge to the network can be assessed by calculating the efficiency of the “damaged”
network after the node or edge is removed. Suppose σst(v) is the shortest path number
from node s to node t through node v, and σst is the shortest path number from node
s to node t, then the betweenness is computed as:

CB vð Þ ¼
X

s6¼v 6¼t

σst vð Þ
σst

ð13:3Þ

Based on betweenness, we can define betweenness centrality:

Bi ¼
X

i 6¼k

σ i; j; kð Þ
σ j; kð Þ ð13:4Þ

In addition to the above indicators, other indicators such as grading can also be
estimated, which are used to quantify the topology of the brain network. Next, we
will introduce a complex brain network connected to the brain nerve.
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13.3 Spatial Complex Brain Network

The brain neural connection network can be divided into structural brain networks,
functional brain networks, and effective brain networks. The structural brain net-
work consists of anatomical connections between neural units, which reflects the
physiological structure of the brain.

The functional network describes the statistical connection between nodes of the
brain network and is an undirected network. For effective brain networks, it
describes the interaction or information flow between nodes of the brain network,
which is a directed network.

There are currently two ideas for brain network research: data-driven research and
computational model-based research. The former is based on experimentally mea-
sured data reflecting brain structural connectivity, or data reflecting functional
connectivity of the brain. It calculates the connection relationship of pre-defined
brain regions or nodes, and then constructs a network for analysis. The latter is based
on a specific neural computational model. These two ideas are generally used to
study various functions and diseases of the brain, such as brain development and
aging, cognitive mechanisms of the brain, network mechanisms, and applications of
mental or neurological diseases.

Building a brain network can be divided into three steps, that is, defining a node,
defining and determining the strength of the connection between the nodes, selecting
an appropriate threshold, and establishing a connection between nodes having a
connection strength greater than a threshold. Figure 13.3 shows an example of EEG
network illustrated as matrices (with weighted correlation coefficients or binary
values). In the study of EEG, one channel or one source can be regarded as a
node, while the connection strength between two nodes can be calculated as corre-
lation, coherence, or other statistical relationships. Note that, the brain network can
be illustrated by many ways, and Fig. 13.3 is just a simple and straightforward
means.

13.3.1 Structural Brain Network

Structural connections between neurons, including electrical and chemical connec-
tions between axons and dendrites, are the material basis for functional connectivity
of the brain. The human brain cannot obtain its complete neuronal structural
connection network by physiological anatomy. At present, the research on the
structural brain network of human living organisms is based on imaging techniques
that reflect structural connections, and the role of EEG in structural brain networks is
not prominent.

This section focuses on the determination of node definitions and connection
relationships for structural brain networks.

Nodes of structural brain networks can be defined at different spatial scales, from
individual neurons to local circuits, to brain regions or cortical regions with specific
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Fig. 13.3 An example of EEG-based brain networks. (a) The correlation matrix of 60 EEG
channels. One EEG channel is one node, and the connectivity between two channels is calculated
as the Pearson correlation coefficient between EEG of two channels. (b) The binary correlation
matrix of (a) after thresholding at 0.85. White color means two channels are functionally connected,
while black color means they are not



functions, and local nerves on small scales. The network can be understood as a
sub-network or a node of the brain network at a larger scale, so the brain network is a
multi-scale complex network with hierarchical structure. Organized in the form of a
hierarchy, neurons on each layer are connected in a weighted manner to neurons in
other layers to form a neural network.

Through the study of artificial neural networks, activities similar to biological
neural networks can be simulated. At the same time, based on the research on the
activities and structures of artificial neural networks, new characteristics and attri-
butes of biological neural networks can be revealed. Although the research of
artificial neural network has made some progress, the artificial neural network is
far from reflecting the real mechanism of the brain, especially the mechanism of
some advanced cognitive functions of the brain. The research of artificial neural
network belongs to the micro level research. The brain function is the macroscopic
performance. There is still a long way to go to realize the full interpretation of the
artificial neural network at the micro level and the brain function at the macro level.

Although the number of neurons and their interconnection in the cerebral cortex
is large, brain tissue is dominated by optimal resource allocation and constrained
minimization planning. The connectivity of the cortical zone city will result in a
small interconnection cost between the neural pivot points. This makes communi-
cation more efficient. During the evolution process, there has been a large increase in
the number of neurons, and there is less direct connection between them. The
nervous system (a neural network that is instantaneously connected by selective
interaction) forms a distributed network, and the network is very dilute. There are
indications that the human cerebral cortex is a dense, interconnected cortical region
that is globally connected to form a large-scale cortical circuit. However, as the
intrinsic properties of each neuron change over time (driven by interactions with the
environment and with other neural groups), neuronal cell dynamics are also con-
stantly changing. This dynamic nature allows neurons to constantly change connec-
tions or establish new connections based on computing and communication needs.
Thus, the interaction between neurons becomes highly dynamic.

The nematode is an excellent experimental system for understanding the rela-
tionship between the structure and function of the entire nervous system. All
potential of this system comes from the synthesis of both anatomical and electro-
physiological data. The nematode has tight neural tissue composed of 302 different
neurons, and the connections between them can be completely drawn (White et al.
1976).

In the early work, a small connection matrix of the primate visual cortex was
obtained by manual stratification, in order to classify the connections as ascending,
descending, or lateral according to their pattern of origin and termination of the
cortex (Felleman and Van Essen 1991). This stratified analysis requires detailed
anatomical information about the direction of the classification, which is used to
place the brain regions at the upper, middle, and lower levels in the layered map,
using an algorithm similar to simulated annealing. Several hierarchical models were
estimated, modified, and selected under the cost function associated with anatomical
constraints. The results of these methods fully reflect how the visual cortical areas
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are organized together. However, the exact hierarchical model has not yet been
determined.

Watts et al. used complex network methods to study the nervous system, and
clearly stated that neural networks have small world characteristics. They applied the
quantization method of the complex network to study the neural network. Each
neuron is a node in the network. The synaptic connection acts as the edge of the
network, and a directed network composed of 282 nodes and 2462 edges is
established. The study found that the topology of this network is neither a random
network nor a regular network, but a small world network (Watts and Strogatz
1998).

13.3.2 Functional Brain Network

A functional connection describes the statistical relationship between functional
signals between nodes in a certain period of time, but does not reflect the causal
relationship between nodes. The functional brain network is constructed based on
functional signals and can be constructed on a microscopic scale by point-
distribution relationships between individual neurons. It can be constructed on a
meso-scale by a local field potential that reflects the activity of the neuron cluster. It
can be constructed on the macro scale by EEG, MEG, etc. between specific func-
tional brain regions. At present, functional brain networks are more studied on a
macro scale.

For multi-channel EEG signals, researchers often define the area covered by the
electrode corresponding to each EEG channel as a node, then quantify the relation-
ship between the signals of each channel of the EEG, and use the strength of this
relationship as the functional connection strength between the corresponding brain
regions, thereby constructing a functional brain network. The amplitude of the
resting state is relatively large. According to the body of the subject and the state
of the subject in the experiment, signals (such as alpha waves) in the corresponding
frequency bands in each channel of the EEC are extracted first. The relationship
between the waveforms of the various channels in this band is then quantified by a
selected measure, and the network constructed from these quantitative relationships
is referred to as a functional brain network within this band.

EEG-based brain network research can be divided into the following four steps.

1. Preprocessing of EEG signals: de-artifacts, noise removal, extraction of wave-
forms in a specific frequency band, and the like.

2. Quantify the relationship between every two of EEG channels. Phase synchroni-
zation, cross correlation, mutual information, and likelihood synchronization can
be used.

3. Determine thresholds and build a cortical neural functional network. It is neces-
sary to determine a suitable threshold to construct a brain network: whether there
is a connection edge between two nodes depends on the strength of the
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relationship between the corresponding EEG signal channels. When the relation-
ship strength is greater than the threshold, the element corresponding to the
adjacency matrix is set to 1. Otherwise, the element corresponding to the adja-
cency matrix is 0. The diagonal elements of the adjacency matrix are also set to
0 to avoid self-joining edges in the network. The network thus constructed is a
0–1 binary-valued unprivileged network. If the relationship strength between
nodes with connected edges is assigned as the weight of the connected edge,
and the element corresponding to the weight matrix is the connection strength, a
weight brain network is generated. There are a number of methods for determin-
ing thresholds, such as studies using alternative data methods to determine
thresholds, a simple and commonly used alternative data method is phase location
chaos. The method generated by this method has the same power spectrum as the
original data, but does not have the linear characteristics of the original data
(Hurtado et al. 2004). For the selection of the threshold, a method has recently
been proposed to automatically construct a brain function network from the EEG
data according to the positional relationship of the vertices in the network.
Nicolas Langer studied the variation of small world clustering coefficients, path
lengths, and number of edges under different threshold increments (Langer et al.
2013). In the experiment of studying the differences of network characteristics of
functional brain networks, the validity of the network characteristics is verified,
and the network characteristics and the network with different weights of effec-
tive division can be accurately characterized (Gang Li et al. 2018).

4. Using the existing complex network measures to analyze the established func-
tional brain network, such as the characteristic path length, efficiency, clustering
coefficient and degree distribution, etc. Analyzing the physiological significance
that these characteristic parameters may reflect.

The earliest revealing of the function of connecting small worlds is made by
Stephan et al. (Stephan et al. 2000), who used invasive neurological tracer to obtain a
functional network of monkey neuron connection data, which opened the prelude to
the application of complex networks to study brain function networks. Using the
teachings based on EEG recording of five healthy subjects under no-task conditions,
Stam established a functional network of the human brain. Each channel acts as a
node and gets 126 nodes. Then, one can calculate the synchronization likelihood
value between any two channels in different frequency ranges. When the bit is
greater than a given threshold, it defines the edge connection between the two
nodes, thus obtaining five undirected networks with dilute sulfur. Finally, it is
concluded that the brain functional network constructed under this experimental
condition has a topology similar to that of the regular network in the α and β bands,
while the low- and high-frequency networks in other bands have small world
characteristics (Stam 2004). In 2006, Micheloyannis et al. applied the same method
to analyze the EEG of 28 sensors of 14 subjects under working memory tasks and
obtained different results: the functional network of the brain showed small world
characteristics in all frequency ranges (Micheloyannis et al. 2006a). Bassett et al.
analyzed the ERP data of different tasks in different subjects, and obtained the
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stability of small world characteristics, but the detailed features of brain functional
connections in different frequency bands are different in the position of core nodes
(Bassett et al. 2006). Pachou studied the relationship between functional network
topology and response time in a resting-state functional network, and evaluated the
correlation between network measurements and response times in each frequency
band, respectively. The results show that humans may be associated with brain
efficiency in integrating information from distributed brain regions. Longer response
times are associated with reduced small world characteristics, further demonstrating
the association between resting state functional brain networks and cognitive func-
tion (Micheloyannis et al. 2006a).

Small world characteristics are widespread. Jlenia studied the topological struc-
ture of the EEG-derived brain network when working memory was performed at
different stages of different operations. Through analysis, it was found that in all
EEG frequencies, the coding phase showed a significantly higher small world
topology in the storage and retrieval of EEG networks (Toppi et al. 2018). In
addition to the importance of discovering small world characteristics in EEG, it
has also been found in other signals. For example, studies have explored age-related
scale-free and small world network characteristics of ECG signals in male subjects at
different sleep stages, and calculated averaging, clustering coefficients, and feature
path lengths. And the results show that small world attributes can be found in all
sleep stages of different age groups (Zhu et al. 2018).

Most of the brain network analysis has small world characteristics, which is not
accidental. Many research results have suggested that the network structure with
small world characteristics is the optimal choice for the synchronization of neural
activity in different brain regions. It is the two organizational principles of brain
function--the concentrated expression of information exchange properties of func-
tional differentiation and functional integration. It is the brain adaptive results for
stimulus signals. This feature of the brain facilitates the efficient transfer of infor-
mation between multiple systems in a timely manner, facilitating the efficient
processing of external stimulus information, enabling efficient interaction of infor-
mation between different functional partitions.

Many researchers study the relationship between functional networks and dis-
ease. Micheloyannis et al. used EEG to find that the local clustering coefficient of
brain function network in patients with schizophrenia was lower than that of normal
people under resting state and working memory task, while the average shortest path
length only increased significantly at rest (Micheloyannis, Pachou et al. 2006b).
Pachou et al. analyzed the differences in functional connections between schizo-
phrenic patients and normal subjects under memory tasks (Pachou et al. 2008).
Studies by Rubinov et al. have shown that the small world characteristics of brain
function networks in patients with schizophrenia are not obvious and the network
topology is closer to random networks, validating the results of Micheloyannis
(Rubinov et al. 2009).

Cai et al. reconstructed the phase space of EEG by embedding EEG time series
into dimension by using the algorithm based on the distance set of phase points. The
vector space distance of the phase space is used to obtain the closeness between the
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vectors. Describe the regression matrix of the phase space, and transform the
obtained matrix to the connection matrix of the complex network. The differences
in the characteristics of epilepsy activity and inactivity, mean value, clustering
coefficient and average shortest distance were analyzed, and the small world char-
acteristics of brain network were verified (Cai et al. 2011). Fang verified that the
complex network characteristic index of alcohol addiction patients is significantly
different from that of normal people. It defines the concept of brain neural network
information entropy and neural network standard information entropy, and finds that
the brain neural network information entropy of encephalopathy patients is obvious
less than normal (Fang and Jiang 2007). When assessing the severity of Alzheimer’s
disease (AD), Chen considered the weighted undirected network of EEG signals and
whole brain network measurements from different frequency bands to study the
functional brain network and modify the alpha band. The network topology found
that the topological reorganization network of functional brain networks can be used
as a marker to assess the severity of AD symptoms (Chen et al. 2019). And in the
study of schizophrenia (SZ), the mutual information is calculated for the EEG data,
and then the corresponding characteristic indicators are calculated according to the
graph theory. The results show that compared with the normal control, the SZ
functional brain network has a smaller clustering coefficient, a larger average feature
path length, and lower overall efficiency and local efficiency (Yin et al. 2017).

There are also studies that analyze the functional brain network using the
minimum spanning tree approach (Fraga). When studying the status of functional
connectivity in developmental dyslexia, the EEG quiescent state data was used and
the phase-lag index (PLI) was used to calculate the weighted connection matrix for
multiple bands. A minimum spanning tree (MST) map representing the sub-network
with the greatest connectivity is obtained from the connection matrix and then
analyzed. Differences in theta bands between the two graph indicators were found
to indicate a reduction in communication between the network integration and
network nodes of patients with dyslexia compared to the control group (González
et al. 2016). In addition, Rene L used the minimum spanning tree for analysis in the
study of differences in network measurements between cognitively normal
Parkinson’s disease (PD) patients and matched healthy controls, and found that
there is a significant correlation between multiple network characteristics and cog-
nitive performance of PD (Utianski et al. 2016).

Figure 13.4 shows the difference of EEG functional connectivity between the
meditation state and resting state across different frequency bands. The results are
obtained by the coherence method. Red lines indicate the significantly increased
coherence in meditation than at rest, while blue lines indicate the significantly
decreased coherence in meditation. The overall results show significant decrease in
brain connectivity in most of the frequency bands, while only sporadic brain regions
have increased connectivity mainly in the alpha1 and gamma bands
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13.3.3 Effective Brain Networks

In brain network research, directional brain function connections are called causal
connections. This connection describes the statistical causal relationship between
nodes and can reflect the direction of information propagation between nodes. A
network built by a causal connection is called a causal brain network. The study of
the causal brain network is identical to the functional brain network in signal
preprocessing and node definition, the difference being in the measure of the
relationship between the quantized nodes. The strength of the causal link is generally
quantified using causality analysis. At present, many methods for analyzing causal-
ity in the frequency domain are mostly based on Granger causality, such as directed
transfer function (DTF) and partial directed coherence (PDC). After quantifying the
causal relationship, the thresholds need to be further selected to construct a network
of causalities. At this time, the method of estimating the significance level of the
PDC value can be used, and the estimated significance threshold can be taken as the
threshold: if the PDC is slightly larger than the significance threshold, it is consid-
ered that there is a significant causal relationship between the sequences
corresponding to this PDC value, and the corresponding adjacency matrix element
value is set to 1. Otherwise, there is no causal relationship, and the corresponding
adjacency matrix element value is set to 0. If the PDC value is used as a weight, a

Fig. 13.4 An example of EEG-based functional networks. Networks are constructed based on
coherence between EEG channels in six frequency bands. Red line indicates the significantly
increased value during meditation than at rest, while blue line indicates decreased value during
meditation
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weighted causality network can be further established. Then the complex network
analysis method can be used to study the constructed causal brain network. The
study of the causal brain network can also be carried out on a single frequency band.
For example, Mohan compared the pathogenic brain network of healthy controls and
tinnitus patients from the alpha frequency band (Mohan et al. 2018). For directed
networks, degrees, feature path lengths, clustering coefficient, and other measures
have their corresponding definitions relative to undirected networks (Park and Kim
2006). In addition, there are some proprietary feature parameters, such as link
reciprocity, which measures the probability of simultaneous forward and reverse
join edges between nodes.

Figure 13.5 shows an example of the EEG-based effective networks based on the
DTF method. The results indicate the connectivity difference between target
responses and standard responses in a visual oddball experiment

13.3.4 Structural and Functional Relationship of the Brain

The relationship between structural and functional connections has always been a
concern for neuroscientists. From the perspective of the network, the function of a
single brain network node is determined by its connection relationship with other
nodes in the network, and the functions between nodes with similar connection
patterns are similar (Passingham et al. 2002), while the structure of the brain nerve is

Fig. 13.5 An example of EEG-based effective networks. EEG data were recorded in a visual
oddball experiment. Effective brain connectivity was obtained by the time-varying DTF method in
different time intervals and frequency bands
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similar. The connection gives the physical limits of these functional connections.
There are three main ideas for the study of the relationship between structural
connections and functional connections based on the network perspective:

1. Observing the data reflecting the brain structure and the data reflecting the brain
function of the same subject, and then comparing the relationship between the
structural network of the same research object and its functional network (Honey
et al. 2009). The advantage of such a study is that the data used are real
experimental results, but, limited by the current level of brain imaging technol-
ogy, can only study the relationship between brain structure and brain function at
the mesoscale and large scale.

2. Based on the brain computing model instead of experimental observation data,
this research idea often defines a neurodynamic equation as a brain node, and the
coupling relationship between dynamic equations as a structural connection
between nodes. Then one or several state variables selected of each node (that
is, the dynamic equation) are observed., and the data of state variables observed is
used to estimate the functional connection relationship between the nodes.
Finally, the relationship between functional connections and structural connec-
tions is obtained by studying the simulation (Ponten et al. 2009). The advantage
of this method is that the structural connection relationship of the brain network
can be completely controlled by the researcher according to the hypothesis, and
the relationship between the structure and function of the brain network of any
connection relationship can be explored at various scales without being limited by
the brain imaging technology. Its limitation is that the network studied is a
hypothetical simulation network. Without the combination of real experimental
data, it is easy to produce pseudo-results without physiological significance.

3. The comprehensive experimental data and the computational model, that is, the
structural connection relationship based on experimental observations, determine
the coupling relationship of the established computational models, and then study
the relationship between brain structure and brain function based on the compu-
tational model. This method integrates the advantages of the first two research
ideas, and the results obtained are more convincing (Ponten et al. 2009).

Structure and function are the main core issues of complex network research. The
research on the relationship between complex network structure and function is
mainly focused on whether the same dynamic process shows different characteristics
on different structure networks.

In early work, many papers pointed out the interaction between neuronal tissue
and neuronal function, emphasizing that the nervous system connection structure is
related to brain function. There are studies that treat nodes in complex networks as
neurons. They examined the characteristics of this dynamic process on random,
regular, and small world networks and found that it can produce fast responses on
random networks but cannot produce sustained oscillations. The rule network can
produce continuous volatility, but it cannot produce rapid response. On the small
world network between the random network and the rule network, it can respond
quickly and continuously. Therefore, their work proves the relationship between
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network structure and function from the perspective of whether the network can
respond quickly and produce continuous oscillation (Lago-Fernández et al. 2000).
Honey et al. studied the relationship between structure and function by studying the
cortical structure network of macaques and found that there is a large degree of
overlap between the two network connections (Honey et al. 2007).

Nonetheless, in order to understand the working mode and mechanism inside the
complex system more deeply, it is very meaningful to study the evolution mecha-
nism and model of the complex network to reveal the evolution mechanism of the
actual system. Studies have found that the synaptic connection strength is also
related to spatial association, that is, strong connections are more spatially aggre-
gated than weak connections, forming a strong connection framework (Song et al.
2005). In order to deal with this problem, researchers proposed a spatial growth
algorithm based on space constraints to simulate the evolution of brain networks.
The process of establishing a spatial evolution network module is as follows: when
the network is initiated, one or two nodes are established at a specific position in the
two-dimensional space; then, considering that the new node and the probability of
the edge between the old nodes is related to the spatial distance between the two
nodes, each step can randomly adds a new node to any position in the two-
dimensional space. If the new node fails to establish a connection with the old
node, the new node is removed from the network. This produces an alternative
network with an average shortest path and clustering coefficient similar to the actual
cortical connection, and the results of the model also fit well with the results of the
actual brain structure network in other aspects.

Undoubtedly, the brain has considerable complexity in its evolution history,
structure, function, and coding of brain neurons. At this stage, people have already
had a certain understanding of the dynamic characteristics of few neurons, and
preliminary research has been made on the time coding methods of brain neuron
discharge and their mutual response mechanisms. However, the brain contains many
dynamic and spiritual factors and has a very rich information content, so it is still
difficult to analyze as a unique complex adaptive system. However, through the
study of complexity science, with the help of complex network theory and some
related concepts, we can at least recognize some of the characteristics of complexity
in the brain and achieve some scientific exploration on the memory and learning of
the brain, the emergence of creative thinking, the formation of stream of
consciousness, etc.

13.4 Summary and Discussion

So far, the research status of complex networks is still more empirical research than
theoretical research. Computer numerical simulation methods are more than math-
ematical analysis and the proposed network model can only control one or two
topological features, and the structure and mechanism of brain networks are still to
be explored.
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When exploring the unknown network structure, the topology structure of the
complex network is like a black box. We can only obtain the unknown parameters of
the topology structure and reconstruct the system structure through the output
information of the network. How to build a network connection that is more
consistent with the actual system from the data in the sea and establish a network
model that conforms to the actual system working mechanism is a very important
direction for future research.

Most of the previous studies have obtained undirected and unweighted graphs
based on the connection model of mutual relations, and the interactions in the actual
network sometimes do not occur continuously, and some can only occur under
certain conditions. Establishing an undirected and unweighted network connection
tends to ignore such conditional constraints, and the threshold for artificially given
interactions is required when establishing an undirected and unweighted network.
However, the threshold selection does not have a quantitative or statistical test for the
quality of the criteria. Different thresholds have certain influence on the topology
characteristics of the network. For example, the neural network studied by Onnela
considers the neural connection strength to use different thresholds to generate
networks with different structural parameters. Faust et al. pointed out that the
influence of different thresholds on the nature of the network may be related to the
selective edge-cut caused by the threshold selection, or it may also be indirectly
caused by changes in network density due to different thresholds.

One of the major challenge of using neuroimaging to study brain functional
connectivity is that it is difficult to draw clear causal inferences, because the
functional connections between different brain regions in the nervous system change
in real time. It may not be caused by the effect of one nervous system on another.
Therefore, describing the effective connection of causal relationships in nervous
system events and establishing a directed weighted neural network to reveal the new
topological attributes of neural networks is the future direction of brain network
research.

Cognitive neuroscience emphasizes multidisciplinary, multilevel intersections.
The research levels include molecules, synapses, neurons, brain regions, brain
region circuit, whole brain and overall behaviors, and even the environment, society,
etc. In order to determine and analyze the relationship between the brain at different
levels of time scale and spatial scale and the emergence mechanism of system
complexity, the multilevel and interdisciplinary comprehensive research on human
brain cognitive function and its neural mechanism has become the mainstream of
contemporary scientific development one.

In the field of application of complex networks, most of the research still stays in
the structural analysis and qualitative discussion of real network systems, but the
causes of some complex phenomena appearing in real network systems still lack
research. In addition, the research on the control of dynamic processes in real
network systems needs to be strengthened. Although biological networks have
accumulated a lot of research results as a large type of complex networks, the
analysis of the network also reveals some basic structures and dynamic
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characteristics of the brain, but the research on the brain network is still in its infancy
and the actual physiological significance of many indicators in the network is one of
the problems that have been plaguing us all the time. How to analyze and understand
brain data to obtain the relationship among the large-scale complex structures,
dynamic activities, and cognitive functions of the brain will be a new direction in
the future study of the brain.

From a clinical perspective, the conclusion of the study is still a long way from
being truly clinically diagnosed. Firstly, the research conclusions of network science
are mostly qualitative results. Secondly, different researchers use different experi-
mental data and different refactoring techniques, which may result in inconsistent or
even contradictory results. So in order to make a real contribution to the research of
brain science, it is necessary for network science to strengthen and deepen the study
of complex network theory, including network topology and dynamic behavior, to
explore and deepen the study of network parameters and new statistical laws, and to
conduct rigorous theoretical reasoning, from qualitative transfer to quantitative
research, the judgment basis of cognitive activities, and reliable and effective disease
diagnosis markers are given from the perspective of network science.

The study of complex networks is both increasing and rapidly developing.
Therefore, many theories and methods are still being explored and developed. At
present, the research on complex brain networks has just started. The analysis
methods of complex networks need to be further expanded. It is the future research
direction to find effective analysis methods that are more suitable for human brain
function. In the future, with the analysis of the brain’s massive data from different
angles and different dimensions, it is bound to have a more comprehensive under-
standing of the brain mechanisms of diseases and genetics.
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Chapter 14
Temporal Complex Network Analysis

Zhongke Gao, Yuxuan Yang, and Qing Cai

Abstract Characterizing dynamical processes in a time-dependent complex system
from observed time series is of great significance in many fields. Traditional time
series analysis methods have difficulty in coping with some specific burdens,
resulted from the increase of complexity of systems. Complex network, emerged
in the last decade, provided a solution for dealing with these burdens. In this chapter,
we introduce the basic concepts of complex network analysis of time series and some
typical methods from univariate time series, namely, recurrence network, visibility
graph, and horizontal visibility graph methods. In addition, the complex network
analysis of multivariate time series is still a hot topic especially in the nowadays Big
Data time. In this chapter, we still provide a case of multiscale complex network
from multivariate time series and its application. Lastly, we introduce an expository
example of a complex network-based study, to reveal the research steps in a complex
network analysis for multivariate EEG signals where two different complex network
methods are given.

Keywords Complex network · Time series · Recurrence network · Visibility graph ·
EEG signals

Characterizing dynamical processes in a time-dependent complex system from
observed time series of just one or more variables is an extremely significant
problem in many fields, ranging from physics and chemistry to economy and social
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science. A variety of time series analysis methods have been proposed to fulfill this
challenging task, including recurrence plot, multiscale entropy, and fractal analysis.
Time series analysis has been broadly adopted in scientific research and engineering
applications. Many theoretical developments for time series analysis have signifi-
cantly contributed to the understanding of complex systems.

However, when system complexity increases, it becomes difficult to describe the
dynamical behavior from time series, and traditional time series analysis methods
have difficulty in coping with the specific burdens of this increased complexity.
During the last decade, a new multidisciplinary methodology using complex net-
work has emerged for characterizing complex systems. Charting the interactions
among system components, abstracted as nodes and edges, has allowed us to
represent a complex system as a complex network and then assess the system in
terms of network theory. Numerous applications have already proven that complex
network analysis of time series has great potential for characterizing important
properties of complex dynamical systems.

Given the increasing interest and broad application, a tutorial introduction to
complex network analysis of time series is provided in this chapter. We focus on
introducing basic concepts, some typical methods, and its related applications.

14.1 What Is Complex Network?

Complex network research is originated from graph theory, which is a branch of
discrete mathematics. However, differing from graph theory, network analysis
mainly focuses on the real-life networks which are complicated and large. Complex
network analysis can characterize the properties of a complex system by quantifying
the topology of its network representation. The local and global properties (statistical
measures) in network analysis are beneficial to the understanding of complex
interrelations and information flow between different components in systems
(Rubinov and Sporns 2010). The publication on the research of small-world network
and scale-free network caused the emergence and spring in the study of complex
networks. The initial research mainly focused on some small networks. Recently,
more and more concerns have been given to large-scale complex systems with
thousands or millions of nodes.

Actually, there exist various networks in real life, e.g., the Internet and electric
power grids. In addition, networks can also be modeled in the abstract space, like the
social network (Boccalettia et al. 2006). A network is actually a collection of nodes
and edges between nodes (Rubinov and Sporns 2010). Commonly used network
measures include degree, clustering coefficient, and characteristic path length. Spe-
cifically, the degree of a node is equivalent to the number of edges connected to that
node. The degrees of all nodes in the network constitute the degree distribution,
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which can mark the development and resilience of the network. Clustering coeffi-
cient equals to the fraction of the node’s neighbors that are also neighbors of each
other. Clustering coefficient enables to locally depict the fraction of triangles around
an individual node. Characteristic path length, also known as average shortest path
length, measures the typical separation between two nodes and is the mean of
geodesic lengths over all couples of nodes.

14.2 Typical Methods for Complex Network Analysis
of Time Series

Constructing a network from a time series is an essential problem to be solved. A
variety of novel methodologies have been proposed to map a univariate/multivariate
time series into a complex network. These methods have been applied to address
interdisciplinary challenges and have already proven great potential for characteriz-
ing important properties of complex dynamical systems. The literature on complex
network analysis of time series is growing at a very fast rate due to its wide
applications in a large variety of research fields (Gao et al. 2016b). Some classical
methods for complex network analysis of time series will be introduced as follows.

14.2.1 Recurrence Network

An important network approach for analyzing time series is the recurrence network
(RN), which has undergone an explosive growth in recent years. The idea of
recurrence network was originated from the recurrence plot (RP), introduced to
visualize the recurrences of dynamical systems.

The process of RP is as follows:

1). For a time series {ui}, by choosing an embedding dimension d and time delay τ,

one can construct a trajectory x
*

ið Þ ¼ ui; uiþτ; . . . ; uiþ d�1ð Þτ
� �

,i ¼ 1,2, . . . ,N in
the d-dimensional space by the method of phase space reconstruction. Fig-
ure 14.1 gives a simple description of phase space reconstruction where A is
one of the points in the trajectory.

2). Then the RP with size N � N can be obtained from the matrix:

Ri, j ¼ Θ ε� x
*

ið Þ � x
*

jð Þ
��� ���� �

, i 6¼ j ð14:1Þ

where Θ is the Heaviside function, and ε is a predefined threshold. If the states at
time i, j are similar (namely the distance between x* ið Þ and x* jð Þ is smaller than ε),
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then Ri, j ¼ 1 and one plots a dot at the point (i, j) to represent the appearance of
recurrence. Thus, the RP can be plotted as shown in Fig. 14.1.

If the individual phase space vector (x
*

ið Þ) is served as a node i and the occurrence
of a recurrence between (x

*
ið Þ) and (x

*
jð Þ) is used to indicate of the existence of one

edge between node i, j, then one can project the RP into a RN as shown in Fig. 14.1.
Through the tool of complex network analysis, RN has been successfully applied

to various research fields, including analyzing paleoclimate regime transitions from
observational data (Marwan and Kurths 2015).

14.2.2 Visibility Graph and Horizontal Visibility Graph

The (horizontal) visibility graph theory has been proved to be computationally
efficient and an analytically tractable method, which allows probing the dynamics
underlying real complex systems from time series (Lacasa et al. 2008; Luque et al.
2009). The visibility graph method proceeds by mapping time series into graphs
according to a specific geometric criterion, using complex network techniques to
characterize time series (Gao et al. 2017). More recently, we extended the visibility
graph theory to develop limited penetrable visibility graph theory (Gao et al. 2016a).

The process of visibility graph and limited penetrable visibility graph are as
follows:

1) For continuous 10 data points of the illustrated time series, we display them in the
form of vertical bars. Two arbitrary data values (ta, ya) and (tb, yb) will have
visibility and consequently will become two connected nodes of the associated
graph, if any other data (tc, yc) placed between them fulfills:

yc < yb þ ya � ybð Þ tb � tc
tb � ta

ð14:2Þ

Fig. 14.1 The schematic diagram of the process of recurrence network
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2) The limited penetrable visibility graph is a development of visibility graph. In
particular, if we set the limited penetrable distance to be L, a connection between
two nodes exists if the number of in-between nodes that block the visibility line is
no more than L.

Then, the LPVG can be constructed as shown in Fig. 14.2.
The process of horizontal visibility graph and limited penetrable horizontal

visibility graph are as follows:

1) A connection between two nodes y(i) and y( j) exists (black lines in Fig. 14.3) if
the following criterion is fulfilled:

y ið Þ, y jð Þ > y kð Þ for all k such that i < k < j ð14:3Þ

2) The limited penetrable horizontal visibility graph is a development of the HVG. If
we set the limited penetrable distance to L, a connection between two nodes exists
if the number of in-between nodes that block the horizontal line is no more than L.

Then, the LPHVG can be constructed as shown in Fig. 14.3.

14.2.3 Complex Network Analysis of Multivariate Time Series

In addition, the complex network analysis of multivariate time series is still a hot
topic especially in the nowadays Big Data time. Here, we provide a case of
multiscale complex network and its application (Gao et al. 2015). In the literature,
a novel measure named clustering coefficient entropy was also proposed to charac-
terize the network property. The basic procedure for constructing a multiscale
complex network from multivariate time series is as follows:

(1) For a multivariate signal that contains p sub-signals of equal length L ( xk, if gL
i¼1,

k ¼ 1,2, . . . , p), a coarse-grained process was first performed to define temporal
scales, and further multivariate coarse-grained signals were obtained as follows:

Fig. 14.2 Example of a time series and its corresponding VG (black lines); LPVG (black and red
lines) with the limited penetrable distance L being 1, where every node corresponds to time series
data in the same order. The visibility lines between data points define the links connecting nodes in
the graph
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ysk, j ¼
1
s

Xjs
i¼ j�1ð Þsþ1

xk, i ð14:4Þ

where s is the scale factor and 1 � j � L
s

� �
, k¼ 1, 2, . . ., p. Figure 14.4 gives the

schematic diagram of the coarse-grain process for one of the channel k.
(2) Then multivariate embedding theory was used to construct a complex network

from each obtained ysk, j, i.e., constructing a complex network at a different scale
factor s. Specifically, the multivariate phase space reconstruction was performed
on the xk, if gL

i¼1,k ¼ 1,2, . . . , p as follows:

Fig. 14.3 Example of a time series and its corresponding HVG (black lines); LPHVG (black and
red lines) with the limited penetrable distance L being 1, where every node corresponds to time
series data in the same order. The horizontal visibility lines between data points define the links
connecting nodes in the graph

Fig. 14.4 The schematic diagram of the coarse-grain process for one of the channel k
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Xm ið Þ ¼ x1, i; . . . ; x1, iþ m1�1ð Þτ1 ; x2, i; . . . ; x2, iþ m2�1ð Þτ2 ; . . . xp, i; . . . ; xp, iþ mp�1ð Þτp
h i

ð14:5Þ

where τ ¼ [τ1, τ2, . . ., τp] and M ¼ [m1,m2, . . .,mp] 2 Rp is the vector of time
delay and vector of embedding dimension, respectively, and

Xm ið Þ 2 Rm m ¼ Pp
k¼1

mk

	 

.

(3) Then multiscale complex networks can be inferred from multivariate signals
xk, if gL

i¼1,k ¼ 1,2, . . . , p by the following steps:

(a) (L � n) composite delay vectors Xm(i) 2 Rm was produced, where
n ¼ max {M} � max {τ} and i ¼ 1, 2, . . ., L � n.

(b) The phase space distance between any two vectors Xm(i) and Xm( j), j 6¼ i
was defined in terms of maximum norm

d Xm ið Þ;Xm jð Þ½ � ¼ maxl¼1, ...,m x iþ l-1ð Þ-x jþ l-1ð Þj jf g ð14:6Þ

(c) Each phase space vector was regarded as a node and the phase space distance
was used to determine the edges for constructing a complex network. By
choosing a threshold, the adjacency matrix A of the complex network was
obtained: An edge between node i and j exists (Aij ¼ 1) if the phase space
distance between them is smaller than the threshold; while node i and j are
not connected (Aij ¼ 0) otherwise. The topology of the derived complex
network at different scales is determined entirely by the adjacency matrix A.

(d) Finally, the multiscale complex networks can be obtained by performing
steps a)-c) on each coarse-grained multivariate signals. The threshold can be
determined by the percentage (i.e., 15%) of total variation Tr(s), where S is
the covariance matrix of the multivariate signals.

The proposed multiscale complex network was applied to analyze multi-channel
measurements from gas-liquid flows and the results suggested that multiscale com-
plex networks allow quantitatively revealing the nonlinear flow behavior governing
the transitions of flow patterns from the perspective of multiscale analysis and
complex network analysis.

14.3 Complex Network Analysis of Time Series: Two
Methods

In the following, we will introduce an expository example of a complex network-
based study, to reveal the research steps in a complex network analysis for multi-
variate EEG signals. The EEG signals, collected from the subjects with the state of
eyes-open and eyes-closed will be analyzed by two different complex network
methods, respectively.
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Opening and closing the eyes are fundamental behaviors for directing attention to
the external versus internal world. However, it remains indistinct whether the resting
state of eyes-open relative to eyes-closed are associated with different topological
organizations of functional brain networks. Studies on resting-state functional net-
works from an electrophysiological perspective can take advantage of high temporal
resolution. Considering that electroencephalograph (EEG) is low-cost and portable,
many EEG-based brain network studies have received wide attention. We here give
two kinds of networks from resting-state EEG signals to research the difference of
topological properties of brain networks when the eyes are open versus closed.

14.3.1 EEG Acquisition and Preprocessing

The used dataset was created by Sleep and NeuroImaging Center and was collected
from 10 healthy volunteers (five males and five females, age: 21 � 0.8). Both eyes-
closed and eyes-open resting-state EEG data were recorded about five minutes from
the 64 scalp tin electrodes mounted in an elastic cap (Brain Products, Munich,
Germany), with the sampling frequency of 500 Hz around 9:00 to 12:00 in the
morning. The impedance of all electrodes was kept below 5 kΩ. Subject was
introduced to eyes-closed first, and then eyes-open. The preprocessing was
conducted using MATLAB scripts supported by EEGLAB (http://sccn.ucsd.edu/
eeglab). The continuous EEG data were down-sampled to 100 Hz and digitally
filtered within the 0.1–45 Hz frequency band using a Chebyshev II-type filter. The
filtered EEG recordings were re-referenced to average reference. The segmentations
with ocular, muscular, and other types of artifact were identified and excluded. We
only retained the first 120 segmentations, constituting a four-minute EEG recording
for each subject. After preprocessing, 61-channels EEG signals can be obtained in
the state of eyes-closed and eyes-open, respectively, for each volunteer.

14.3.2 Weighted Recurrence Network Analysis

We first introduce the results of weighted recurrence networks method. (Marwan
et al. 2009)

(1) We construct the weighted recurrence network for each epoch and the process
can be described as follows. For a multi-channel signal xk, lf gL

l¼1,k ¼ 1,2, . . . , p
which contains p sub-signal of equal length L, we first perform the phase-space
reconstruction by using a suitable dimension m and a proper time delay τ
(determined by FNN and C-C method, respectively) as follows (Kennel et al.
1992; Kim et al. 1992):
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x* kðtÞ ¼ ðxk, t, xk, tþτ, : . . . , xk, tþðm�1ÞτÞ,t ¼ 1,2, :::,N ð14:7Þ

where N is the number of vector points in the reconstructed phase space
trajectory.

(2) For any generated phase space trajectories x*m ið Þ originated from any sub-signal
xm, a N � N recurrence plot (RP) can be achieved:

Rx
*

m
i, j

�
εx
*

m
� ¼ Θ εx

*
m � x

*
m ið Þ � x

*
m jð Þ

��� ���� �
, i ¼ 1, . . . ,N j ¼ 1, . . . ,N ð14:8Þ

Thus, for a multi-channel signal xk, lf gL
l¼1,k ¼ 1,2, . . . , p containing p sub-

signal, the number of obtained recurrence plots is p.
(3) For pair-wise RPs, in order to look for the times when both of them recur

simultaneously, we can obtain the joint recurrence plot (JRP) as follows:

JRPx
*

m, x
*

n
i, j

�
εx
*

m ; εx
*

n
� ¼ Rx

*
m

i, j

�
εx
*

m
�
Rx

*
n

i, j

�
εx
*

n
� ð14:9Þ

Thereafter, we can use joint recurrence rate (JRR) to quantify the density of

recurrence points in each JRP as follows JRR
�
x
*

m; x
*

n

� ¼ 1
N2

PN
i,j¼1

JRPx
*

m, x
*

n
i, j .

(4) Then we can characterize the synchronization of pair-wise time series as follows,
where RR represents the recurrence rate of each recurrence plot which is 0.1.
Thus, for a multi-channel signal xk, lf gL

l¼1,k ¼ 1,2, . . . , p containing p sub-

signal, we can obtain a synchronization matrix S
�
x
*

m; x
*

n

�
of the size p � p.

Finally, we can infer a multivariate weighted recurrence network by regarding

each sub-signal as a node and deeming the synchronization S
�
x
*

m; x
*

n

�
as the

weight of the edge connecting node m and node n. The diagram of the method is
shown in Fig. 14.5.

(5) As the generated network is a fully connected network in which it is difficult to
depict its inherent topological structure and property, the integrals of the network
measures over the sparsity range (corresponding to the areas of the network
measure curve within the sparsity range) are taken into account. Specially, the
sparsity ranges from 10% to 35% with step 1% (Korgaonkar et al. 2014; Zhang
et al. 2011) and then we calculate the integrals of the weighted global efficiency
(representing the functional integration of networks) and local efficiency (indi-
cating the efficiency of local communication) (Rubinov and Sporns, 2010).
Specifically, the weighted global efficiency is defined as:

Ew ¼ 1
n

X
i2N

P
j2N, j6¼i d w

ij

� ��1

n� 1
ð14:10Þ
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where dw
ij is the shortest weighted path length between nodes i and j, and the

weighted local efficiency can be calculated by:

Ew
loc ¼

1
2n

X
i2N

P
j,h2N, j6¼i wijwih dw

jh Nið Þ
h i�1

	 
1=3

ki ki � 1ð Þ ð14:11Þ

where dw
jh Nið Þ is the length of the shortest path between nodes j and h that

contains only neighbors of node i and ki is the degree of node i. All the above
measures are calculated by using the Brain Connectivity Toolbox in Matlab
(http://www.brain-connectivity-toolbox.net).

The results of the weighted recurrence network are as follows:
The acquired EEG signals were first divided into several same-length epochs of

24s without overlapping for each subject. Thus, for each subject, there were ten
epochs for the state of eyes-open and eyes-closed, respectively.

Then, weighted global efficiency and local efficiency were calculated for each
epoch and the average results for each subject are shown in Figs. 14.6 and 14.7. In
addition, t-test was performed between the two states for each subject and the
obtained p-values are also shown in Figs. 14.6 and 14.7. We can see that the p-
values are smaller than 0.05 indicating the existence of statistical significance
between the two states. As can be also seen, both weighted global efficiency and
local efficiency for the state of eyes-closed are higher than the state of eyes-open for
all subjects. These results suggest a decrease in specialized information processing
with a decrease in integrated information processing in the state of eyes-open. All
these results indicate that the proposed method has a capacity to explore the variety
of brain dynamical properties from the state of eyes-closed to eyes-open.

Fig. 14.5 The diagram of the weighted recurrence network method
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Fig. 14.6 The average weighted global efficiency and p-value of each subject with the state of
eyes-open and eyes-closed, respectively
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Fig. 14.7 The average weighted local efficiency and p-value of each subject with the state of eyes-
open and eyes-closed, respectively
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14.3.3 Multiplex Limited Penetrable Visibility Graphs

We construct the multiplex limited penetrable visibility graph for each epoch
(a multi-channel EEG signal xα, if gN

i¼1,α ¼ 1,2, . . . ,M ), and the MLPVG method
(Lacasa et al. 2015) can be implemented by the following steps:

(1) The limited penetrable visibility graph with the limited penetrable distance being
1 for each channel signal is constructed.

(2) We obtainM limited penetrable visibility graphs Aαf gM
α¼1 for multi-channel EEG

signal xα, if gN
i¼1,α ¼ 1,2, . . . ,M.The obtained M-layer multiplex network on

N nodes is defined by the vector of adjacency matrices Aαf gM
α¼1.

(3) The weighted brain network is inferred as follows: for an M-layer multiplex

network Aαf gM
α¼1, where k

α
i ¼ PN

j¼1
aij is the degree of node i at layer α and p(kα) is

the degree distribution of the α-th layer, we characterize the interlayer correla-
tion between two layers α and β by using the mutual information of the

corresponding degree sequences k α
i

� �
and k β

i

n o
, i¼1, . . ., N. We compute

the quantities:

p kα; kβ
� � ¼ Nkα,kβ

N
ð14:12Þ

where Nkα,kβ is the number of nodes having degree equal to kα and kβ,
respectively, on layer α and on layer β. The interlayer correlation of layers α
and β is:

Iα,β ¼
X
kα

X
kβ

p kα; kβ
� �

log
p kα; kβ
� �

p kαð Þp kβ
� � ð14:13Þ

We then construct a brain network by regarding each layer as a node and
determining the functional connectivity by calculating the interlayer correlation of
all paired layers. The diagram of the method is shown in Fig. 14.8 (Xia et al. 2013).

In particular, we employ the weighted transitivity (TW) to characterize the topo-
logical structure of inferred brain networks. Specifically, this network measure can
be calculated as follows:

TW ¼
P

i2N
P

j,h6¼i2N wijwhjwhi

� �1=3
P

i2Nki ki � 1ð Þ ð14:14Þ

where N is the set of all nodes in the network, and n is the number of nodes. wij, wih

and wjh represent the weight between node i and j, i and h, j and h, respectively. The
t-test is employed to obtain the p-values of weighted transitivity between eyes-closed
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and eyes-open states. We show the results in Fig. 14.9. For different subjects, the p-
values are all much smaller than 0.05 indicating statistical significance. The measure
clearly enables to classify eyes-closed and eyes-open states.
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Chapter 15
Machine Learning

Yiheng Tu

Abstract Machine learning and pattern recognition have been widely applied in
EEG analysis. They provide new approaches to decode and characterize task-related
brain states and extract them from non-informative high-dimensional EEG data.
Given the growth in the interest and breadth of application, we introduce how to
apply machine learning techniques in EEG analysis. First, we give an overview of
machine learning analysis and introduce several basic concepts. Then, we propose a
scientific question of discriminating EEG data under eyes-open and eyes-closed
resting-state conditions, and provide a step-by-step tutorial including extracting
features, training features, feature selection and dimension reduction, selecting a
classifier, testing the classifier, evaluating results, and pattern expression. We also
discuss perspective, particularly the deep learning algorithms, for future study. In the
last section of this chapter, we give detailed MATLAB codes for implementing
machine learning analysis for classifying eyes-open and eyes-closed EEG data.

Keywords Machine learning · Classification · Feature · Training · Testing

With millisecond-level temporal resolution, electroencephalographic (EEG) has
been widely used to study the neural dynamics of perception and cognition in
humans (Hu et al. 2011; Zhang et al. 2012; Tu et al. 2014, 2016). When combined
with an experiment that involves the delivery of external stimuli or a subject
performing certain tasks, EEG can provide powerful methodology for building a
link between the brain and behavior. However, to what extent the “brain decoding”
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can be practically realized using EEG is not clear. For example, how accurate can
EEG detect one’s behavioral state (e.g., eyes-open vs. eyes-closed)? Can we monitor
individual’s cognitive or perceptual level in real time? Besides the development of
recording systems and experimental design, emerging analytical approaches seem to
be the key to answer these questions.

There has been growing interest in the use of machine learning techniques to
analyze EEG (Blankertz et al. 2011; Makeig et al. 2012; Müller et al. 2008).
Accumulating studies have provided evidence that machine learning is capable of
extracting meaningful information from high-dimensional and noisy EEG data.
Given the growth in interest and breadth of application, in this chapter we provide
a tutorial introduction to machine learning approaches for EEG. We focus on
introducing the methodology and its related applications, and perspective, particu-
larly the deep learning algorithms, for future study.

15.1 Machine Learning Analysis: An Overview

Neuroimaging experiments are designed to differentiate brain states, so that EEG
data collected from the experiment can be modeled with cognitive or perceptual
responses. Conventional analytical approaches typically use regression to build a
relationship between hypothesis-based EEG features, such as event related potentials
(ERPs) and behavioral scores, or seek to determine which feature in time or
frequency domain is involved in the processing of cognitive or perceptual states
by analyzing each sample separately. We call such approaches “univariate analysis”.
Theoretically, if the brain responses at a particular time point differ between two
states, it is possible to use that activity to decode an individual’s cognitive or
perceptual responses. For example, the power of alpha band oscillation is strongly
related to the eyes-closed and eyes-open conditions. However, it is often difficult to
find an individual feature of interest that offers a sufficiently large difference
between two conditions, and that may fail to make decisions.

A machine learning classifier is a function that takes the values of various features
of brain activity as independent variables or predictors from a condition, and predicts
the class that the condition belongs to. There are several basic concepts for machine
learning needed to be introduced:

Class: the category to which an object belongs. In a class, a set of patterns share
common attributes and usually originate from the same source.

Pattern: a collection of features of an object, along with the class information for that
object.

Sample: any given pattern of an object is referred to as a sample.
Feature: a set of variables believed to carry discriminating and characterizing

information about an object.
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Feature vector: a collection of K such features for one sample, ordered in some way
into a K-dimensional vector.

Feature space: the K-dimensional space in which the feature vector lies.

In an EEG experiment, the features could be extracted from time, frequency, or
spatial domains, and the class could be cognitive or perceptual responses. We can
denote a sample (e.g., trial or subject) as the vector X 2 RN � K and its class label as
y 2 RN � 1. A classifier can build up the relationships between features and class
labels using the training data, by learning a number of parameters and estimating the
weights of each feature. Therefore, given a sample X, the classifier is formally a
function f that predicts label y ¼ f(X). The function f can be either classification,
where the output is a discrete number corresponding to a limited number of classes,
or regression, where the output is a continuous variable.

The machine learning classifier requires training by which the classifier learns the
function f between features and their corresponding class labels. After training, the
classifier can be applied to the test data to determine whether the features contain the
discriminative information between classes of samples. If the trained classifier truly
captured the relationships between features and labels, it would be able to predict the
classes of samples in the test data that had not been previously seen. Normally, we
assume that the training and test data are independently drawn from a “sample
distribution.” As shown in Fig. 15.1, we denote the training and test data as
Xtraining 2 RN � Kand Xtest 2 RL � K, respectively, where samples are the rows and
features are the columns, and the class labels by column vectors ytraining and ytest. For
classification, the most commonly used measure to evaluate the performance of a
classifier is prediction error, or accuracy, which is the proportion of samples in the
test data being correctly classified. For regression, we can use mean square error

(MSE) ¼ 1
L

PL

i¼1

�
yi � ~y i

�2
or prediction-outcome correlation ¼ corr

�
y;~y

�
between

the real labels y and the predicted labels ~y .

Fig. 15.1 Machine learning
classifier framework. The
classifier is learned from the
training data and their class
labels, and then used to
predict labels for test data.
The predicted labels are
compared to the true labels
and the accuracy of the
classifier can be computed
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15.2 Machine Learning Analysis: EEG Features

To perform machine learning analysis in EEG studies, we need to decide which EEG
features can be used to discriminate between experimental conditions. For sponta-
neous EEG data, we usually study the signal in the frequency domain through
characterizing rhythms by frequency and amplitude. For example, the alpha band-
limited power for eyes-closed resting-state EEG is significantly higher than eyes-
open condition (Fig. 15.2). Other features, including bispectrum (detect phase
coupling between different frequency signals) (Gajraj et al. 1998), entropy
(describe the distribution of EEG signal) (Wang et al. 2014), coherence (similarity
of the frequency components across EEG channels) (Srinivasan et al. 2007), and
connectivity (similarity of the time series across EEG sensors) (Schoffelen and Gross
2009), also can be used as features for machine learning analysis. For evoked
potentials (EPs) and event-related potentials (ERPs), we can use the magnitude
and latency of peaks in time domain and in time-frequency domain as features.

There are several features that could be applied to both spontaneous EEG and
EPs/ERPs. For example, the joint time-frequency representation of EEG illustrates
how frequency features vary with time (Hu et al. 2014) (Fig. 15.3). The power (e.g.,
power spectral density)/phase value (e.g, phase-locked value) of each time-
frequency point, or a summarized value from a certain time frequency region,
could be a feature. The EEG/ERP topography, which is the interpolated map of
one EEG feature from multichannel EEG, representing the distribution of the feature
on the scalp, could also be a feature (Van de Ville et al. 2010). The joint space-time-
frequency features of multichannel EEG/ERP capture information from all three
domains of EEG signal (Tu et al. 2014), but increase the computational complexity
of the machine learning classifier.

In summary, selecting a proper collection of EEG features is crucial in machine
learning analysis. Researchers can base their decisions on hypothesis or data driven

Fig. 15.2 Waveform and power spectrum density for eyes-open and eyes-closed resting-state EEG
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search. We will provide an example of using alpha band limited power as a feature to
classify eyes-open and eyes-closed conditions at the end of this chapter.

15.3 Machine Learning Analysis: Training

The goal of a machine learning classifier is to estimate the correct class
corresponding to a give feature vector based on some prior knowledge obtained
through training. Training is the process by which a classifier learns the mapping
relationship between feature vectors and their corresponding class labels. This
relationship between feature vectors and the corresponding class labels forms a
decision boundary in the feature space that separates patterns of different classes
from each other.

Before training the classifier, we need to organize the samples (feature vectors
and class labels) into a training set (data used to train a classifier; with known class
labels), a testing set (data used to evaluate the performance of a classifier; typically
collected at the same time or carved of the training data; with known class labels),
and in some situations, a field data set (unknown data to be classified by a trained
classifier; with unknown class labels). There is an important tradeoff between having
many noise samples (e.g., single trials) or fewer cleaner ones (e.g., averaged trials)
for training the classifier. Generally, having more samples helps the classifier to
obtain good estimates of their parameters in training and increases the power of the
test for the significance of the accuracy in testing.

Fig. 15.3 EEG time series (upper) and time-frequency representations (lower)
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The cross-validation approaches have been developed to make use of all data for
training and testing (Fig. 15.4). With N samples, we can divide them into N-1
training samples and one test sample, and the same procedure can be repeated
N times to ensure that each sample is used as the test sample once. This variant is
called “leave-one-out” cross-validation (LOOCV) (Tu et al. 2016). Although in each
iteration the classifier trained is technically different, one can expect them to be
similar since they share much training data. Besides LOOCV, other variants of cross-
validation, such as K-fold cross-validation, where K is the number of parts into
which the dataset is divided (e.g., 5-fold or 10-fold), have been widely used in EEG
studies. Compared to LOOCV, K-fold cross-validation can be computationally
efficient and the classifier trained might not be over-fitted. It is worth mentioning
that the training data in each fold must contain samples of all classes, otherwise the
classifier for that fold will not be able to predict the absent ones.

The MATLAB function “crossvalind” can help us to generate indices for a K-fold
cross-validation of N samples. Indices contain equal (or approximately equal) pro-
portions of the integers 1 through K that define a partition of the N samples into K
subsets.

clear all; close all;

Indices = crossvalind(‘Kfold’,N,K)

To build a better classifier through training, researchers need to consider the
training performance, which is the ability of a classifier to correctly identify the
classes of training data, and the generalization performance, which is the ability of
the classifier to identify the classes of (unseen) test data. A good machine learning
classifier has the decision boundary that provides the best possible generalization

Fig. 15.4 Cross-validation.
The data is split multiple
times into a train set (with
training samples), used to
train the classifier, and a test
set (with test samples), used
to compute predictive power
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performance, and not the one that provides perfect training performance. In some
cases, perfect separation of training data is typically caused by noisy data, and
finding a decision boundary that provides perfect training data classification would
amount to learning the noise in the data. We call these cases, which learn noise or
random error instead of the true underlying relationship, as overfitting.

15.4 Machine Learning Analysis: Feature Selection
and Dimension Reduction

The performance of machine learning analysis in EEG is often hindered by the
“curse-of-dimensionality”; where the EEG data are naturally high-dimensional and
span multiple spaces but the number of samples is limited (Mwangi et al. 2014). For
example, 64-channel time-frequency maps (1000 samples in the time domain and
100 bins in the frequency domain) of EEG have 6,400,000 features (if one time-
frequency point is one feature). Feature selection or dimension reduction is critical in
identifying a small set of discriminative features from high-dimensional EEG data
for higher classification accuracy and better classifier interpretability (Tu et al.
2015).

Feature selection or dimension reduction can be realized with or without class
labels (supervised or unsupervised). Principle component analysis (PCA) is a con-
ventional dimension reduction approach that projects high-dimensional data along a
direction for which the variance of the data is maximized in a linear subspace
spanned by a small number of latent components (Fig. 15.5) (Jolliffe 2011). Math-
ematically, PCA uses orthogonal transformation to convert a set of observed data of

Fig. 15.5 Principle
component analysis. The
projection direction λ1
captures the maximal
variance of the data samples,
while its orthogonal
direction λ2 has the minimal
variance of the data samples
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correlated variables into a set of values of linearly uncorrelated variables called
principal components (PCs). By omitting a PC of low variance from the data, we lose
only a small amount of information. Suppose we only keep L (which is smaller than
the number of variables) PCs, then the new data will only have L columns but
contain most of the information. Normally, PCA can be used in EEG analyses to
reduce the dimensionality along time, frequency, channels, trials, and subjects, since
EEG exhibits redundancy across samples in these domains (Hu et al. 2015).

To implement PCA in MATLAB, we can use the built-in function “pca” as
follows:

clear all; close all;

[coef,score,latent] = pca(X)

The function returns the principal component coefficients in “coef,” principal
component scores (representations of X in the principal component space) in
“score,” and the principle component variances (eigenvalues of the covariance
matrix of X) in “latent,” for the n-by-k matrix X. Rows of X correspond to samples
and columns correspond to features. Each column of “coef” contains coefficients for
one principal component, and the columns are in descending order of component
variance. Rows of “score” correspond to samples, and columns correspond to
components.

However, unsupervised methods do not make use of class information to reduce
the dimensionality and cannot guarantee that classes are well separated in
low-dimensional space. In contrast, supervised methods exploit class information
to ensure that high-dimensional data can be mapped into a low-dimensional space
where different classes are well separated (Mwangi et al. 2014). Here, we give a brief
introduction of three categories of supervised feature selection methods. The most
direct approaches use univariate statistical techniques, including t-test, ANOVA, and
Pearson correlation coefficient to rank features according to their relevance in
discriminating between class differences. These univariate approaches normally do
not perform well for multidimensional EEG data. Wrapper techniques use a classi-
fication or regression objective function to rank features according to their classifi-
cation weights in the model. Recursive feature elimination (RFE) is the most popular
wrapper feature selection approach (Shen et al. 2007; Gysels et al. 2005). It begins
with all features in the training set, and features are iteratively eliminated from the set
until an optimal number of features are found. Recently, the embedded methods that
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select features by enforcing certain “penalties” on a machine learning model, thus
yielding a small subset of relevant features, have become increasingly popular. For
example, least absolute shrinkage and selection operator (LASSO) minimizes the
mean square error (MSE) with sparsity-enhancing L1 regularization on regression
coefficients, and it can shrink small regression coefficients to zero to realize feature
selection (Tibshirani 1996). When dealing with strongly correlated predictors (e.g.,
adjacent EEG time points), LASSO arbitrarily selects one variable from a group of
highly-correlated variables, which degrades the interpretability of the prediction
model. Therefore, an elastic net approach was developed and applied in neuroim-
aging studies. Elastic net enhances LASSO by combining L1 regularization
(sparsity-enforcing) and L2 regularization (grouping constraint) (Zou and Hastie
2005).

15.5 Machine Learning Analysis: Choosing a Classifier

After preparing samples and selecting the most informative features, we are ready to
select a classifier (Lotte et al. 2007). Classifiers that learn the function f between
features and class labels are categorized into discriminative and generative models.
The goal of a discriminative model is to directly learn a prediction function with a
given parametric form by setting its parameters. The most natural choice for a simple
function is to have the classification depend on a linear combination of the features
with:

Xw ¼ x1w1 þ . . .þ xKwK ð15:1Þ

The classifier determines class A if Xw > 0 or class B if Xw < 0. Therefore,
learning a linear classifier is equivalent to learning a line separating points into two
classes as far as possible. We call this line a decision boundary. Linear discriminant
analysis (LDA) and linear support vector machine (SVM) are commonly used
approaches to learn the decision boundary (Fig. 15.6) (Subasi and Ismail Gursoy
2010).

LDA finds a projection direction to a line such that all samples from different classes
are well separated. SVM constructs a hyperplane in a high-dimensional space so that an
optimal decision boundary (which maximizes the margin between the boundaries of
different classes) can be achieved in this hyperplane. The main novelty of SVM is its
ability to use a kernel function to map the original feature space (where classes are not
linearly separable) into a higher dimensional space (where the classes are linearly
separable) and find the support vectors in that higher dimensional space. There are
several parameter settings of SVM that need be tuned to perform a good prediction. For
a linear SVM, a cost parameter (C), which tells the SVM optimization how much you
want to avoid misclassifying each training sample, needs to be defined before training
the classifier. For large values of C, the optimization will choose a smaller-margin
hyperplane if that hyperplane does a better job of getting all the training points classified
correctly. Conversely, a very small value of C will cause the optimizer to look for a
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larger-margin separating hyperplane, even if that hyperplane misclassifies more points.
For nonlinear versions of SVM, a grid-search via inner cross-validation would be helpful
to define an optimal combination of parameters.

In contrast, the generative models, for example, Gaussian Naïve Bayes (GNB)
classifier, learn a statistical model that can generate a sample belonging to a
particular class and then make a prediction (Huang et al. 2013). What is modeled
is the distribution of class-conditioned feature values, p(X| y ¼ A) and p(X| y ¼ B),
which is then inverted via Bayes rule to classify by deciding which probability is
largest. In practice, Naïve Bayes has been shown to provide good performance and
only requires a small amount of training data to estimate the parameters necessary for
classification.

The implementation of classifiers can be achieved using either the MATLAB
built-in function “classify” or other toolboxes. To use the function “classify,” we can
run the following MATLAB codes,

clear all; close all;

class = classify(sample,training,group,’type’)

The function classifies each row of the data in sample into one of the groups in
training. Sample and training must be matrices with the same number of columns.

Fig. 15.6 Classifiers based on discriminative models learn a decision boundary separating points
into two classes as far as possible
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Group is a grouping variable for training and each element defines the group to
which the corresponding row of training belongs. Specify type inside single quotes
to decide the type of classifier, including “linear,” “diaglinear,” “quadratic,”
“diagquadratic,” and “mahalanobis.” The detailed description of function “classify”
can be found in the MATLAB Documentation.

To perform SVM classifier, it is recommended to use LIBSVM toolbox (https://
www.csie.ntu.edu.tw/~cjlin/libsvm/) which is an integrated software for support
vector classification, regression, and distribution estimation. There are several
steps for using the LIBSVM-MATLAB. First, after downloading the toolbox and
unzipping the file, we need to set path for the toolbox in the MATLAB interface by
“Home->set path ->add with subfolders->the path of your LIBSVM toolbox”.
Second, we need to select a compiler and configure the compiler, using the code:

mex -setup

and you will see the following contents in your MATLAB command window:

Please choose your compiler for building external interface (MEX) files

Would you like mex to locate installed compilers [y]/n?

This is asking you to locate the compilers installed on your computer and we can
type “y” to select a compiler. The selection of compilers is based on the existing
compilers on your computer and all supported compilers for LIBSVM can be found
in the official website of LIBSVM.

Please choose your compiler for building external interface (MEX) files

Would you like mex to locate installed compilers [y]/n? y

Select a compiler:

[1] Microsoft Visual C++ 2015 Professional (C)

[0] None
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Alternatively, we can select the proper compiler and run the file “make.m” in the
LIBSVM-MATLAB folder using the code:

make

If you do not see any error, the LIBSVM-MATLAB toolbox is successfully
installed. We can try the SVM classifier using the sample data in LIBSVM folder
by the following MATLAB codes:

libsvmread(‘heart_scale’);

model = svmtrain(heart_scale_label,heart_scale_inst);

[predict_label,accuracy] = svmpre-

dict(heart_scale_label,heart_scale_inst,model);

After implementing the above codes, if you see the following result in the
MATLAB command window, the LIBSVM is ready for future classification tasks.

Accuracy = 86.6667% (234/270) (classification)

Although some classifiers naturally permit the use of more than two classes, most
are by nature binary classifiers. Generally, multiclass classification (e.g., L classes) is
realized using popular binary classifiers by different strategies:

One-vs.-All: train a binary classifier for each class to distinguish that class from all
other classes, so there are L total classifiers. Combine binary classifiers by
returning classifier with highest confidence/score (e.g., the highest posterior
probability of a Naïve Bayes classifier).

One-vs.-One: train a binary classifier for each pair of classes so there are L(L-1)/2
total classifiers. Combine binary classifiers by finding the most frequent classifi-
cation label.
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15.6 Machine Learning Analysis: Evaluating Results

Once training is complete, the classifier’s generalization performance needs to be
evaluated on the test data or field data. The most direct measure for the evaluation of
a machine learning classifier is the accuracy, which is the portion of correctly
classified samples in all samples. It should be noted that accuracy is not suitable
for unbalanced datasets. More importantly, accuracy cannot reflect the cost of errors
because not all errors are equally costly. For example, two types of error in diagnosis
of a disease:

1. Sick people incorrectly identified as healthy; the cost may include death;
2. Healthy people incorrectly identified as sick; the cost might be the side effects and

the cost of administering drugs that are in fact not needed.

Therefore, we need other performance measures for a binary classification.
Table 15.1 summarizes four typical measures. The positive and negative represent
rejecting and not rejecting the null hypothesis, respectively. In a typical medical
diagnosis, true positive (TP) represents sick people correctly diagnosed as sick; false
positive (FP) represents healthy people incorrectly identified as sick; true negative
(TN) represents healthy people correctly identified as healthy; false negative
(FN) represents sick people incorrectly identified as healthy.

Another two measures, including sensitivity, which measures the proportion
of positives that are correctly identified as such (Sensitivity ¼ TP

TPþFN), and speci-
ficity, which measures the proportion of negatives that are correctly identified as
such (Speci f icity ¼ TN

TNþFP), are also important in practice.
For most systems, it is not possible to realize both a maximum sensitivity and

maximum specificity using the same configuration (e.g., set of parameters). In this
case, one has to decide which of the two is more important. A useful tool for
investigating this issue is the receiver operating characteristic (ROC) plot
(Fig. 15.7). The ROC curve is a fundamental tool for diagnostic test evaluation. In
a ROC curve, the sensitivity is plotted as a function of the (1-specificity) for different
criterion values of one parameter. The area under the ROC curve (AUC) is a measure
of how well a parameter can distinguish between two diagnostic groups.

Providing an absolute number of accuracy, sensitivity, or specificity is not
enough. A statistically significant classification result is the one where we can reject
the null hypothesis that the classifier decides at random. If the classifier does not

Table 15.1 Performance measures for a classifier

Actual value

Positive Negative

Predicted outcome Positive True positive (TP) False positive (FP)

Correct outcome Type I error

Negative False negative (FN) True negative (TN)

Type II error Correct outcome
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have any information about the class that is being predicted using EEG data, we
would expect that the classifier could only guess the class labels at random. More
formally, if the test samples were drawn independently and the sample sizes of the
two classes are equal, then we would expect an accuracy of 50% on average, based
on the binomial distribution. Therefore, a statistical significance needs to be calcu-
lated by determining the probability that the obtained accuracy might vary to a value
at least as high as 50% when the null hypothesis is satisfied. For example, we can use
a one-sample t-test against 50% to show that the classification accuracy is signifi-
cantly higher than chance level, or we can use a paired t test to compare the
performance of different feature sets or classifiers.

However, if samples of EEG data do not satisfy independence, a non-parametric
permutation test is recommended for assessing the significance (Maris and
Oostenveld 2007). In permutation testing, we randomly permute the class labels of
the data prior to training. Cross-validation is then performed on the permuted dataset,
and the procedure is repeated 1000 or more times. If the classifier trained on real data
labels has an accuracy that exceeded the 95% confidence interval generated from the
accuracies of the classifiers trained on randomly relabeled data labels, the classifi-
cation/prediction model is considered to be performing well.

Fig. 15.7 Receiver operating characteristic (ROC)
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15.7 Machine Learning Analysis: Pattern Expression

Once we know the class information is presented in the data, it is natural to ask where
this information resides (e.g., which time interval in our data contains the most
discriminative information). This can be addressed by two aspects: determining
which features are being selected and determining how their weights affect the
classification.

When using feature selection in each cross-validation fold, features being selected
may be different and the overlap between features selected in all folds may be small
(<1/3) because whatever features are selected contain sufficient information for
classification. Features in EEG data might be redundant since many of them are
intrinsically correlated and encode the same things. There might be a small subset
present in all folds that could be necessary for the classification.

The use of linear classifiers makes it easier to know which features strongly affect
classification, since each feature affects the decision only through the magnitude of
its weight (linear classifiers do not consider the interactions between features). For
intra-subject classification (training a classification model on each subject), we can
assess the statistical significance of each feature in the classification by comparing
the weight of each feature across all subjects against zero, using a one-sample t test.
For inter-subject classification (training a classification model across subjects), we
can use non-parametric statistical approaches. Besides the permutation test we
introduced, bootstrap tests are widely used in neuroimaging to determine the signif-
icance of weight for each feature. In a bootstrap test, we construct 1000 or more
bootstrap samples (with replacement) consisting of paired features and class labels,
and run machine learning analysis on each. A one sample t-test is performed for each
feature based on the proportion of weights below or above zero, and subjected to
multiple comparison corrections.

15.8 Machine Learning Perspective: Deep Learning
Algorithms

Deep learning is a subset of machine learning that is composed of multiple
processing layers to learn representations of data with multiple levels of abstraction.
Because deep learning can learn and understand complex representations directly
from the raw signal, as well as automatically extract advanced features for classifi-
cation, it has been applied to computer vision, speech recognition, and natural
language processing. It significantly outperforms traditional machine learning algo-
rithms with more training data and greater availability of graphics processing units
(GPUs) for complex computation.
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A major limitation of current EEG analyses is that unknown and potentially
relevant features may not be included. Although numerous successful applications
of deep learning have been developed to large-scale image, video and text data, they
remain relatively unexplored in the neuroimaging field. One reason for this may be
that the number of samples in most neuroimaging datasets is very limited, thus
making it difficult to train large-scale networks with millions of parameters. Never-
theless, recent studies have started to explore the potential of deep learning algo-
rithms for EEG-based brain decoding. In this section, we will briefly introduce two
deep learning algorithms including convolutional neural network (CNN) and deep
belief network (DBN), as well as their applications in EEG analysis.

CNN is a class of deep, feed-forward artificial neural networks inspired by the
connectivity pattern between neurons in the animal visual cortex. The basic frame-
work of CNN is shown in Fig. 15.8a. A typical CNN consists of an input and an
output layer, as well as multiple hidden layers. The hidden layers consist of
convolutional layers, pooling layers, fully connected layers, and normalization
layers. CNNs can learn local nonlinear features through convolutions and represent
high level features as compositions of low-level features through multiple layers of
processing. In EEG analysis, CNN is normally designed to extract a wide range of
features from raw data, using two convolutional layers to handle the large number of
input signals (e.g., time points, electrodes). The first convolution is used across time
to process temporal information and the second convolution is used across electrodes
to handle relationships between electrodes. In this way, the framework can be
regarded as an integration of spatial block and temporal block. Since CNN has
good performance in decoding and is easier for iterative training, it has been
successfully applied in EEG studies. Mirowski et al. applied CNNs for epileptic
seizure prediction in EEG and intercranial EEG (Mirowski et al. 2009). Cecotti and

Fig. 15.8 Frameworks of deep learning algorithms. (a) convolutional neural network (CNN); (b)
deep belief network (DBN)
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Graser used a special CNN for classification of steady-state visual evoked potentials
(SSVEPs, brain oscillation induced by visual stimuli) (Cecotti and Graeser 2008).
The network integrated the Fourier transform between convolutional layers, which
transformed the data from the time domain to a time-frequency representation. In
Tabar and Halici, the authors aim to use deep learning methods to improve the
classification performance of EEG motor imagery signals (Tabar and Halici 2017).
They combined CNN and stacked autoencoders (SAE) to classify EEG motor
imagery signals. A new form of input was introduced to combine time, frequency
and spatial information extracted from EEG signals and it was used in CNN with one
1D convolutional and one max-pooling layer.

DBN is a generative model with connections between the multiple layers of latent
variables (“hidden units”; Fig. 15.8b). DBNs can be viewed as a composition of
unsupervised networks such as restricted Boltzmann machines (RBMs). The RBMs
are stacked in such a way that the output layer of the RBM at layer l-1 is the input to
the RBM at layer l. A typical DBN can have two or more RBMs stacked in this way.
The purpose of the RBM is to learn a probability distribution over a set of inputs. The
high-dimensional data can be fed into the hidden layer through the visible layer, and
the hidden layer can identify the characteristics of data based on weights of connec-
tions between layers. The best way to train a DBN is one layer at a time, in a layer-
wise manner. Once every layer of the DBN has been trained, the output of the final
RBM can be used as the input to a classifier for decoding. Therefore, one of the most
important applications of DBN in EEG analysis is dimension reduction. For exam-
ple, in a paper by Li et al., the authors proposed a DBN based model for affective
state recognition from EEG signals (Li et al. 2013). Specifically, signals from each
EEG channel are firstly processed with a DBN to effectively extract critical infor-
mation from over thousands of features. The extracted low-dimensional character-
istics are then utilized in the learning to avoid the small sample problem. Similar
application was introduced by Zheng et al., who trained a DBN with differential
entropy features extracted from multichannel EEG as input to classify two emotional
categories (positive and negative) (Zheng et al. 2014).

In general, there are several advantages to using deep learning approaches for
EEG analyses. First, deep learning approaches learn features directly from the raw
data through several layers and take into account higher-order features and relation-
ships between those features. Second, deep learning approaches can be applied to
unlabeled data by using unsupervised methods, and thus have wider applications for
abundant unlabeled EEG data.
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15.9 Machine Learning Analysis: An Example

In this section, we demonstrate how to perform machine learning analysis on a toy
example. The signals were selected at the Oz channel of the EEG data from one
subject in two separate sessions (eyes-open [EO] and eyes-closed [EC]). There are
60 trials for EO and EC conditions, respectively, as training samples and another
60 trials with unknown labels as test samples. The task of this example is training a
classifier to separate EO and EC conditions from training samples and identifying
labels for test samples.

In this example, we summarize the following concepts as:

Classes: EC and EO
Samples: EEG trials
Feature: alpha power; in the previous section we showed that alpha power in EC is

significantly higher than alpha power in EO
Feature vector: alpha power at Oz (K ¼ 1)
Feature space: alpha power (1-dimensional space)
Pattern: alpha of EC > alpha of EO

We provided MATLAB codes including (1) extract features for training and test
samples; (2) train an LDA classifier and evaluate the training performance using
10-fold cross validation; (3) evaluate the generalizability of the LDA classifier on
test samples.

In the first step, we load MATLAB file “data_classification.mat” into the
Workspace. The file contains (1) ec (60 EEG trials for eyes-closed condition; each
trial has 2000 time points); (2) eo (60 EEG trials for eyes-open condition; each trial
has 2000 time points); (3) test_samples (60 EEG trials for testing; each trial has 2000
time points); (4) test_labels (60 binary numbers, 1 or 0, representing the class labels
for the test samples). It should be noted that the sampling rate of the EEG data is
200, and the recording length for each trial is 10 sec.

clear all; close all;

load data_classification.mat

In the second step, we calculate power spectral density (PSD) and extract alpha-
band power for training and test samples, respectively.
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%% parameters

fs_test = 200; % sampling rate

N_Train = size(ec,2); % number of traing trials

N_Test = size(test_samples,2); % number of test trials

%% PSD

nfft = 256; % Point of FFT

for n = 1:N_Train

[P_ec(:,n),f] = pwelch(detrend(ec(:,n)),[],[],nfft,fs_test); % calculate PSD for 

ec condition

[P_eo(:,n),f] = pwelch(detrend(eo(:,n)),[],[],nfft,fs_test); % calculate PSD for 

eo condition

end

for n=1:N_Test

[P_test(:,n),f] = pwelch(detrend(test_samples(:,n)),[],[],nfft,fs_test); % calcu-

late PSD for test samples

end

%% feature extraction

alpha_idx = find((f<=12)&(f>=8));  % frequency index of alpha band power

a_ec_train = mean(P_ec(alpha_idx,:)); % extract alpha band power from eo

a_eo_train = mean(P_eo(alpha_idx,:)); % extract alpha band power from ec

a_test = mean(P_test(alpha_idx,:)); % extract alpha band power from test data

After running the codes above, we can find three vectors (dimension: 1 � 60) in
the MATLAB Workspace: a_ec_train, a_eo_train, and a_test, representing the
extracted features for training samples in eyes-closed condition, eyes-open condi-
tion, and for test samples.
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In the third step, we train an LDA classifier and evaluate performance of the
classifier using 10-fold cross validation. We define the class label for eyes-open
condition as “1,” and eyes-closed condition as “0.”

all_samples = [a_eo_train,a_ec_train]'; % all samples

all_labels = [ones(size(a_eo_train,2),1);zeros(size(a_ec_train,2),1)]; % labels of 

all samples: 1 for eo; 0 for ec

K = 10; % K-fold CV

indices = crossvalind('Kfold',all_labels,K); % generate indices for CV

for k = 1:K % K iterations

cv_test_idx = find(indices == k); % indices for test samples in one trial of vali-

dation

cv_train_idx = find(indices ~= k); % indices for training samples in one trial of 

validation

cv_classout = classi-

fy(all_samples(cv_test_idx,:),all_samples(cv_train_idx,:),all_labels(cv_train_idx))

;

cv_acc(k) = mean(cv_classout==all_labels(cv_test_idx)); % compute accuracy

TP = sum((cv_classout==all_labels(cv_test_idx))&(cv_classout==1)); % com-

pute true positive

TN = sum((cv_classout==all_labels(cv_test_idx))&(cv_classout==0)); % com-

pute true negative

FP = sum((cv_classout~=all_labels(cv_test_idx))&(cv_classout==1)); % com-

pute false positive

FN = sum((cv_classout~=all_labels(cv_test_idx))&(cv_classout==0)); % com-

pute false negative

cv_sensitivity(k) = TP/(TP+FN); % compute specificity

cv_specificity(k) = TN/(TN+FP); % compute sensitivity

end

cv_acc_avg = mean(cv_acc); % averaged accuracy

cv_sensitivity_avg = mean(cv_sensitivity); % averaged sensitivity

cv_specificity_avg = mean(cv_specificity); % averaged specificity
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After running the codes above, we can find three performance measures in the
MATLAB Workspace. The averaged accuracy (cv_acc_avg), sensitivity
(cv_sensitivity_avg), and specificity (cv_specificity_avg) of the trained classifier
are 84.2%, 100%, and 68.3%, respectively.

In the last step, we apply the trained classifier to identify class labels for test
samples and evaluate the performance.

%% test on test data

% Concatenate training/test data and specify the labels

train_samples = [a_eo_train';a_ec_train']; %  training samples

train_labels = [ones(N_Train,1);zeros(N_Train,1)]; % labels of training sam-

ples: 1 for eo; 0 for ec

test_samples = [a_test']; % test samples

classout = classify(test_samples,train_samples,train_labels,'linear');

TP_test = sum((classout==test_labels)&(classout==1));

TN_test = sum((classout==test_labels)&(classout==0));

FP_test = sum((classout~=test_labels)&(classout==1));

FN_test = sum((classout~=test_labels)&(classout==0));

test_acc = sum(classout==test_labels)/N_Test; % compute accuracy

test_sensitivity = TP_test/(TP_test+FN_test); % compute specificity

test_specificity = TN_test/(TN_test+FP_test); % compute sensitivity

After running the codes above, we can find three performance measures in the
MATLAB Workspace. The accuracy (test_acc), sensitivity (test_sensitivity), and
specificity (test_specificity) of discriminating eyes-open and eyes-closed conditions
in the test samples are 83.3%, 100%, and 66.7%, respectively.
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Chapter 16
Deep Learning

Zhongke Gao and Xinmin Wang

Abstract Brain-computer interface (BCI) technologies enable direct communica-
tions between humans and computers by analyzing EEG signals. One of the chal-
lenges with traditional methods in classification tasks is receiving unsatisfactory
recognition effects from EEG signals. In recent years, deep learning has drawn a
great deal of attentions in diverse research fields, and could provide a novel solution
for learning robust representations from EEG signals. In this chapter, we firstly
introduce the basic concepts of deep learning techniques and two commonly used
structures in time series analysis, namely, convolutional neural network and recur-
rent neural network. Then, we provide the applications of these two DL models to
focus on the eye state detection task, which both achieve excellent recognition
effects and are expected to be useful for broader applications in BCI systems.

Keywords Fatigue detection · EEG analysis · Brain-computer interface · Deep
learning

Machine learning techniques allow to extract effective information from EEG
signals, which play a vital role in different EEG-based classification research
tasks. And machine learning methods have been applied to many control applica-
tions. For example, ErrP signals are decoded from a human operator in real time to
control robots to perform a binary object selection task (Salazar-Gomez et al. 2017).
Such systems may be further upgraded for more examples. The core point of
EEG-based recognition systems is to develop practical computational algorithms,
which are increasingly recognized as novel tools for rehabilitation therapy. In spite
of much progress has been conducted, there is still considerable improvement room
for the accuracy of information extraction from EEG signals. Hence, a direction from
the area of machine learning attracts great interests of researchers, which is deep
learning.
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16.1 What Is Deep Learning?

Machine learning is a subbranch of AI that focuses on teaching computers how to
learn without the need to be programmed for specific tasks. The core idea of ML
methods is to develop algorithms that learn from and make prediction on data. Deep
learning is a particular subset of ML methods using artificial neural networks
(ANNs), which are slightly inspired by the structure of neurons located on the
human brain. Informally, the word deep refers to the presence of many layers in
the artificial neural network, but this definition of deep has changed over time (Gulli
and Pal 2017).

Recently, deep learning techniques have shown prominent abilities in so many
fields, such as image classification, speech recognition, and time series prediction. It
significantly improves previous state-of-the-art results achieved over dozens of
years, which is due to the availability of more training data (such as ImageNet for
images) and the relatively low-cost availability of GPUs for very efficient numerical
computation. Based on these existing conditions, the research on network design is a
very important part of deep learning techniques. Moreover, various studies have
started to investigate the potential of CNNs and their variations for EEG signals
decoding, including motor imagery classification, fatigue driving evaluation, and
emotion recognition. Note that EEG signals are different with 2D images and speech
signals, which is truly challenging to design a proper network for EEG-based
classification tasks.

A deep learning framework is a function that takes the values of various features
of EEG signals (or raw signals) as the network input, and predicts the class of the
samples. The experiments are carried out to collect the EEG signals of subjects with
cognitive or perceptual responses. Let vector X 2 RE � T and its class label as y 2 RN,
where E denotes the cap electrode plates, T denotes the signal sampling points, and
N denotes the classes of response states. A DL framework can build up the relation-
ships between input samples and labels using the training data, and then can predict
the label of a given sample.

16.2 Typical Deep Learning Methods for Time Series

Learning effective representations from EEG signals is a challenging problem to be
investigated. Various novel methods have been proposed to build up a proper
framework for classification tasks. These methods have shown great potentials for
learning effective features from EEG signals. The commonly used methods include
convolutional neural networks and recurrent neural networks.
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16.2.1 Convolutional Neural Networks

In the following sections, we first explain the basic idea of CNNs, and then introduce
architecture choices for EEG analysis. Finally, we describe the implementation
details of CNN training.

Generally, CNNs have shown great superiority in many learning tasks, such as
images and audio signals. These signals often have an inherent hierarchical structure.
For example, images typically consist of edges that together form simple shapes
which form larger and more complex shapes. CNNs can learn local non-linear
features through convolutions and nonlinearities and represent higher-level features
as compositions of low-level features through multiple layers of processing. In
addition, many CNNs employ pooling layers to create a coarser inter-mediate feature
representation to increase translation-invariant.

To decode EEG signals, CNNs are designed to extract a wide range of features from
signal sequences with few prior knowledge, which can reach competitive performances. It
has been proved that standard CNNs can be used as a general-purpose tool for brain-signal
decoding tasks. Besides, keeping the architecture generic also increases the further
applications. To deal with raw EEG signals, the CNNs should typically have two
convolutional layers to better handle the large number of input channels, where one
input channel per electrode compared to three input channels in RGB images. The first
convolution is used across time to precede temporal information and the second convo-
lution is used across electrodes to handle electrode relations. Therefore, the DL framework
can be regarded as an integration of spatial block and temporal block. Many tricks are
proposed to improve the performance of DL framework on spatial and temporal dimen-
sions (Schirrmeister et al. 2017).

Meanwhile, many attempts are conducted to combine DL methods with the
existing analysis methods. The EEG signals are converted into new characteristics
by feature extraction methods, which can be fed into DL frameworks with more
concrete information. Recently, by modifying the filter-bank common spatial pat-
terns methods, EEG signals are turned into new temporal representations and a
convolutional neural network architecture is introduced for motor imagery EEG
data classification. The framework outperforms the existing results on the MI dataset
(S. Sakhavi et al. 2018). Concretely, the first two layers of these frameworks should
perform a temporal and a spatial convolution. Besides, they embed all the compu-
tational steps in a single network, and thus all steps can be optimized jointly. Also,
due to having several pooling regions with one trial, these frameworks can learn a
temporal structure of EEG signals, which is proved to help classification.

As for design choices, we give details for some of these aspects. (1) Batch
normalization standardizes intermediate outputs of the network to zero mean and
unit variance for a batch of training samples. This is meant to facilitate the optimi-
zation by keeping the inputs of layers closer to a normal distribution during training
(S. Ioffe and Szegedy 2015). (2) Dropout randomly sets some inputs for a layer to
zero in each training update. It is meant to prevent co-adaption of different units and
can be seen as analogous to training an ensemble of networks. There are many other
ways to improve accuracies and we do not list all here.
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16.2.2 Recurrent Neural Networks

A recurrent neural network (RNN) is an extension of a conventional feedforward
neural network which can handle a variable-length input. The RNNs can handle the
variable-length sequence by having a recurrent hidden state whose activation at each
time is dependent on that of the previous time. Standard RNNs are hard to train due
to the well-known vanishing or exploding gradient problems. To address these
problems, long short-term memory (LSTM) is proposed as the gated recurrent
network architectures (Golmohammadi et al. 2017). The most commonly used
architecture is described in (Graves and Schmidhuber 2005) as follows:

it ¼ σ Uixt þWist�1 þ pi � ct�1 þ bi
� � ð16:1Þ

f t ¼ σ U f xt þW f st�1 þ p f � ct�1 þ b f
� � ð16:2Þ

ct ¼ f t � ct�1 þ it � g Ucxt þWcst�1 þ bcð Þ ð16:3Þ
ot ¼ σ Uoxt þWost�1 þ po � ct þ boð Þ ð16:4Þ

st ¼ ot � g ctð Þ ð16:5Þ

where it, ft, ct, ot, and st are the input gate, forget gate, cell state, output gate and block
output at time instance t, respectively; xt is the input at time t; U� and W� are the
weight matrices applied on input and recurrent hidden units, respectively; σ(.) and g
(.) are the sigmoid and tangent activation functions, respectively; p� and b� are the
peep-hole connections and biases, respectively; and � means element-wise product.
More specifically, a memory block of LSTMs is shown in Fig. 16.1.

Fig. 16.1 An LSTM
memory block
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16.3 Deep Learning Framework with EEG Signals: Two
Examples

In this chapter, we introduce two examples of DL-based studies to verify the
superiority of deep learning methods for multi-channel EEG signals.

Opening and closing the eyes are fundamental behaviors for directing attention to
the external versus internal world. However, it remains indistinct whether the resting
state of eyes-open relative to eyes-closed are associated with different topological
organizations of functional brain networks. Studies on resting-state functional net-
works from an electrophysiological perspective can take advantage of high temporal
resolution. On consideration, EEG signal is the chief source for input, which
contains a great deal of physiological information of a working brain. Here, we
give two baseline methods to focus on eye state detection, convolutional neural
networks, and recurrent neural networks, respectively. The section EEG acquisition
and preprocessing is same with the section complex network analysis.

16.3.1 Convolutional Neural Networks

In the experiment, we reach a network with depth of 4 layers. Table 16.1 shows the
details of the baseline method CNN. In the framework, a convolutional layer with a
size of [61�1] is initially performed as input layer. Another [1�10] convolutional
layer is employed with it, and then a dense layer with 100 nodes is appended ended
with a softmax classifier.

A unit in the CNN is denoted by x(l,m, j), where l is the layer, m is the feature
map, and j is the position of the unit in this feature map. Likewise, σ(l,m, j) is
denoted as the scalar product between a group of input neurons and the weight
connection between these neurons with l, m and j sharing equal meanings:

x l;m; jð Þ ¼ f σ l;m; jð Þð Þ ð16:6Þ

where f is the rectified linear units function (Nair et al. Nair and Hinton 2010) used
for whole network layers.

Notably, each neuron of one feature map in each convolutional layer shares the
same set of weights, which aims to decrease the amount of weight parameters. And
they are attached to a subset of the neurons of former layer, which depend on the
exact position of this neuron. Or rather, the neuron weights are trained independently

Table 16.1 Details of the
CNN framework

Layers Output size CNN

Input 61�100 –

Convolution 1�100 61�1, map 8

Convolution 1�10 1�10, map 16, stride 10

Dense layer 100 fully connected

Softmax 2 Softmax

16 Deep Learning 329



to their corresponding receptive fields. Let layer n as Ln, then the information
transmission process could be described as:

1. For layer L1

σ 1;m; jð Þ ¼ ω 1;m; 0ð Þ þ
Xi<Ne

i¼0

Ii, jw 1;m;ið Þ ð16:7Þ

where w(1,m, 0) is a threshold and w(1,m, i) denotes a set of weights with Ne ¼ 61.
Here, m corresponds to the convolutional kernel used in this framework.

2. For layer L2

σ 2;m; jð Þ ¼ w 2;m; 0ð Þ þ
Xi<10

i¼0

x 1;m; j � 10þ ið Þ � w 2;m; ið Þ ð16:8Þ

where w(2,m, 0) is a threshold. This layer is employed to extract valid temporal
features.

3. For layer L3

σ 3;jð Þ ¼ w 3; 0; jð Þ þ
Xi<100

i¼0

x 3; ið Þ � w 3; ið Þ ð16:9Þ

where w(3, 0, j) is a threshold, and each neuron of L3 is fully connected to each
neuron of L2.

We use the classical back propagation as learning algorithm to tune up the
thresholds and weights of the network (D. E. Rumelhart et al. 1986), which is
reflected by the promotion of model accuracy on validation set. As a loss function,
cross-entropy objective function is employed for model performance estimation.
Figure 16.2 shows the architecture of the proposed convolution neural network.

Fig. 16.2 The architecture of the proposed convolution neural network
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The developed CNN is trained to recognize different eye states for each subject.
Individual performances are obtained on 10 subjects, and they are shown in
Fig. 16.3. We find that the CNN framework is effective on the EEG dataset with
an average accuracy of 90.5%. The performances of five subjects are over the
average accuracy while the other five are below it. These results reflect that the
CNN model provides an effective relationship between eye states and EEG signals.

16.3.2 Recurrent Neural Networks

The deep LSTM architecture is illustrated in Table 16.2. It consists of an input layer,
the first sequence-to-sequence LSTM layer, a many-to-one LSTM layer, a 20%
dropout layer, and a final sigmoid activation function for binary classification. The
first hidden layer contained 50 LSTM units while the second hidden layer used
10 units. Dropout on the input gates to each LSTM layer and between the final
LSTM and fully connected sigmoid layer served as a method of regularization and is
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Fig. 16.3 Performances of the CNN framework on each subject

Table 16.2 Details of the
LSTM framework

Layers Output size LSTM

Input 61�100 –

LSTM 61�100 100 units

LSTM 61�10 50 units

Dense layer 100 Fully connected

Softmax 2 Softmax
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set to 20%. The purpose of the recurrent connection in a LSTM is to store important
long-term dependencies.

The developed LSTM is trained to recognize different eye states for each subject.
Individual performances are obtained on 10 subjects, and they are shown in
Fig. 16.4. As can be also seen, the LSTM framework receives an average accuracy
of 85.88% when evaluated on the EEG dataset. The performances of four subjects
are over the average accuracy while the other six are below it. The LSTM framework
clearly enables learning effective representations from EEG signals to classify eyes-
closed and eyes-open states.
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Chapter 17
Statistical Analysis

Gan Huang

Abstract Statistics is a collection of methods that you can get answers to important
questions from EEG signal analysis. In this chapter, we firstly introduced the
descriptive statistical methods for presenting the result from the raw data. Further-
more, analysis techniques comprised of parametric strategies like t-test, ANOVA,
regression, and nonparametric procedures, such as permutation test, are introduced
with their implementation in MATLAB and SPSS. Selecting the right statistical
procedures would be important in EEG signal analysis. Finally, we discussed the
problem of multiple comparison, which may increase the probability for the
researcher to get to false positive conclusion due to the multiple comparison and
remains a challenge in statistical method.

Keywords T-test · ANOVA · Regression · Nonparametric procedures · Cluster-
based permutation test

17.1 Statistics Elementary

17.1.1 Introduction

The purpose of this section is to provide the basic idea about statistics. Two
important questions are discussed: (1) What is the use of statistics? (2) How to
describe and display the EEG results by statistics?
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In the previous chapters, all kinds of methods in signal processing and feature
extraction are introduced in EEG signal analysis. On this foundation, statistical
methods would be used to present data in a suitable tabular and graphical form for
easy and clear comprehension of the result, and further draw valid inferences. Hence,
according to the different use of statistics, we have (1) descriptive statistics, to
describe the basic feature of the data in a study, and (2) inferential statistics, to
make inferences by using a random sample of data from a population (Bickel and
Doksum 2015; DeGroot and Schervish 2012; Devore 2001; Johnson et al. 2000;
Montgomery et al. 2009).

Take the case of resting state EEG with eyes open and closed for example. We
have a dataset with 93 subjects. Comparing the EEG signal on channel Oz from a
certain subject in Fig. 17.1(a), it is found that a stronger oscillation of the alpha wave
(around 10 Hz) happened in the condition of eyes closed than that in the condition of
eyes open. However, showing individual results on a single subject is not represen-
tative. We do not know the strong alpha oscillation with eyes closed is a common
phenomenon on all subjects, or a special case on the single subject. In this case,

Fig. 17.1 The resting state EEG with eyes open and closed. (a) An EEG data fragment from one
subject on channel Oz. (b) The topography of mean EEG power in alpha band (8–12 Hz). (c) The
mean EEG power in different frequency bands on channel Oz. The gray-shaded interval (1.5Hz–
34 Hz) indicated there is a significant difference between the two conditions
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showing the results of all the subjects are too redundant and impractical on a dataset
with a large sample size. Hence, we have to find some ways to summarize the results
to general characteristics of the dataset. In statistics, displaying the mean value of the
samples provides a simple and effective way to do this. Figure 17.1(b) illustrates the
topography of the mean alpha power (8–12 Hz) from all subjects, and Fig. 17.1(c)
shows the mean EEG power with eyes open and closed in different frequency bands
on channel Oz. With the comparison of the mean value of EEG power in both spatial
domain and frequency domain, we can have a comprehensive understanding about
the difference of EEG power between the conditions of eyes open and closed.
Further, the gray-shaded interval indicated there is statistically significant difference
for the EEG power between the two conditions from 1.5 to 34 Hz, in which paired
sample t-test is applied.

In this example, we illustrated the use of the simplest methods in descriptive
statistics and inferential statistics in the EEG signal analysis. The mean statistic is
used to describe the result of resting state EEG. T-test is used to further infer some
conclusion based on the results. In the following section, we mainly discuss the
descriptive statistics. In the following section, the methods of inferential statistics
will be introduced.

17.1.2 Mean and Variance

1. Measure of the Location

A statistic is a single measure of some feature of the sample data. The mean is the
most commonly used statistic, which can be obtained by the sum of all the sample
value and divided by the sample size.

�x ¼ 1
n

Xn
i¼1

xi,

in which �x is the mean, xi is the value of the sample i, n is the sample size, and the
symbol Σ is the sum sign in mathematics, which means add up all the value of xi
from i ¼ 1 to i ¼ n.

The mean, also called arithmetic mean, represents the central tendency of the
samples. In addition to the mean, median and mode provide another measurement of
the “average”. The median is the middle value in the sorted sample values, which
divided the data sample into two halves. The mode is the value that occurs the most
often.

Take the dataset

A ¼ 1; 3; 5; 4; 3; 6½ �,
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for example. To calculate the mean, median, and mode value of dataset A, we can
use the following MATLAB codes,

clc;clear;close all;
A=[1,3,5,4,3,6];
mean(A) % mean
median(A) % median
mode(A) % mode

As a result, the mean value is 3.67, the median is 3.5, and the mode is 3.

2. Measure of the Variability

In addition to the central tendency, variance is another commonly used statistic to
measure the difference of each sample data from the mean value. The variance of a
finite dataset with size n can be calculated by the following formula:

σ2 ¼ 1
n

Xn
i¼1

xi � μð Þ2,

in which μ is the mean value. Hence, we also have the standard deviation

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

xi � μð Þ2:
s

In some definition of standard deviation, we use n � 1 instead of n to be the
normalization factor. Hence, we have the sample standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

�
xi � �x

�2
,

s

and also s2 is called sample variance. To distinguish, σ and σ2 are called population
standard deviation and population variance, respectively.

The difference between the terms sample and population is how observations are
assigned to the dataset. For a dataset, population means all the elements from the
dataset, and sample just includes part of elements in the dataset. Normally, the
number of elements in the sample is relatively small with respect to the whole
population. To calculate the standard deviation of the dataset, we can use the
population standard deviation σ. Once you only have part of elements in the dataset
(the sample), the sample standard deviation s is an unbiased estimation for the
population standard deviation, since the degree of freedom is n � 1. If the sample
size n is larger enough, the difference between σ and s is minor. Similarly, in the
equation for the definition of σ and s, μ is the population mean and �x is called sample
mean, which is an unbiased estimation of the population mean. In MATLAB, the
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functions var and std with the default parameters refer to the sample variance and
the sample standard deviation.

To describe the variability of the dataset, we can also use the statistics range and
interquartile range. Range: the range of a dataset refers to the largest value minus the
smallest value. Interquartile range (IQR): Divide a dataset into quartiles to get three
points which are Q1, Q2, and Q3. Q2 is the median value of the dataset which
divides the dataset into two halves; Q1 and Q3 are the middle point of the first and
second half dataset. The interquartile range of the dataset refers to Q3 minus Q1.

Still take the dataset

A ¼ 1; 3; 5; 4; 3; 6½ �,

for example. The MATLAB functions to calculate all these statistics are as follows,

clc;clear;close all;
A=[1,3,5,4,3,6];
var(A,1) % population variance
std(A,1) % population standard deviation
var(A) % sample variance 
std(A) % sample standard deviation 
range(A) % range
iqr(A) % interquartile range

As a result, with the sample size n ¼ 6, we have σ2 ¼ 2.56, σ ¼ 1.60, s2 ¼ 3.07,
s ¼ 1.75, range ¼ 5, and IQR ¼ 2.

17.1.3 Probability Distributions

In statistics, a probability distribution is a mathematical function that provides the
probabilities of occurrence of different possible outcomes in an experiment. In the
following, we will introduce the discrete probability distribution, the normal distri-
bution, and three sampling distributions. Finally, the statistics, skewness and kurto-
sis, are introduced which describe the shape of the distribution.

1. Discrete Probability Distribution

Take the experiment of coin toss for example. If we toss the coin for only one time
and we assume the coin is fair, the result with head (X¼ 1) or tail (X¼ 0) follows the
Bernoulli distribution with p ¼ 0.5 that

P X ¼ 1ð Þ ¼ 0:5,
P X ¼ 0ð Þ ¼ 0:5:

If we toss the coin for n times, the probability of achieving k times head follows
the binomial distribution with p ¼ 0.5 that
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P X ¼ kð Þ ¼ n!

k! n� kð Þ!�
1
2n

It can be calculated the mean value of the distribution is n/2, and the variance is n/
4. Bernoulli distribution is a special case of binomial distribution with n ¼ 1. If n is
large enough, the distribution function will approach to the normal distribution.

2. Normal Distribution

Normal distribution is the most well-known distribution, which is often referred
as N(μ, σ2) with the mean μ and variance σ2. The central limit theorem establishes
that, in certain situations, when independent random variables are added, their sum
tends toward a normal distribution, even if the original variables are not normally
distributed. Hence, normal distribution occurs quite frequently in economics, nature
and social science. In addition, the statistical methods with the normally distributed
assumption, like t-test, ANOVA, correlation and regression analysis, can also be
applied to many conditions with other types of distributions. All these make the
normal distribution very important in statistics.

The probability density function of the normal distribution with the mean μ and
variance σ2 is a Gaussian function:

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
x�μð Þ2
2σ2 :

Hence, the normal distribution is also known as Gaussian distribution. Some-
times, the normal distribution is informally called the bell curve, since it looks bell-
shaped. The normal distribution with different value of μ and σ is illustrated in
Fig. 17.2(a), in which the red curve with μ ¼ 0 and σ ¼ 1 is called standard normal
distribution, noted as N(0, 1).

To calculate the probability of a score in the normal distribution, z-score is an
important statistic. Considering the different parameter settings for μ and σ in the
normal distribution, we need to normalize the normal distribution values for com-
parison under uniform standards. Z-score can do this by converting the value in a
normal distribution into the value following the standard normal distribution:

z ¼ x� μ

σ
:

As a measure of standard deviation, z-score represents the number of standard
deviations a given value x falls from the mean μ. If z is equal to +1.96, then x is 1.96σ
above the mean μ, which means x is in the top 2.5% of the distribution.

To generate n random numbers with normal distribution with the mean μ and the
variance σ2 in MATLAB, we can use the function randn. The corresponding script
is as follows.
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clc;clear;close all;
mu=0; % mean value \mu
sigma=1; % standard deviation \sigma
n=10; % sample size n
x=sigma*(randn(1,n)+mu);

3. Sampling Distributions

In the above section, we have introduced two discrete probability distributions,
which are Bernoulli distribution and binomial distribution, and normal distribution,
which is the most common continuous distribution. In the following, three other
famous distributions will be introduced, which play important roles in the statistical
test.

Fig. 17.2 The probability density function of (a) normal distribution, (b) t-distribution, (c)
chi-squared distribution, and (d) F-distribution with different parameters
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• T-distribution (Student’s t-distribution): Given n independent measurement xi of
a normally distributed population. Let t-statistic be

t ¼ �x� μ

s=
ffiffiffi
n

p ,

where μ is the population mean, �x is the sample mean, s is the sample standard
deviation and n is the sample size. The t-distribution is defined as the distribution of
the t-statistic, where the population standard deviation σ is unknown. The t-distri-
bution depends on the degrees of freedom ν¼ n� 1. With ν! +1 (n! +1), the
t-distribution approaches to the normal distribution.

• Chi-squared distribution (χ2distribution): Given k independent, standard normal
random variables, x1, x2, . . ., xk. The sum of their squares,

χ2 ¼
X k

i¼1
x2i ,

is distributed according to the Chi-squared distribution with k degrees of freedom.

• F-distribution: Given two independent chi-squared random variables χ21 and χ22
with d1, d2 degrees of freedom, respectively, Let F-statistic be

F ¼ χ21=d1
χ22=d2

distributed according to the F-distribution with parameters d1 and d2.
To generate probability density function for each distribution in MATLAB, we

can use the function pdf with different parameters setting. The probability density
function of normal distribution, t-distribution chi-squared distribution, and F-distri-
bution are illustrated in Fig. 17.2.

4. Skewness and Kurtosis

To describe the shape of a distribution or check the non-Gaussianity of a
distribution, the statistics skewness and kurtosis can be used. Given n independent
variables x1, x2, . . ., xn, we can have their mean �x, and their sample variance s.
Skewness and kurtosis are calculated as follows:

Skew ¼ 1
n

Xn
i¼1

xi � �x

s

� �3

,

Kurt ¼ 1
n

Xn
i¼1

xi � �x

s

� �4

:
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Skewness is a measure of the asymmetry of the probability distribution. A
distribution with the skewness close to zeros is a symmetry distribution. A negative
skew implies a long right tail, in which the mass of the distribution is concentrated on
the right part of the figure, and vice versa. Kurtosis is a measure of whether the data
are heavy-tailed or light-tailed relative to a normal distribution. The kurtosis of the
normal distribution is equal to 3. Distribution with kurtosis less than 3 is said to be
platykurtic, in which the tails are very light compared to the normal distribution, and
distribution with kurtosis greater than 3 is said to be leptokurtic with the heavy tails.

17.1.4 Graphical Display of Data

Normally, EEG signal processing involves hundreds of thousands of data.
Presenting the raw data is redundant and impractical. Statistical graphs provide a
tool to represent the data in a clear and intuitive way. Well-presented graphs can
greatly enhance the readability of research results.

In the following, we use the resting state EEG data with eyes open and closed to
illustrate the use of typical statistical graphs. One minutes resting state EEG signal
with eyes open and closed were collected from 93 subjects. The EEG signal is
recorded by a 64-channel BrainAmp system (Brain Products GmbH, Germany) with
a sampling rate 1000Hz and common average was applied for reference. To calculate
EEG power, the welch method was used with a window size of 2 seconds and the
sliding step was set to 1 second. In the excel file “Resting State.xlsx”, the alpha band
EEG power with eyes open and closed at channel Oz are listed in the first two
columns. The third column is the difference between column one and column two.
Column four is the recording time, in which “1,” “2,” and “3” mean the experiment
was run in the morning, afternoon, and evening, respectively. The gender informa-
tion of the subjects is listed in column five, in which “1” stands for male and “0”
stands for female.

1. Pie Chart

In the dataset, 82.8% (77 out of 93) of the subjects are male. Female subjects
accounted for a minority. To visually describe this property, we will use a pie chart.
As illustrated in Fig. 17.3(a), a pie chart is a circular statistical graphic which
proportionally divides the number of male and female subjects into two slices. To
make a pie chart, we can directly use the MATLAB function pie.

2. Bar Graph

Bar graph is a commonly used statistical graph to compare discrete items. As
illustrated in Fig. 17.3(b), we use the bar graph to compare the mean value of the
resting EEG power in the condition of eyes open and closed. Furthermore, error bars
are added to represent the variability of the data by using the standard deviation in
the two conditions. In average, the power of the EEG signal on channel Oz is
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�2.29 � 9.79 for eyes open and 11.99 � 10.60 for eyes closed. MATLAB function
bar and errorbar can be used to make the bar graph.

3. Box Plot

Bar graph only shows the mean and standard deviation information of a dataset. If
we want to display more information about the dataset, box plot can be used. In the
box plot, five key values are used to describe the dataset, which are the minimum
(Q0), first quartile (Q1), median (Q2), third quartile (Q3), and maximum (Q4). By
drawing the box from Q1 to Q3, the interquartile range is represented by the length
of the box. The red line in the box is the median value. The line, also called whiskers,
from Q0 to Q4, extending vertically from the box indicates the range of the dataset.
Hence, the box plot is also termed as box-and-whisker plot. MATLAB function
boxplot can be used to make a bar graph as Fig. 17.3(c).

Fig. 17.3 The typical statistical graphs. (a) The pie chart to show the male to female ration in the
subjects. (b) The bar graph for the mean power of the resting EEG with the eyes open and closed.
Error bars indicate standard deviation. (c) The box plot with the minimum (Q0), first quartile (Q1),
median (Q2), third quartile (Q3), and maximum (Q4) value from bottom to up. (d) The violin plot
shows the box plot with the rotated probability density function

344 G. Huang



4. Violin Plot

Violin plot is a combination of the box plot and the probability density. The name
violin plot originated from one of the first graphs with appearance of a violin.
Typically, violin plot includes the red line as the median and the box as the
interquartile range. Instead of the range, the whisker indicates the 95% confidence
interval, which is different from box plot. The probability density that is rotated and
placed on each side supplements the box plot by graphically showing the distribu-
tional characteristics of the dataset. Sometimes, you can also add dots into the violin
plot to represent the values for each sample.

A simple line graph and the histogram can be used to illustrate the probability
density by MATLAB functions plot and histogram. Functionality for the violin
plot does not exist in MATLAB. But you can still make a short script to do the violin
plot by your own codes, in which ksdensity is used for probability density
estimation. A sample script for violin plot in Fig. 17.3(d) is attached.

17.2 Hypothesis Testing

17.2.1 General Idea

Take the resting state EEG with eyes open and closed, for example. In the bar graph
Fig. 17.3(b) in previous Sect. 1.4, we have calculated that the mean power of the
EEG signal is �2.29 � 9.79 for eyes open, which is larger than the mean power of
the EEG signal 11.99 � 10.60 for eyes closed. Naturally, we have a question
whether the difference of the mean EEG power is significant between the two
conditions or it is just produced by random effects? Answering this question is in
the scope of inferential statistics. More specifically, hypothesis testing can be used to
make statistical decision based on the experimental data. In the introduction of
hypothesis testing, we firstly start with the general idea. Then several types of
commonly used hypothesis testing approaches, like t-test, ANOVA, correlation
and regression analysis, would be introduced in the later sections.

For hypothesis testing, we normally should have an initial hypothesis. For
example, we assume that the mean value of the EEG power between eyes open
and closed is the same in the resting state EEG experiment. The hypothesis is called
the null hypothesis, H0. A violation of the null hypothesis, that the mean value of the
EEG power between eyes open and closed is different, is often called the alternative
hypothesis H1. A test statistic is calculated and used to check the degree of agree-
ment between a sample of data and the null hypothesis. As a result, the possibility p-
value is the representation of the degree of the agreement. If the p-value is less than
previous given significant level α, like α¼ 0.05, we infer that the null hypothesis H0

has a small possibility to be true. Hence, we reject the null hypothesis and accept the
alternative hypothesis H1. Otherwise, we fail to reject the null hypothesis, and infer
as if the null hypothesis is true (Casella and Berger 2002; Lehmann and Romano
2006).
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1. Steps in Hypothesis Testing

To illustrate the steps in hypothesis testing, we firstly generate a small dataset of
random numbers with their mean not zero. With the following MATLAB script, we
have 10 samples

x ¼ 1:34; 2:63;�1:46; 1:66; 1:12;�0:51; 0:37; 1:14; 4:38; 3:57½ �;

from the normal distribution N(0.8,1) with μ ¼ 0.8, σ ¼ 1. In the following, we will
use these samples to illustrate the basic steps in hypothesis.

clc;clear;close all;
rng(0);          %make the output of randn repeatable
n=10;            %sample size n=10
x=randn(1,n)+0.8; %generate the normal distribution
disp(x); %display the value of the samples

To perform the hypothesis on the dataset x, normally we have the following four
steps:

Step 1: Make the initial hypothesis. Assume x is an independent sample of
observations from a normal distribution; we want to check whether the distribution
has a zero mean (μ ¼ 0). Hence, we have

• The null hypothesis H0: μ ¼ 0.
• The alternative hypothesis H1 : μ 6¼ 0.

Step 2: Calculate the test statistic. Select a test statistic that can be used to assess
the truth of the null hypothesis H0. Here, we have the t-statistic

t ¼ �x

s=
ffiffiffi
n

p ,

in which �xand s are the mean value and standard deviation of the dataset x and n¼ 10
is the sample size. Since �x ¼ 1:42 and s ¼ 1.77, it can be calculated that t ¼ 2.54.
Assuming the null hypothesis is true that μ ¼ 0, the t-statistic should follow the t-
distribution with n � 1 degrees of freedom.

Step 3: Calculate the p-value. The p-value is the probability of finding the
observed, or more extreme, results when the null hypothesis is true. Under the null
hypothesis H0, the location of t-statistic t ¼ 2.54 in the t-distribution with n � 1
degrees of freedom is shown in Fig. 17.4. The probability of T� � j tj or T� j tj is
the very small. Hence, we have the p-value
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p ¼ Pr T � jtjð Þ ¼ 0:03:

Step 4: Compare the p-value to the significance level α. The significance level α is
a pre-chosen probability. Conventionally, α ¼ 0.05, 0.01 and 0.001 have been used.
If p � α, then probability that the null hypothesis H0 holds is less than α. H0 would
be a small probability event. Hence, we reject the null hypothesis H0 and accept the
alternative hypothesis H1 that statistically significantly μ 6¼ 0. If p > α, then we fail to
reject the null hypothesis and infer as if μ ¼ 0.

2. False Positive and False Negative

In the example above, we have the p-value p ¼ 0.03. Hence, if we set the
significance level α ¼ 0.05, we will reject the null hypothesis H0 and accept the
alternative hypothesisH1. However, if we set the significance level α¼ 0.01, we will
fail to reject the null hypothesis. Hence, it is found that with different levels of α, the
conclusion would be reversed. The question is how to understand the hypothesis
with different level of α.

In fact, it should be noticed that we use the phrase “statistically significantly” and
“as if” in the inference results, which indicates that we do not have a 100%

Fig. 17.4 The t-distribution with degree of freedom df ¼ 9, the t-statistic t ¼ 2.54 is located in the
reject region with p < 0.05

Table 17.1 The error types in the hypothesis tests

Decision

Truth

H0 is true H0 is false

Do not reject H0 (Negative
result)

True negative (1 � α,
specificity)

False negative (β, Type II error)

Reject H0 (Positive result) False positive (α, Type I
error)

True positive (1 � β, sensitivity,
power)
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guaranteed proof about the conclusion. In statistics, the conclusions drawn by
hypothesis testing is based on the probability. Hence, there is always a possibility
what we made an error. As summarized in Table 17.1, there are two types of errors
that can be made in hypothesis testing.

Type I error is the error of rejecting the null hypothesisH0 when it is actually true.
p � α indicates that the probability that the null hypothesis H0 is true is less than the
possibility of α. In this case, we reject the null hypothesis, but with a possibility of α
to make the Type I error. On the other hand, we have the possibility of 1� α to make
a true negative decision, which is also called the specificity of a test.

Type II error is the error of failing to reject null hypothesis H0 when alternative
hypothesis H1 is true. The Type II error rate normally is denoted by β and the true
positive rate is 1 � β, which is called the specificity or the statistical power of a test.

Conventionally, the significance level α would be set to be 0.05, 0.01, or 0.001,
which indicates the possibility to make the Type I error is 5%, 1%, or 0.1%. There is
no necessary connection between the Type I error rate α and the Type II error rate β.
But normally lowering the value of α will decrease the possibility of the Type I error
and also increase the Type I error rate β, which will make the test more conservative.

In our example, the sample is generated from the normal distribution N(0.8, 1).
Hence, we know the truth that the null hypothesis H0 is false. If we set the
significance level α ¼ 0.05, reject the null hypothesis H0, and accept the alternative
hypothesis H1, we have a true positive result. However, if we set the significance
level α ¼ 0.01, we fail to reject the null hypothesis and the result would be a false
negative. Hence, in this case once we decrease the α level, we could have a better
Type I error rate control, but the Type II error rate rises.

3. One- and Two-Tailed Tests

In statistical significance testing, there are three possible alternative hypotheses to
compare the mean value of the sample to zeros, which are μ 6¼ 0, μ > 0, or μ < 0. In
the example above, the alternative hypothesis is H1 : μ 6¼ 0, which means we have to
test both if the mean value is significantly larger than 0 and if the mean value is
significantly smaller than 0. Hence, the test is two-tailed, since the reject region
consists of the bottom α/2 and the top α/2 of the t-distribution two parts with the
significant level α. With the alternative hypothesis H1 : μ > 0, the reject region is the
bottom α of the t-distribution. With the alternative hypothesis H1 : μ < 0, the reject
region is the top α of the t-distribution. Hence, these two hypotheses are called
one-tailed test. In summary, we have all the conditions in Table 17.2.

Table 17.2 The p-value conducted in the three types of tests

Type Null H0 Alternative H1 p-value

Left-tailed μ ¼ 0 μ < 0 Pr(T � � |t|) ¼ 1

Right-tailed μ ¼ 0 μ > 0 Pr(T � |t|) ¼ 0.0157

Two-tailed μ ¼ 0 μ 6¼ 0 2 � Pr (T � |t|) ¼ 0.0315
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17.2.2 T-Test

In sect. 2.1, the example with the simulation data, using t-statistic for the hypothesis
testing, is a type of t-test, which is used to compare the mean value of the samples
under the normal distribution assumption. Mainly, there are three types of frequently
used t-test:

• One-sample t-test: check whether the mean value of the samples has a specified
value.

• Paired-samples t-test: compare the mean value of the samples from the same
group in different condition.

• Independent two-samples t-test: compare the mean value of the samples from two
different groups.

Under the null hypothesis H0, the t-statistic is calculated based on experimental
data. By checking the location of the t-statistic in the corresponding t-distribution,
we can have a probability, p-value, associated with that t-statistic. By comparing the
p-value to the significant level α, we can decide whether to reject or not reject the
null hypothesis H0.

In the following, we still use the real dataset of the resting state EEG with eyes
open and closed as an example to show the process of t-test in both MATLAB and
SPSS.

1. One-Sample T-Test

Question
To check the mean value of the difference in EEG power between eyes open and

closed against the constant m ¼ 0, in which we have the sample x ¼ {xi} for i ¼ 1,
2, . . ., n as the difference of EEG power between eyes open and closed for all
subjects, the sample size n ¼ 93.

Hence, we have the hypothesis that,

• H0: the mean value of the difference in EEG power between eyes open and closed
is equal to zero, i.e.

μ ¼ m,

• H1: the mean value of the difference in EEG power between eyes open and closed
is not equal to zero, i.e.

μ 6¼ m:

in which we have the sample x ¼ {xi} for i ¼ 1, 2, . . ., n is the difference of EEG
power between eyes open and closed for all subjects, the sample size n ¼ 93.

The t-statistic is
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t ¼ �x� m

s=
ffiffiffi
n

p

where the �x and s is the mean and sample standard deviation, m ¼ 0 is the prechosen
constant in the hypothesis, n ¼ 93 is the sample size. Under the null hypothesis H0,
the t-statistic has a t-distribution with n � 1 degrees of freedom.

MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');

% one sample test
x=num(:,3);
[h1,p1,ci1,stats1]=ttest(x);
disp(['t = ',num2str(stats1.tstat,'%0.2f')]);
disp(['p = ',num2str(p1,'%0.2e')]);

MATLAB function ttest can be used for the one-sample t-test. With the
default parameter setting, two-tailed t-test is applied. We can also specify the
parameter “Tail” to “left” or “right” for the left- or right tailed t-test respectively.

[h1,p1,ci1,stats1]=ttest(x,'Tail','left');

SPSS implementation

1. Open the data file “Resting State.sav”.
2. Click Analyze -> Compare means -> One Sample T Test. . . on the top menu.
3. In the One-Sample T Test dialog, select the variable “Difference” into the Test

Variable(s): listbox. Set the Test Value as 0.
4. Press Button “OK”.

Result
With both MATLAB and SPSS, we have the t-value t¼ � 19.97. Hence, in the t-

distribution with df ¼ 92, we have the p-value p ¼ 3.32 � 10�35. If we set the
significant level α ¼ 0.05, we reject the null hypothesis H0, accept the alternative
hypothesis H1, and conclude that the difference for the EEG power between eyes
open and closed is significant different from zero.

2. Paired-Samples T-Test

Question
To check whether the mean value of EEG power with eyes open is different from

the mean value of EEG power, in which we have the sample xEO and xEC as the EEG
power between eyes open and closed respectively, and the sample size n ¼ 93.

Hence, we have the hypothesis that,
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• H0: the mean value of EEG power with eyes open is the same with the mean value
of EEG power, i.e.

μEO ¼ μEC,

• H1: the mean value of EEG power with eyes open is different from the mean value
of EEG power, i.e.

μEO 6¼ μEC:

Since, the null hypothesis H0 can be translated into whether the difference
between the two conditions is equal to zeros,

μ ¼ μEO � μEC ¼ 0:

The paired-samples t-test problem can be solved by transforming it to the
one-sample t-test problem.

MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');

% paired-sample test
X_EO=num(:,1);
X_EC=num(:,2);
[h2,p2,ci2,stats2]=ttest(x_EO,x_EC);
disp(['t = ',num2str(stats2.tstat,'%0.2f')]);
disp(['p = ',num2str(p2,'%0.2e')]);

SPSS implementation

1. Open the data file “Resting State.sav”.
2. Click Analyze -> Compare means -> Paired-Samples T Test. . . on the

top menu.
3. In the Paired-Sample T Test dialog, select the variable “Eyes Open” and “Eyes

Closed” into the Paired Variable(s): listbox.
4. Press Button “OK”.

Result
Since the paired-samples t-test question is the same as the one-sample t-test

question above, we have the t-value t¼ � 19.97, and the p-value p¼ 3.32� 10�35.
If we set the significant level α ¼ 0.05, we reject the null hypothesis H0, accept the
alternative hypothesisH1, and conclude that the mean value of EEG power with eyes
open is significant different from the mean value of EEG power with eyes closed.
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3. Independent Two-Samples T-Test

In the example of paired-samples t-test, the subjects for the two conditions, eyes
open and closed, are from the same group. If the subjects are from two different
groups, then independent two-samples t-test should be used.

Question
To check whether the mean values of the EEG power with eyes open are the same

between male subjects and female subjects, in which we have the sample xM and xF
as the EEG power from male and female subjects respectively, and sample size
nM ¼ 71 and nF ¼ 22.

The hypothesis is that,

• H0: the mean values of EEG power with eyes open between male subjects and
female subjects are the same, i.e.

μM ¼ μF,

• H1: the mean values of EEG power with eyes open between male subjects and
female subjects are different, i.e.

μM 6¼ μF:

In the independent two-samples t-test, the t-statistic is

t ¼ �xM � �xFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2M=nM þ s2F=nF

p ,

where the �xM , �xF are the means, sM, sF are the sample standard deviations, and nMand
nF are the sample sizes of the two groups.

• In the case of equal variance for the two groups, the t-statistic under the null
hypothesis H0 has a t-distribution with nM + nF � 2 degrees of freedom and the
sample standard deviations are replaced by the pooled standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nM � 1ð Þs2M þ nF � 1ð Þs2F

nM þ nF � 2

s

• In the case where the variances of the two groups are not equal, the t-statistic
under the null hypothesis H0 has an approximate Student's t distribution with a
number of degrees of freedom given by Satterthwaite's approximation.
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We should test the homogeneity of variance before the independent two sample
t-test. Several methods can be used to test the homogeneity of variance, like
Hartley’s test, Bartlett’s test and Levene’s test. For simplicity, only Levene’s test
is applied in the both MATLAB and SPSS implementation of the independent two
sample t-test.

MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');

%% indenpendent two sample ttest
idx=num(:,5);
x=num(:,1);
x_M=x(idx==1);
x_F=x(idx==0);
[p3,stats3] = vartestn(x,idx,...

'TestType','LeveneAbsolute','Display','off');
disp('Independent t-test with Eyes open:');
disp(['Levene’s test: p = ',num2str(p3,'%0.2f')]);
if p3<0.05

disp('Equal variances not assumed');
[h4,p4,ci4,stats4]=ttest2(x_M,x_F,...

'Vartype','unequal');
else

disp('Equal variances assumed');
[h4,p4,ci4,stats4]=ttest2(x_M,x_F);

end
disp(['t = ',num2str(stats4.tstat,'%0.2f')]);
disp(['df = ',num2str(stats4.df,'%0.2f')]);
disp(['p = ',num2str(p4,'%0.2f')]);
disp(' ');

SPSS implementation

1. Open the data file “Resting State.sav”.
2. Click Analyze -> Compare means -> Independent-Samples T Test. . . on the

top menu.
3. In the Independent-Samples T Test dialog, select the variable “Eyes Open” in to

the Test Variable(s): listbox; Select variable “Gender” into the Grouping
Variable(s): box.

4. Click the “Define Groups. . .” Button, in the Define Groups dialog, set Group 1:
“0” and Group 2: “1”; press “Continue” to go back.

5. Press Button “OK”.

Result
Since both p-value of Levene’s test in the two case p ¼ 0.07 is larger than

α ¼ 0.05, we perform the independent t-test under the equal variances assumption.
As a result, with the t-statistic t ¼ 1.08, we have p-value p ¼ 0.28, which is larger
than α ¼ 0.05. Hence, we infer that there is not statistically significant difference
between the male and female subjects with eyes open.
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17.3 Analysis of Variance (ANOVA)

17.3.1 Introduction of ANOVA

ANOVA is also a form of statistical hypothesis testing to test whether the mean
value from two or more groups is the same or not. Similar with t-test, ANOVA is
also based on several common assumptions, like normal distribution, homogeneity
of variance, and independence of observations. T-test is used to check the mean
value from one group or compare the mean values of two groups. When the mean
values of more than two groups are compared, ANOVA is preferred, for example, if
we want to check whether the mean value of EEG power would be different with
recording times: the recording times would be morning, afternoon, and evening.
Pair-wised t-test with morning vs. afternoon, morning vs. evening, and
afternoon vs. evening would answer this question. But repeatedly applying t-test
for the pair-wised comparison would lead to severe Type I error problem and is not
recommended. ANOVA is able to test the difference among several groups without
increasing the Type I error rate.

In an EEG study, several factors would possibly influence the experimental
response. The experimenter normally manipulates the factors to check the change
of the result. Each factor has two or more levels (i.e., different values of the factor).
Take the resting state EEG experiment for example. Eye, gender, and recording time
are all the factors in the study, in which eyes open and closed are the two levels
within the factor of eye, male and female are the two levels within the factor of
gender, and morning, afternoon, and evening are the three levels within the factor of
recording time.

The study with only one factor is called one-way ANOVA. With two or more
factors in the study, it is called multi-way ANOVA. How changing the level of a
factor changes the result is called effect. The effect of a single factor is also called a
main effect. The effect that one factor has on the other factor is called interaction
effect. And the treatment is the specific combination of factor levels whose effect
will be compared with the other treatments. Similar with paired-samples t-test, if
each treatment for certain factors from the same subjects in ANOVA, the study is
called repeated measures ANOVA, and the factor is called repeated measures factor,
or within-subjects factor. Similar to the independent two samples t-test, if the sub-
jects at different levels of a factor are from different groups in the ANOVA, the
factor is called between-subjects factor.

In the following, two examples are used to show the process of ANOVA. The
dataset of the resting state EEG is used. One example uses one-way ANOVA to
check whether the mean power of the resting state EEG is different in the different
recording time (morning, afternoon, and evening). In another example, the repeated
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measures two-way ANOVA is used to study the effects of two factors in the resting
state EEG, which is the eyes (open and closed) and recording time (morning,
afternoon, and evening).

17.3.2 One-Way ANOVA

Question
Check whether the mean value of the EEG power with eyes open is the same with

different recording times, which are in the morning, afternoon, and evening.
The hypothesis is that

• H0: the mean values of eyes open EEG power are the same with different
recording times, i.e.

μ1 ¼ μ2 ¼ μ3

• H1: the mean values of eyes open EEG power are not the same with different
recording times, i.e.

At least one of the means μ1, μ2 and μ3 is not equal to the others.

where μ1, μ2, and μ3 are the EEG power recording in the morning, afternoon, and
evening with eyes open.

MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');

%% one-way ANOVA
x=num(:,1);
group=num(:,4);
[p,tbl,stats] = anova1(x,group)

SPSS implementation
1. Open the data file “Resting State.sav”.
2. ClickAnalyze ->Compare means ->One-Way ANOVA. . . on the top menu.
3. In the One-Way ANOVA dialog, select the variable “Eyes Open” into the

Dependent List: box; select the variable “Recording Time” into the Factor: box.
4. In the One-Way ANOVA dialog, press button “OK”.
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Result
With the between-groups variability s2b ¼ 1:86, and the within-groups variability

s2w ¼ 97:89, we can calculate the F-statistic F¼ 0.019. Using the F-distribution with
d1 ¼ 2 and d2 ¼ 90, we have the p-value p ¼ 0.981, which indicates there is no
significant difference for the mean values of the EEG power with eyes open among
the three recording times. Figure 17.5 is the box plot from MATLAB for the three
levels in the one-way ANOVA test.

17.3.3 Repeated Measures Two-Way ANOVA

Question
Considering the two factors eyes’ condition and recording time together, check

whether the mean values of the EEG power are the same or not.
In the repeated measures two-way ANOVA problem, eyes’ condition is the

within-subjects factor with two levels, eyes open and eyes closed, and recording
time is the between-subjects factor with three levels: morning, afternoon, and
evening. To apply the repeated measures two-way ANOVA, we are actually testing
three null hypotheses:

• There is no difference in the means of factor eyes’ condition.
• There is no difference in the means of factor recording time.
• There is no interaction between factor eyes’ condition and recording time.

The third null hypothesis is equal to the one-way ANOVA with the null
hypothesis:

• H0:for the difference of the EEG power between eyes open and closed, there is no
difference in the means of factor recording time.

Fig. 17.5 The box plot of
the resting state EEG power
in different recording time:
1, morning; 2, afternoon;
3, evening. With the p-value
p ¼ 0.981 in the one-way
ANOVA test, there is no
significant difference among
the three levels
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MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');

%% repeated measures two-way ANOVA
t=table(num2str(num(:,4)),num(:,1),num(:,2),...

'VariableNames',{'time','EO','EC'});
Meas = table([1 2]','VariableNames',{'eye'});
rm = fitrm(t,'EO, EC ~ time','WithinDesign',Meas);
ranovatbl = ranova(rm)
anovatbl = anova(rm)

To run the repeated measures two-way ANOVA, we firstly put all the data into a
table t, in which we should specify all the recording time is a categorical variable, not
a numerical variable. Then we fit the repeated model with the MATLAB function
fitrm. Then ranova is used for the analysis of within-subjects factor “eyes” and
the interaction “eyes� recording time”; and anova is used for the analysis of
between-subjects factor “recording time.”

SPSS implementation

1. Open the data file “Resting State.sav”.
2. Click Analyze -> General Linear Model -> Repeated Measures. . . on the

top menu.
3. In the Repeated Measures Define Factor(s) dialog, set the Within-Subject Factor

Name: as “eyes”; set Number of Levels: as 2, and press button “Add”, then press
button “Define”.

4. In the Repeated Measures dialog, select the variable “EyesOpen” and
“EyesClosed” into the Within-Subjects Variables (eyes): box, select the vari-
able “Recording Time” into the Between-Subjects Factor(s): box.

5. Press the Plots. . . button, select “eye” into the Horizontal Axis: box and select
“Recording Time” into the Separate Lines: box, and press button “Add”, then
press button “Continue”.

6. In the Repeated Measures dialog, press button “OK”.

Result
With the significant level α ¼ 0.05, the main effects for the within-subjects factor

“eyes” is significant with p-value p¼ 1.64� 10�34. But no significant difference for
the between-subjects factor “recording time” with p-value p ¼ 0.82, and also no
significant difference for their interaction “eyes� recording time” with p-value
p ¼ 0.44. Figure 17.6 shows the interaction of the two factors. The result is
consistent with the two-way repeated measures ANOVA.
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17.4 Correlation and Regression Analysis

Both correlation and regression analysis are used to describe the relationship
between two variables. But they are not the same. In the correlation analysis, the
relationship between variables x and y is symmetrical and also mutual. Linear
regression analysis fixes a best line that how y can be predicted from variable x,
which can be used in prediction and forecasting. Hence, regression analysis has
wider applications than correlation analysis.

17.4.1 Correlation Analysis

Correlation analysis aims to quantify the strength and direction of the relation
between two variables. A positive correlation is a relationship between two variables
where if one variable x increases, the other variable y also increases, and vice versa.
Correlation coefficient is used to describe the relationship between the two variables,
which ranges from -1 to 1.

Fig. 17.6 The interaction of the factors of eyes’ condition and the recording time. It can be
observed that there is no significant difference among the recording time ( p ¼ 0.82), but the
EEG power between eyes open and closed are significantly different ( p ¼ 1.64 � 10�34), and the
interaction between the two factors is not significant ( p ¼ 0.44)
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Pearson correlation coefficient is the most commonly used method for correlation
analysis. Assume the normal distribution for both the two variables x and y, Pearson
correlation coefficient accesses the linear relationship between x and y. Without the
normally distributed assumption, Spearman’s ρ coefficient and Kendall’s τ coeffi-
cient can be used for the correlation analysis. In the following, only the Pearson
correlation coefficient is introduced.

Pearson correlation coefficient can be calculated as follows,

r ¼ Σn
i¼1

�
xi � �x

��
yi � �y

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σn
i¼1

�
xi � �x

�2�
yi � �y

�2q ,

in which n is the sample size, and xi and yi are the samples for variables x and y. With
the null hypothesisH0 : x and y are two uncorrelated normal distributed variables, the
t-statistic

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

should follow the t-distribution with degrees of freedom of n � 2. Hence, according
to the location of the t-statistic in the t-distribution, we can calculate the p-value to
determine whether the variables x and y are correlated or not.

It should be noted that the correlation between the two variables x and y does not
imply the causality. It is possible that x causes y, or y causes x. It is also possible that
both x and y are caused by another common variable z. In the EEG recording, the
signals between adjacent channels are always highly correlated. It does not indicate
signal from one channel is caused by another channel. With great possibility, both
the two channels’ signals are caused by the common source.

To check the Pearson correlation coefficient of EEG power between eyes open
and closed in resting state, we run the correlation analysis in both MATLAB
and SPSS.

MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');
x=num(:,1);
y=num(:,2);
[r_corr,p_corr]=corr(x,y);

SPSS implementation

1. Open the data file “Resting State.sav”.
2. Click Analyze -> Correlate -> Bivariate. . . on the top menu.
3. In the Bivariate Correlations dialog, select the variable “Eyes Open” and “Eyes

Closed” into the Variable(s): listbox.
4. Press Button “OK”.
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Result
As a result, the correlation coefficient is r ¼ 0.774�� with the p-value

p ¼ 9.40 � 10�20 from both MATLAB and SPSS. Here “��” indicates the
correlation is significant at the 0.01 level. Hence, we can conclude that EEG
power between eyes open and closed in resting state is correlated.

17.4.2 Regression Analysis

Unary linear regression is the simplest linear regression model, which involves a
single dependent variable y and a single independent variable x. x and y keep the
linear relationship that

yi ¼ β0 þ β1xi þ Ei,i ¼ 1,2, . . . , n

in which parameters β0 and β1 are the intercept and slope of the linear regression
model respectively, and Ei is called residuals.

The goal of the regression analysis is to find the best parameters β0 and β1 to
minimize the residual sum of squares (RSS)

RSS ¼
Xn

i¼1
E2i :

Under the normally distributed assumption of Ei, this least square problem can be
solved by setting the gradient to zero. Hence, we have the equations that

∂RSS
∂β0

¼ �2
Xn

i¼1
yi � β0 � β1xið Þ ¼ 0,

∂RSS
∂β1

¼ �2
Xn

i¼1
yi � β0 � β1xið Þxi ¼ 0,

Solving the equations, we have the estimations of β0 and β1

β̂1 ¼
Σn
i¼1

�
xi � �x

��
yi � �y

�
Σn
i¼1

�
xi � �x

�2 , and β̂0 ¼ �y� �xβ̂1:

Hence, the estimation of yi is

ŷi ¼ β̂0 � β̂1xi:
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The coefficient of determination R2 is commonly used to assess the goodness-of-
fit of the regression, which describes the proportion of the total variance can be
explained by the model. Denote the total sum of squares (TSS) and the explained
sum of squares (ESS) as

TSS ¼ Σn
i¼1

�
yi � �y

�2
ESS ¼ Σn

i¼1

�
ŷi � �y

�2
:

It can be proved that

TSS ¼ ESSþ RSS:

Hence, we have

R2 ¼ ESS
TSS

¼ 1� RSS
TSS

:

Meanwhile, we can also prove that the coefficient of determination R2 is equal to
the square of the Pearson’s correlation coefficient r2.

Further, with hypothesis in the regression analysis

H0 : β1 ¼ 0,H1 : β1 6¼ 0

the F-statistic

F ¼ Σn
i¼1

�
ŷi � �y

�2
=1

Σn
i¼1

�
yi � ŷi

�2
= n� 2ð Þ

¼ R2

1� R2 n� 2ð ÞeF 1; n� 2ð Þ

should follow the F-distribution F(1, n � 2). Hence, according to the location of the
F-statistic in the F-distribution, we can calculate the p-value to determine whether β1
equals to zeros or not.

To check whether the EEG power in resting state with eyes open can predict the
EEG power in resting state with eyes closed, we use both MATLAB and SPSS to do
the same regression analysis.
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MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');
x=num(:,1);
y=num(:,2);
[b_reg,~,~,~,stats_reg] = regress(y,[x,ones(93,1)]);

SPSS implementation

1. Open the data file “Resting State.sav”.
2. Click Analyze -> Regression -> Linear. . . on the top menu.
3. In the Linear Regression dialog, select the variable “Eyes Closed” into the

Dependent: box and select the variable “Eyes Open” into the Independent(s):
listbox, and press Button “OK”.

Result
The linear relationship between the resting state EEG power with eyes open and

closed is illustrated in Fig. 17.7. Both MATLAB and SPSS get the coefficient β̂0

¼ 13:91 and β̂1 ¼ 0:84, coefficient of determination R2 ¼ 0.599, which is equal to
the square of the correlation coefficient r2 obtained above. With the F-statistic
F ¼ 135.93, we have p ¼ 9.40 � 10�20, which is also the same as the p-value in
the correlation analysis. Hence, β̂1 is statistical significantly different from zeros, and
the EEG power with eyes open can explain 59.9% of the total variance in the EEG
power with eyes closed.

Fig. 17.7 The linear relationship between x and y, where x and y are EEG power of eyes open and
closed, respectively, in the resting state from 93 subjects
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17.5 Nonparametric Test

17.5.1 Parametric Test vs. Nonparametric Test

In the above sections, we have introduced several types of hypothesis testing
methods, like t-test, ANOVA, and correlation analysis. All these are based on the
normally distribution summation, hence is called parametric test. Without any
specific assumption about the distribution of the data, we can still run the hypothesis
testing by nonparametric tests. Normally, there are three ways to run nonparametric
tests.

• Compare the distribution. Some methods like Kolmogorov-Smirnov test can be
applied to run this kind of test.

• Compare the median instead of the mean value. Paralleling to the parametric test,
we have the corresponding nonparametric tests in different conditions. Table 17.3
summarized the methods used in parametric tests and nonparametric tests.

• Generate the distribution with data-driven methods. Without the normal distribu-
tion assumption, we can still use the t-statistic and F-statistic, but there is no
corresponding t-distribution and F-distribution. In this case, permutation methods
can use the sample data to generate the distribution under the null hypothesis. The
data-driven distribution can be used instead of the t-distribution and F-distribu-
tion under the normal distribution assumption in t-test and ANOVA.

Without the assumption of normal distribution, nonparametric tests seem to be
nicer and more straightforward than parametric tests. However, in practice, as a cost
of fewer assumptions, nonparametric tests are normally less powerful than their
corresponding parametric methods (i.e., with higher false negative rate β). In
contrast, parametric tests can even perform well with skewed and non-normal
distributions when the sample size is large. That is because the distribution of sample
means should be approximately normally distributed according to the Central Limit
Theorem. Hence, nonparametric tests are usually applied when you have a small
sample size with an unknown distribution. With a large sample size, parametric tests
are robust in the presence of violations of the normality assumption (Hollander et al.
2013).

Table 17.3 The comparison of the methods in parametric tests and nonparametric tests

Parametric tests (mean) Nonparametric tests (medians)

One-sample t-test, paired-samples t-test Sign test, Wilcoxon signed-rank test

Independent two-sample t-test Mann-Whitney test

One-way ANOVA Kruskal-Wallis, Mood’s median test

One-way ANOVA with repeated measures Friedman test

Spearman’s correlation Spearman and Kendall correlation
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In the following, the methods of Wilcoxon signed-rank test and permutation test
will be introduced. Again, the dataset of resting state EEG with eyes open and closed
is used as an example.

17.5.2 Wilcoxon Signed-Rank Test

Question
Considering the problem in the one-sample t-test again, checking the difference in

EEG power between eyes open and closed against zero, in which we have the sample
x ¼ {xi} for i ¼ 1, 2, . . ., n as the difference of EEG power between eyes open and
closed for all subjects, the sample size n ¼ 93.

In the Wilcoxon signed-rank test, we have the hypothesis that:
H0: x follows a symmetric distribution around zero.
H1: x does not follow a symmetric distribution around zero.
With the null hypothesis, we can run the Wilcoxon signed-rand test in the

following steps:

1. Calculate |xi| and sgn(xi) for each i ¼ 1, . . ., N, where sgn is the sign function.
2. Sort |xi| in ascending order.
3. Rank |xi| for 1 to n. Let Ri denote the rank.
4. Calculate the w-statistic.

W ¼
Xn
i¼1

sgn xið Þ Ri½ �,

5. Under the null hypothesis, the w-statistic follows a distribution with zero mean
and the variance of σW ¼ n(n + 1)(2n + 1)/6. The distribution does not have a
simple expression. As n increases, the sampling distribution converges to a
normal distribution. Hence,

• With n < 15, compareW with a critical valueWcritical, n from a reference table.
Reject H0 if |W| > Wcritical, n.

• With n � 15, calculate the z-score z ¼ W/σW and reject the null hypothesis H0

if |z| > zctritcal.
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MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');
x=num(:,3);
[p,h,stats] = signrank(x);

SPSS implementation

1. Open the data file “Resting State.sav”.
2. Click Analyze -> Nonparametric Test -> One Sample. . . on the top menu.
3. In the One-Sample Nonparametric Tests dialog, in the panelObjective, select the

variable “Customize analysis” into the What is your objective? box.
4. In the panel Fields, select “Use custom field assignments”, and in the Fields:

listbox, select “Difference” into the Test Fields: listbox.
5. In the panel Settings, select “Choose Tests” in the Select an item listbox, and on

the right select “Customize tests” and choose “Compare median to hypothe-
sized (Wilcoxon signed-rank test)”; set the Hypothesized median: as 0.

6. Press Button “Run”.

Result
With both MATLAB and SPSS, we have a p-value p ¼ 5.76� 10�17. Hence, we

reject the null hypothesis H0, and conclude that the median of the difference in EEG
power between eyes open and closed is different from 0.

17.5.3 Permutation Test

Question
Considering the problem again, that checking the difference in EEG power

between eyes open and closed against zero, in which we have the sample x ¼ {xi}
for i ¼ 1, 2, . . ., n as the difference of EEG power between eyes open and closed for
all subjects, the sample size n ¼ 93.

Here, we still used the hypothesis in the t-test, that

• H0: the mean value of the difference in EEG power between eyes open and closed
is equal to zero, i.e.

μ ¼ 0,

• H1: the mean value of the difference in EEG power between eyes open and closed
is not equal to zero, i.e.
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μ 6¼ 0:

With the normal distribution assumption in t-test, we can calculate the t-statistic,
which should follow the t-distribution under the null hypothesis H0. Hence, we can
determine the significance of the result by checking p-value, the probability that the
t-statistic would be at least as extreme as we observed in the t-distribution. Without
the normal distribution assumption, the t-statistic may not follow the t-distribution
under the null hypothesis. Hence, permutation test can be used to generate the
sampling distribution.

An important assumption behind the permutation test is that the observations are
exchangeable under the null hypothesis. In one-sample test of comparing the mean
value to zero, exchanging the observation is equivalent to randomly changing the
sign of the samples. If we compare the mean values in two or more conditions,
exchanging the observation is swapping experimental conditions, in which the
exchanging would be different between within-subjects design and between-subjects
design. In a within-subjects design where the observations for different conditions
are from the same group of subjects, the observations are exchanged by swapping the
condition labels within each subject but not between subjects. In a between-subjects
design where the observations for different conditions are from different subjects,
the observations are exchanged by swapping the condition labels between the sub-
jects. Figure 17.8 illustrates the difference exchange process between within-
subjects design and between-subjects design with two conditions. With randomly
permuting the samples for a certain large number of times, we can calculate the t-
statistic for each permutation and further generate the sampling distribution of the t-
statistic. The sampling distribution is also called permutation distribution, which is
used instead of the t-distribution and F-distribution under the normal distribution in
the hypothesis testing.

Fig. 17.8 The difference exchange process between within-subjects design and between-subjects
design with two conditions
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The detailed process of the permutation test with the resting state EEG is as
follows:

1. Calculate the t-statistic.

t ¼ �x

s=
ffiffiffi
n

p

2. Permutation. Randomly change the sign of the samples x to xperm, like from
x ¼ {x1, x2, x3, x4, . . ., xn} to xperm ¼ {x1,�x2,�x3, x4, . . ., xn}, for example.

3. Repeat step 2 for N times, and calculate the t-value for each permutation.

tperm ¼ �xperm
sperm=

ffiffiffi
n

p

4. Generate the sampling distribution of the tperm.
5. Calculate the p-value and compare the p-value with the significant level α. The p-

value is the probability that

p ¼ Pr tperm � jtj� �
MATLAB implementation

clc;clear;close all;
[num,txt,raw] = xlsread('Resting State.xlsx');
x=num(:,3);
n=size(x,1);
tval=mean(x)./(std(x)/sqrt(n));

%% permutation
N=1000;
y=x*ones(1,N).*((randn(n,N)>0)*2-1);
t_permute = mean(y,1)./(std(y,1)/sqrt(n));
p=sum(abs(tval)<abs(t_permute))/N;
disp(p);

Result
With the permutation times N ¼ 1000, the histogram of the tperm is shown in

Fig. 17.9. The corresponding kernel distribution is close to the t-distribution with the
degrees of freedom df ¼ 92. As a result, it is calculated that the t-statistic
t ¼ � 19.97. There is not any permutation with |tperm| > j tj. Hence, we have the
p-value p ¼ 0 and further reject the null hypothesis H0, and accept the alternative
hypothesis H1 that statistically significantly μ 6¼ 0.
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Here, we randomly permute the data for N ¼ 1000 times, the smallest interval of
the p-values is 0.001, and the uncertainty near p ¼ 0.05 is about 1%. If we increase
the permutation times to N ¼ 100000, the kernel distribution will be closer to the t-
distribution with degrees of freedom df ¼ 92, which is shown in Fig. 17.10. The
smallest interval of the p-values is 0.00001 and the uncertainty near p¼ 0.05 is about
0.01%.

Fig. 17.10 For the permutation times N ¼ 100000, the histogram of the tperm is displayed in blue
bars. Its kernel density (blue curve) is compared with the t-distribution with degrees of freedom
df ¼ 92 (orange curve)

Fig. 17.9 For the permutation times N ¼ 1000, the histogram of the tperm is displayed in blue bars.
Its kernel density (blue curve) is compared with the t-distribution with degrees of freedom df ¼ 92
(orange curve)

368 G. Huang



17.6 Multiple Comparison Problem

17.6.1 Hypothesis-Driven vs. Data-Driven EEG Analysis

In the EEG signal analysis, usually we have two ways to make statistical inferences,
which are hypothesis-driven and data-driven approaches, respectively. Take the
well-studied P300 experiment, for example. Normally, a positive component hap-
pened around 300 ms after the stimulus, which is elicited in the process of decision-
making. Visual oddball experiment was conducted with the red as the target stimuli
and the white as the nontarget stimuli. Each stimulus lasts 80ms with the ISI 200 ms
and the target stimuli come with the possibility of 5%. Sixteen subjects took
participation in the experiment. The EEG signal is recorded by a 64-channel
BrainAmp system (Brain Products GmbH, Germany) with a sampling rate
1000 Hz and reference to TP9 and TP10. As a result, the grand averaged ERPs on
channel Pz for both target and nontarget conditions are illustrated in Fig. 17.11(a).

With the hypothesis-driven approach used in the analysis of P300, we empirically
propose a hypothesis based on our observation of the data or the previous experi-
ence, such as the hypothesis that the mean of ERP from the pre-defined interval
0.2–0.7s would be different between target and nontarget conditions. With the
hypothesis, a limited number of t-test or ANOVA would be conducted to test the
proposed hypothesis. Hypothesis-driven approach is an effective way to explore
neuropsychological mechanisms based on the EEG analysis. However, in the
hypothesis-driven approach, the result highly depends on researchers’ subjective
experience. Firstly, the interval selection from 0.2 to 0.7 s is based on the subjective
experience, in which the result would be sensitive to the parameter selection.
Secondly, if the interval selection is based on the data observation, then it is easy
to make a false positive error since the difference may be caused by random effect.
Thirdly, for more complex data, researcher’s observation usually is not sufficient,
which means some interesting result would be missing, since the data outside the
interval has not been analyzed.

Data-driven approach provides a more objective approach for the EEG analysis,
by comparing the ERPs at an exhaustive of time, frequency, and spatial points. Such
a point-wise comparison would make a more comprehensive understanding of the
data. Hence, the data-driven approach can effectively avoid the bias caused by the
subjective experience, which also improves the repeatable of the data analysis.
Further, the point-wise analysis can tell you exactly where and when an effect
occurs. As computers become faster and cheaper, data-driven approach is becoming
more widely used. However, with the drastic increase of the number of hypothesis
testing in the data-driven approach, we have to face the Family-Wise Error Rate in
the multiple comparison problem.
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17.6.2 Family-Wise Error Rate

1. The Problem of FWER

In Sect. 17.2.1, we have analyzed the false positive (i.e., Type I error) in hypothesis
testing, which is controlled by the significant level α. If we consider a set of
hypothesis testing problem simultaneously, the probability for making one or more
false positive errors is called Family-Wise Error Rate (FWER). With one compar-
ison problem, the rate of the false positive error is α. With m independent compar-
ison problems, the FWER is 1� (1� α)m. Table 17.4 lists the values of FWER with
the different value of m. It can be observed that with the test number m ¼ 1, the
FWER is 5%. With m ¼ 100, the FWER is 99.41%. While with m ¼ 2500 in our

Fig. 17.11 The target and nontarget responses of P300 with the corresponding statistical testing.
(a) The grand average P300 with the target and nontarget responses from 16 subjects on channel
Pz. (b) T-statistic for the point-wise comparison between the target and nontarget conditions. The
interval in gray indicates the cluster-based permutation test result. (c) The significant intervals under
the three different statistical procedures: (1) point-wise t-test with uncorrected significant level 0.05;
(2) point-wise t-test with Bonferroni-corrected significant level 0.05/2500¼2 � 10�5; and (3) clus-
ter-based permutation test with cluster-level threshold 0.05
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P300 experiment, the FWER is almost 100%. Hence, if there is no effect in the
experiment, it is almost a 100% probability to make a mistake in the hypothesis
testing.

The point-wise comparison result on the P300 data is shown in Fig. 17.11(b) and
(c). Comparing the target and nontarget result, seven clusters are detected to be
significant with the significant level α ¼ 0.05. Except the largest cluster at around
300ms, the others are supposed to be false positive, especially the first three clusters
before the 0 second.

2. Bonferroni Correction

Several methods can be used to control the FWER, in which Bonferroni correc-
tion is famous for its simplicity. Considering a family of hypothesis H1, H2, . . ., Hm,
Bonferroni correction can be used just by decreasing the significant level α to α/m,
where m is the number of the hypothesis. Following the Boole’s inequality, it can be
proved that

FWER ¼ 1� 1� α

m

� �m
� m� α

m
¼ α:

Bonferroni correction strictly controls the global false positive rate by setting the
α level to α/m for the entire set of m comparisons. Bonferroni correction is a strong
FWER control, which means the FWER is guaranteed to be less than α whether the
null hypotheses are true or false. However, EEG data are correlated with their
neighbors in the time, frequency, or spatial domain, which violates the independent
assumption in Bonferroni correction. This correction comes at the cost of greatly
increasing the probability of producing false negatives (i.e., Type II error) and
consequently reducing statistical power. Hence, Bonferroni correction is not com-
monly used in the data-driven approach, since it is too conservative. Considering
m ¼ 2500 in the point-wise comparison of the P300 data analysis, the corrected
significant level is α/m¼ 2� 10�5, with α¼ 0.05. Thereby, the critical value for the
t-statistic is increased from 2.13 to 6.11 as is shown in Fig. 17.11(b). As a result, all
the clusters before 0 are excluded, but only the interval 0.26 to 0.39s in the main
cluster has been reserved, which is much narrower than the uncorrected result. Based
on the Bonferroni correction, several methods, like Holm’s step-down procedure and

Table 17.4 The value of
FWER with different number
of test m, in which the
significant level α ¼ 0.05

m FWER

1 1 � (1 � α)1 ¼ 0.0500

2 1 � (1 � α)2 ¼ 0.0975

3 1 � (1 � α)3 ¼ 0.1426

4 1 � (1 � α)4 ¼ 0.1855

5 1 � (1 � α)5 ¼ 0.2262

10 1 � (1 � α)10 ¼ 0.4013

100 1 � (1 � α)100 ¼ 0.9941

2500 1 � (1 � α)2500 ¼ 1 � 2 � 10�56
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Hochberg’s step-up procedure, have been developed to increase statistical power
under a strong α level FWER control. Alternatively, false discovery rate methods,
such as Benjamini-Hochberg procedure and Benjamini-Hochberg-Yekutieli proce-
dure, were developed with a weak control of FWER (i.e., FWER is only guaranteed
if all null hypotheses are true).

17.6.3 Cluster-Based Permutation Test

1. Permutation Test

Permutation test can also be used in the multiple comparison problem. The proce-
dure of permutation test for single point comparison has been introduced in the
previous section. Unlike parametric tests, such as t-test and ANOVA, permutation
test does not make specific assumptions about the population distribution. For
multiple points comparisons, we compute the t-statistic for each test and the statistic
tmax (the most extreme positive or negative value) is used for the permutation test.
For a two-tailed test, the statistic tmax equals the maximum absolute value of the t-
statistic for each test due to the symmetric permutation distribution. The distribution
of tmax adaptively reflects the degree of the correlation among the data points. With
the global distribution of tmax, calculate the threshold corresponding to a certain α
level. For each test, once the t- statistic is higher than the threshold, we reject the null
hypothesis and conclude that there is significant difference.

With the statistic tmax, point-wise permutation test can automatically adjust to the
degree of the correlation among the data points. By eliminating the independence
assumption in Bonferroni correction, point-wise permutation test increases the
statistical power in the multiple comparison problem. Similar to Bonferroni correc-
tion, point-wise permutation test provides a strong FWER control. However, when
the number of tests is extremely large, the permutation test will also become
conservative.

2. Cluster-Based Permutation Test

Cluster-based permutation test, proposed by Maris, uses the cluster-level statistic
tmax instead of the point level statistic tmax, so that it can drastically increase the
sensitivity of the statistical test while strictly controlling the FWER. As a weak
FWER control method, cluster-based permutation test provides a higher sensitivity
than false discovery rate methods. The cluster-based permutation test includes two
major steps.

1. Calculate the cluster-level statistic: Calculate t-statistic, noted as tpoint, for every
point of interest in the temporal, frequency, or spatial domain. All points with
tpoint not exceeding the point-level threshold corresponding to the certain α level
(denoted as αpoint) are ignored. Next, cluster the remaining points in connected
sets on the basis of temporal, frequency, or spatial adjacency. Then, calculate
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cluster-level statistics, noted as tcluster, by taking the sum of tpoint within a cluster.
Let tmax be the most extreme value of tcluster.

2. Perform the permutation test: Repeat the permutation process and calculate their
tmax to generate the permutation distribution. With the distribution of tmax, the
cluster-level threshold is determined by a certain α level (denoted as αcluster). If
there is any cluster under the true labels with its tcluster larger than the threshold,
we reject the null hypothesis and conclude that there is significant difference.

For cluster-based permutation test, no MATLAB function can be used directly.
Some toolboxes can be used. Here, we introduce the implementation of the cluster-
based permutation test in the toolbox of letswave.

Letswave implementation

1. Open the letswave toolbox in MATLAB by typing “letswave” in the command
window. Set the folder with the P300 files as the filepath in the Manage Module
of the letswave toolbox.

2. Select the files “P300 Nontarget” and “P300 Target” in the Datasets: listbox in
Manage Module. Select Statistics -> Compare Two datasets (paired sample/
two samples ttest).

3. In the Batch module, enable the checkbox for Cluster-Based Permutation Test in
the ttest panel.

4. Click the “Run” button in the bottom of the Batch module, to run the cluster-
based permutation test. After a few seconds for the computation, the result will
appear in the Manage Module with the filename “ttest P300 Target”.

5. Double-clicking the data file “ttest P300 Target”, the result is illustrated in the
viewer Module. Select the different items in the Index: pop-up menu; we can see
the result of the raw p-value and t-value without any correction and the corrected
p-value and t-value after the cluster-based permutation test.

6. To export the result to MATLAB, select “ttest P300 Target” and select the “send
to workspace” item in the right-click menu; then the result appears in the
workspace of MATLAB.

Here, the P300 dataset only includes one channel EEG signal from Pz. With
multi-channel EEG analysis, we can also run the cluster-based permutation test in
the spatial domain, in which we need to enable the “multiple sensor analysis” and
define the neighbors by setting the connection threshold in step 3.

Letswave can also generate the MATLAB script automatically. With the auto-
generated scripts, we can run the m-file “code6_1.m” in the command windows of
MATLAB. The result is the same as it is from the GUI of the Letswave toolbox.
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MATLAB implementation

%% cluster-based permutation test
LW_init();
option=struct('filename',...

{{'P300 Nontarget.lw6','P300 Target.lw6'}});
lwdataset= FLW_load.get_lwdataset(option);
option=struct('test_type','paired sample',...

'tails','both','ref_dataset',1,'alpha',0.05,...
'permutation',1,'cluster_threshold',0.05,...
'num_permutations',2000,'show_progress',1,...
'suffix','ttest','is_save',1);

lwdataset= FLW_ttest.get_lwdataset(lwdataset,option);

Result
Select the item “p-value” in the Index: pop-up menu; the uncorrected p-value for

each time point of the comparison is shown in the right panel. By setting the Y-axis
from 0 to 0.05, we can find seven clusters with their p-value lower than 0.05.
Similarly, by setting the Y-axis from 0 to 0.00002, only one cluster with the interval
from 0.26 to 0.39s is survived after the Bonferroni correction. The result is the same
as it is illustrated in Fig. 17.11(c). Select the item “t-value” in the Index: pop-up
menu, and set the Y-axis as auto; the t-value as illustrated in Fig. 17.11(b) is
displayed in the right panel.

Select the item “cluster p-value” in the Index: pop-up menu; the p-value for each
cluster based on the value of tcluster in the permutation distribution of tmax is shown in
the right panel. The cluster with their cluster p-value less than 0.05 is excluded with
their p-value set to be 1. As a result, only the main cluster with the interval from 0.2
to 0.96s is survived after the cluster-based permutation test.

With the cluster-based permutation test, the result of the P300 experiment is
shown in Fig. 17.11(c). As a result, only the largest cluster is reserved, which is not
so narrow as the result after Bonferroni correction. As reviewed by Groppe, cluster-
based permutation test is possibly the most powerful multiple comparison procedure
for providing neat results and detecting the presence of broad effects. But cluster-
based permutation test has lower sensitivity for smaller clusters so that some
meaningful small EEG effects might be neglected.
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Chapter 18
Simultaneous EEG-fMRI

Xu Lei

Abstract Simultaneous EEG-fMRI combines the advantages of high temporal
resolution of EEG with high spatial resolution of fMRI. In addition, it is a noninva-
sive technique for the study of human brain function. However, it remains many
challenges such as the low signal-to-noise ratio, poor individual comfort, and
difficulty in data analysis. In this chapter, we first introduce the hardware of
simultaneous EEG-fMRI system. Then a review about the advance of this technique
is given, including the EEG artifacts correction, the EEG-fMRI data fusion method,
and the application of EEG-fMRI. Specifically, we provide a systematic classifica-
tion for the fMRI-constrained EEG and the EEG-informed fMRI from simple to
complex level. Then we provide program practice for the EEG artifacts correction,
which may contribute to the widespread application of this new technique. Finally,
we discuss the prospects of simultaneous EEG-fMRI for future research.

Keywords EEG-fMRI · Fusion · EEG artifacts correction · fMRI-constrained EEG ·
EEG-informed fMRI

Both functional magnetic resonance imaging (fMRI) and electroencephalography
(EEG) are preeminent techniques for noninvasive brain mapping. Since the first
seminal study on data quality and patient safety (Ives et al. 1993), simultaneous
EEG/fMRI has matured in technology and reached commercialization level (Laufs
et al. 2008). Simultaneous EEG-fMRI is a powerful approach not only to study the
endogenous brain oscillations during various mental states but also to study the
neuronal changes in cognitive neuroscience (Debener et al. 2006; Abreu et al. 2018).

Most studies were based on the perspective that EEG and fMRI recordings may
obtain the same underlining neural activity, and the simultaneous measurement may
reveal more convergence evidence for experimental investigation. However, the
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mechanism for the generation of EEG and fMRI signals is still largely unknown.
Currently, a widely excepted concept that EEG and fMRI can be fused is that both
modalities have the same neurophysiologic substrate. Animal study based on mon-
keys revealed that BOLD responses correlate stronger with the local field potentials
(LFPs), when compared with multiunit activities (Logothetis et al. 2001). Because
LFP is link to pyramidal neurons that generate scalp EEG potentials (Nunez 1995),
the neurovascular coupling may be still subsist for scalp EEG and fMRI.

In this chapter, we first introduce the hardware of simultaneous EEG-fMRI
system. Then a systematically review is given in the advance in signal processing
of this technique, including the EEG artifacts correction, the EEG-fMRI data fusion,
and the application of EEG-fMRI. Especially, we provide a systematic classification
for the fMRI-constrained EEG and the EEG-informed fMRI. This framework is
based on the complexity level and may enlighten a more flexible application of
EEG-fMRI. Then we provide computer practice for the EEG artifacts correction,
which may contribute to the popularization of this new techniques. Finally, we
discuss the prospects for future research of simultaneous EEG-fMRI.

18.1 EEG-fMRI System

EEG instrumentation comprises electrodes, an acquisition system to amplify and
digitize the EEG signals, and displays facilities for the observation and analysis of
the recorded signals (Fig. 18.1). The design of EEG instrumentation has considered a
number of safety factors of the MR condition, which is greatly distinct from a
conventional EEG system. These factors include the high field static condition, the
time-varying magnetic gradient fields, the radio frequency (RF), and the head
movement. These considerations result in the unsuitability of traditional EEG
monitoring equipment for EEG-fMRI monitoring.

Simultaneous EEG-fMRI system is usually wired as the flow-process diagram that
illustrated in Fig. 18.1. The EEG electrode cap connector box is connected to a
MR-compatible amplifier by a strip cable. The electric amplifier is powered by a
MR-compatible battery or a rechargeable power device. The amplified EEG signal is
transmitted through the optical fiber to the optoelectronic converter, which is in the outside
of the scanner room. Simultaneously, the photoelectric converter receives the gradient
conversion clock information from a synchronous box. The synchronization box is a
device which matches the scan time of MR and the analog to digital converter time of
EEG. This is very important because it provides a precise time for MR artifact correction.
Comparing with no synchronization box, the gradient artifacts are more consistent in each
slice duration with the synchronization box. This will facilitate the correction of the
gradient noise during the off-line EEG data processing. The synchronization box is
connected to the MRI master control unit through a device called synchronous box
scanner interface (see Fig. 18.1). Finally, the digitized EEG signal is transmitted to the
EEG-recording computer through USB data cable, and the scanned fMRI image outputs
independently through the MR system.
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Base on Faraday law of electromagnetic induction, it is important to minimize the
area of any loop formed by the electrode leads to reduce the artifacts induced by the
changing magnetic fields. Usually, electrode leads are bunched together closely
around the head to minimize the loop circuit. For the distance from the subject’s
head to the amplifier inputs, the wires are typically twisted together as far as possible.
This procedure, on the one hand, keeps the leads in proximity to each other. On
another hand, it cancels the induced electromotive forces in adjacent leads. However,
there are some loop areas that are inevitable, as scalp EEG is generated by separate
points on the head surface. Using the electrode cap, multichannel referential record-
ings are introduced to further reduce the loop areas (Fig. 18.1).

18.2 Artifact Correction

EEG artifact correction is the largest challenge for simultaneous EEG-fMRI, because
this is the first step for the following data fusion. There are three main artifacts in the
simultaneously recorded EEG in the MR scanner: (1) electric signal caused by radio
frequency pulse. The frequency of this kind of artifact differs greatly from the
frequency of EEG signal in 1 MHz range and can be eliminated by low-pass filter.
(2) The gradient artifact is caused by the fast switching of the gradient magnetic
field. This artifact has a fixed pattern, and its amplitude is typically 100–1000 times
of the amplitude of physiology signal. (3) ECG artifacts, which is the artifacts caused

Fig. 18.1 The schematic of the simultaneous EEG-fMRI system. A commercial EEG-fMRI
instrumentation has a battery power pack, a connector box containing current-limiting resistors,
an electrode cap, and a 32-channel EEG amplifier/digitizer. This instrumentation is sited adjacent to
the scanner bore and transmits data to a receiver computer outside with fiber optic links

18 Simultaneous EEG-fMRI 379



by the aortic arch flow impact and heartbeat under the MRI environment. In contrast,
the first two are easy to be corrected, but ECG artifact may coincide with the EEG
frequency bands and is difficult to be corrected. In addition, the artifacts induced by
MRI environment may further from head movement, helium cooling pump, and
scanner ventilation system.

In recent years, thanks to the rapid development of signal processing technology,
artifact correction methods of simultaneous EEG-fMRI have made considerable
development. Taking PubMed database (https://www.ncbi.nlm.nih.gov/pubmed)
as an example, more than 170 research papers can be found by searching with the
keywords of “EEG-fMRI” and “artifact.” Especially after 2008, there were more
than ten artifact removal articles published on average in every year. Generally, these
artifact corrections can be divided into three categories:

1. Artifact template time-domain subtraction. The technique has the advantages of
simple principle and low computation. In these methods, artifact template is
firstly constructed and then is subtracted from EEG signal.

2. Blind source separation. Generally, independent component analysis (ICA) and
principal component analysis (PCA) are used to separate the EEG signal into
different components. Then the artifact components are identified, and finally
they are removed.

3. Hardware method. The artifact is measured directly with some professional
hardware such as carbon fiber loop and then is subtracted from the contaminated
EEG signal.

Since gradient artifacts and ECG artifacts are the main sources of noise for
simultaneous EEG signals, we mainly introduce the removal of these two artifacts,
as shown in Table 18.1. In present, there are more than ten different methods for
artifact correction.

18.2.1 MRI Scanner Artifact

Artifact template subtraction is a widely applied processing method to correct MRI
scanner artifact, and this method was proposed by Allen et al. (2000). In this method,
the shape of the gradient artifact was assumed to be static in a certain period of time
and to be uncorrelated with the physiological signal. By averaging the EEG over a
pre-specified number of TR-related epochs, channel-specific artifact templates are
estimated and then are subtracted from the EEG signal in the current epoch. There
are two type of epochs, one marks the slice acquisition and another marks the
volume acquisition. And both are identified by a recording channel from the MRI
scanner. Currently, artifact template subtraction is able to implement in real time
(Allen et al. 2000). Image acquisition artifact template subtraction has been success-
fully adopted for the reconstruction of spontaneous EEG signatures such as alpha
rhythm (Laufs et al. 2003; Moosmann et al. 2003), high-frequency bursts (Ritter
et al. 2008), epileptic activity (Bénar et al. 2003), and evoked potentials in the visual
(Becker et al. 2005) and somatosensory system (Schubert et al. 2008).
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The averaging procedures are a little different in these algorithms, especially the
number of TR-related epochs, the weight of each epoch, and the calculation proce-
dure. In the original implementation, the template consisted of a sliding average of
artifact epochs to account for the possible changes of the artifact waveform over
time. Considering the timing error, adaptive noise cancellation (ANC) is further
employed to reduce residual image acquisition artifacts (Allen et al. 2000). A least
mean square algorithm is used to adjust the weights of the ANC filter. This approach
needed an extremely high sampling frequency; however, some unsatisfactory results
were obtained even at sampling rates of 10 kHz (Niazy et al. 2005). Another
modified approach for dynamic template estimation was proposed according to a
spectrum-based similarity measure (Freyer et al. 2009). In this method, artifact
epochs in the template are weighted according to the similarity. This approach
allowed the recovery of ultrahigh-frequency EEG signatures with amplitudes in
the nanovolt range even during image acquisition periods.

The Vision Analyzer algorithm (V.2.1.2 Brain Products, Munich, Germany)
offers multiple methods for artifacts template estimation: (1) all epochs during entire

Table 18.1 EEG artifact correction methods. These methods are designed to correct the MRI
scanner artifact and heart pulse artifact. And they are divided into three categories: software,
hardware, and other methods

Artifact
type

Hardware/
software Methods Related toolbox or product

Reference and
link

MRI scan-
ner artifact

Software Artifact template
subtraction

BrainVision Analyzer Allen et al.
(2000)

Optimal basis sets FMRIB Niazy et al.
(2005)

Independent com-
ponent analysis

EEGLAB toolbox Grouiller et al.
(2007)

Independent vec-
tor analysis

— Acharjee et al.
(2015)

Hardware Artifact in refer-
ence level

New type of electrode cap Chowdhury
et al. (2014)

Other Head movement Down movement to the foot
direction with 4 cm

Mullinger et al.
(2011)

Heart pulse
artifact

Software Artifact template
subtraction

BrainVision Analyzer Allen et al.
(1998)

Independent com-
ponent analysis

EEGLAB toolbox Bénar et al.
(2003)

Hardware Adaptive filter Piezoelectric motion sensor Bonmassar
et al. (2002)

Recursion least
square

Carbon-wire loop Masterton et al.
(2007)

Orthogonal
Matching Pursuit

High-density electrode cap Xia et al.
(2014)

Other Maximum likeli-
hood algorithm

Simulation pulse artifact
based on harmonic theory

Krishnaswamy
et al. (2016)
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session, (2) a sliding average during a certain period of time, or (3) a predefined
number of initial scan epochs combining with some subsequent epochs exceeding a
predefined cross-correlation with the initial template. The mark of epochs is identi-
fied from a specific scanner-generated signal or from searching for steep gradients in
the EEG signal. Notice that the quality of artifact removal by template subtraction
depends on the assumption of a stationary artifact, which is best satisfied when using
synchronization system (including synchronization box and the scanner interface,
see Fig. 18.1). Setting the repetition time (TR) as a multiple of the sampling rate of
the EEG recording is a good choice, because the template is consistent sampled in
this condition. In contrast, jitter between MR acquisition and EEG sampling leads
large residual artifacts, and the dominate frequency is approximately above 50 Hz.
However, this effect can be reduced with low-pass filtering (with cutoff frequency
around 50 and 80 Hz). Another method, adaptive finite impulse response (FIR) filter,
is proposed to identify the artifact frame-by-frame (Wan et al. 2006). This method is
an alternative to the artifact template subtraction method, and the core assumption is
also that the image acquisition artifacts are temporally stationary.

18.2.2 Pulse Artifact

Pulse artifact correction utilized very similar method as imaging-artifact correction:
the average artifact subtraction (AAS) (Allen et al. 1998). The assumption of this
algorithm is that the artifact is stable across a small set of successive heartbeats, and
the ECG are not correlated with the EEG signals of neuronal activity. The template
of pulse artifact is averaged over a set of preceding heartbeats and then subtracted
from the ongoing EEG.

The main procedure of the AAS method includes the following steps. First, the
AAS approach requires knowledge of the precise onset of each cardiac cycle, which
is usually obtained by the simultaneously recorded ECG channel. An R peak
detection method is used to initialize the onset of each cardiac cycle. Second, an
artifact template was estimated for each EEG channel separately. The template is
achieved by averaging the EEG over a predefined epoch preceding and time-locked
to the R peak. The resulting artifact template represents the evoked pulse artifact
while averaging out the ongoing EEG activity. Third, the artifact template is then
subtracted from each EEG epoch, and the remaining signal is the corrected signal.
AAS procedure can be implemented in real time and can provide satisfactory EEG
data quality. This algorithm has been implemented in commercially available and
open-source software packages (e.g., Hamandi et al. 2008).

The limitations of the AAS algorithm result from the deviations of above
assumptions: correlation between event potential and cardiac activity, instability of
the artifact, and precise detection of each cardiac cycle. The problems inherent in the
AAS approach have been investigated further by Niazy and his colleagues (Niazy
et al. 2005). In order to relax the stability requirement, they recommended estimating
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artifact template based on principal components analysis (PCA). They proposed the
optimal basis set (OBS) to represent several distinct pulse artifacts. A recent com-
parison among different methods revealed that OBS and K-means tended to
outperform AAS, because of the inability of the latter in modeling short-timescale
variability (Jorge et al. 2019).

Other channel-by-channel correction approaches considered the template dura-
tion of pulse artifact. Kalman filter approach was utilized in some methods, with
some extra motion or electrooculogram (EOG) sensor to be employed as a reference
signal (Bonmassar et al. 2002). Wavelet-based methods were another choice; how-
ever, its nonlinear version of reduction is computationally demanding and is there-
fore unlikely to supplant AAS in the near future (Wan et al. 2006). Recently, Vincent
and colleagues proposed a moving general linear model (mGLM) approach, along
with evidence of improved performance compared to the AAS (Vincent et al. 2007).

18.3 fMRI-Constrained EEG Imaging

At present, the fusion of simultaneous EEG-fMRI can be divided into two catego-
ries: symmetric fusion and asymmetric fusion. Symmetric fusion is based on the
establishment of a common generative model or the use of interactive information to
explain two modalities (Trujillo-Barreto et al. 2001; Valdes-Sosa et al. 2009).
Asymmetric fusion mainly uses one of the modality information to guide the
analysis of another modality. The most influential asymmetric fusion methods
include (1) time prediction, that is, fMRI analysis based on the temporal information
of EEG: a specific EEG feature is convoluted with the hemodynamic response
function (HRF) to model the fMRI waveform (Debener et al. 2005); (2) spatial
constraints, that is, the EEG imaging based on the spatial prior of fMRI: the EEG
source reconstruction is constrained by the spatial activity information obtained from
the fMRI (Lei et al. 2011b, 2012; Liu et al. 1998).

FMRI-constrained EEG imaging has evolved from being mostly empirical to
Bayesian framework. A large number of studies use statistic activity map to con-
struct the EEG source space (Liu et al. 1998) or to initially equivalent current dipoles
for further source fittings. Perhaps the latter one is the earliest and simplest method to
reconstruct the source of event-related potentials. The estimated time series of each
dipole reports the response dynamics at the corresponding fMRI activation region.
Although overly simplified, this method is valuable in revealing the temporal
sequence of task-evoked neural responses underlying perception or cognition
(Auranen et al. 2009; Stancak et al. 2005).

Another way is to use the empirical Bayesian (EB) framework to employ statistic
activity map as priors to relax the direct correspondence between EEG and fMRI
sources (Phillips et al. 2002). The PEB framework has been proved to be a promising
tool for reliable estimation of EEG sources, because various priors can be used for
source reconstruction. Based on the EB framework, multiple spatial patterns, derived
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from functional connectivity analysis of fMRI data, were utilized as priors in EEG
source model, and this method is named network-based source imaging (NESOI)
(Lei et al. 2011b). Different from the statistic activity map, the patterns generated by
ICA are free from any assumption about the task response. In another word,
transiently task-related and non-task-related components can facilitate the source
imaging.

Here, we emphasize that there are many different types of match between EEG
source and fMRI activation region. Hence the choice of the hyperparameter that
controls the fMRI bias is critical. In fMRI, a voxel being activated means that the
voxel’s signal is significantly different from noise and is predictable by the stimuli
and tasks of interest. Note that this statistical meaning does not inform any physical
characteristic about neuroelectric activity. In respond to this, fMRI spatial informa-
tion can be utilized as property of source with different strategies (Lei et al. 2012): (i)
fMRI priors only provide spatial information or quantitative information about
magnitude of neural activity; (ii) within each fMRI network, the corresponding
EEG sources have similar time courses. The resulting covariance components
(CC) are different in the EB framework: continuous versus binary and covariance
versus variance CC. The influence of different structures of CC is systematically
investigated with synthetic data and real data to reveal the effect of structures of CC
in each condition. Our results suggest that Bayesian model comparison may be more
informative for source imaging.

An interesting topic for fMRI-constrained EEG imaging is the coupling relation-
ship between modalities during resting state (see Fig. 18.2). The term “resting state”
mainly refers to the coherent fluctuations of brain oscillations in different brain
regions, while the subject is at rest without any stimulus or task. It is feasible to
model the size of the BOLD effect that is approximately proportional to the integral
of the power of the stimulus-evoked synaptic activity for event-related or block-
design paradigms. However, this model fails to account for BOLD signals in
spontaneous activity (Makeig et al. 2002). The limitation is worth noting, given
that spontaneous activity consumes most energy (Raichle and Mintun 2006), drives
BOLD fluctuations (Leopold and Maier 2012), and interacts with tasks or stimuli
(He 2013).

18.4 EEG-Informed fMRI Analysis

Compared with fMRI-constrained EEG imaging, using EEG features to inform
fMRI analysis is more straightforward. The central idea is to extract features from
EEG and then relate them to the voxel-wise fMRI signal. Based on the linear
hypothesis of neurovascular coupling, the characteristics of the neural activity
extracted in EEG form the predicted functional MRI signals after convoluting the
HRF and then find the related active region in the fMRI signal of the whole brain
(Lange and Zeger 1997). With this idea, one may generate high-resolution activity
maps presumably underlying the EEG features of interest (Murta et al. 2015) or
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address the EEG correlates to fMRI activity at specific voxels, regions, or networks
(Mantini et al. 2007). A summary of previous studies, as shown in Table 18.2, is
based on the purpose of fusion of fMRI data based on the different indicators of EEG
signals. This classification is based on the number of electrodes, head table coverage,
time precision, difficulty, and fMRI analysis based on EEG information.

18.4.1 Classify Brain State

EEG signals present distinct pattern from wake to deep sleep. These EEG features
can be used to separate the different brain states, and then the corresponding fMRI
was analyzed to reveal the high spatial brain functional dynamics. Using EEG or its
derived polysomnography (PSG), sleep can be further divided into non-rapid eye
movement (NREM) and rapid eye movement sleep (REM). Each sleep period is

Fig. 18.2 fMRI-constrained EEG imaging employs the spatial priors derived from task-evoked or
resting-state fMRI. Effective and functional connectivity may benefit the derivation of EEG cortical
connectivity
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mainly determined according to its characteristic waveform, ocular electricity, and
jaw electromyographic activity. EEG-based sleep staging can be used to label fMRI
section and then used to compare the fMRI activation or functional connectivity at
different stages of sleep.

Kaufmann and his colleagues explored the changes of local activation of BOLD
signals from awake to NREM sleep (Kaufmann et al. 2006). The results showed that
the overall activity during NREM sleep stages was declined in many brain regions,
including the cerebral cortex, the thalamus, the limbic lobe and the caudate nuclei,
compared to the wake period. The decreased brain regions during N1 stage include
the frontal lobe, limbic lobe, occipital lobe, and insula, and the N2 stage was further
reduced in the frontal, marginal, temporal, and right insula. The activity of N3 phase
was reduced to the lowest level, involving the frontal lobe, limbic lobe, temporal
lobe, occipital lobe, and insula. This indicates that with the gradual deepening of
sleep, brain areas with decreased activity gradually increase, which is conducive to
the formation and maintenance of deep sleep (Kaufmann et al. 2006). Horovitz et al.
further explored the spatial distribution of the default mode network (DMN) in the
slow-wave sleep stage and found the phenomenon of the loss of the prefrontal region
in DMN during the slow-wave sleep (Horovitz et al. 2009). Their study indicates that
DMN plays an important role in the awareness maintenance. In addition to the above
analysis of fMRI data from the perspective of activation and large-scale brain
networks, Lei et al. analyzed the brain scale-free characteristics in the wake and
NREM stages (Lei et al. 2015). Using “graph theory,” Uehara et al. explored the
“small-world network” attribute (Uehara et al. 2014) of the wake and the N1 stages.
Because the frequency range of MRI’s RF pulse and gradient artifacts and the
frequency range of electromyography and eye power overlap greatly, it is very
difficult to distinguish the REM phase at present study. It is still a challenge to
explore the activity characteristic of fMRI related to REM.

18.4.2 Identify Electrophysiological Event

In this application, EEG is used to characterize the changes in endogenous alertness
and identify spontaneous electrical activities or even, such as epileptic discharge,
spindles, and K-complex waves. The onset time of these events is further inputted as
regressor to identify fMRI correlative. Simultaneous EEG-fMRI was first used to
explore the changes in functional MRI signals related to interictal epileptiform
discharges (IEDs) and further to determine the origin and conduction process of
epileptic waves (Gotman et al. 2004). The occurrence of IEDs is random; hence the
onset time of spontaneous EEG event is crucial for general linear model of fMRI
analysis. In sleep neuroimaging, similar idea is applied to the localization spindle
waves. Sleep spindles are mainly involved in sleep-dependent memory consolida-
tion and the integration of new and old knowledge (Tamminen et al. 2010). Using
the simultaneous EEG-fMRI to obtain the sleep data of the subjects and to denoise
the EEG data described above, the complete EEG data need to be staged from the N1
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phase of the NREM to the N3 phase and the REM phase, and then the spindle wave
is identified from the N2 period, and finally the fMRI related to the spindle wave
activity was found (Schabus et al. 2007).

18.4.3 Obtain the Power Wave of Rhythm

The EEG signal contains rich time and spectrum features. The time-frequency
decomposition of EEG data can separate typical bands or rhythms, including delta
(2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–40 Hz).
These band powers can be used to explore the fMRI activity of the frequency
spectrum energy covariance. First, we need to calculate the average power time
series of each frequency band on each electrode of EEG, and then convolute these
time series with the HRF, and downsample the time series after convolution and
standardize the time series. Finally, the average power time series of each frequency
band after convolution is analyzed. Regression analysis was performed with each
voxel fMRI signal to explore the corresponding brain activity in each frequency
band. The researchers firstly focused on alpha rhythm. Goldman et al. identified the
core brain regions of alpha rhythm by simultaneous EEG-fMRI (Goldman et al.
2002). The results showed that the enhancement of alpha rhythm was associated
with the negative activation of the occipital lobe, the dorsal frontal gyrus, the ventral
temporal and cingulate gyrus, and the positive activation in the insula and thalamus.
By taking the EEG power of multiple frequency bands as the regression term in the
generalized linear model of fMRI data, the contribution of these bands to the
functional MRI signals and the interaction between the signals are also discussed
(de Munck et al. 2009). In addition to the EEG power of a specific frequency band,
the other features of the spectrum can also be used to explain the fMRI activity, such
as the total power (Wan et al. 2006), the linear combination of specific frequencies
(Goense and Logothetis 2008), the average frequency (Rosa et al. 2010), the root
mean square frequency (Jann et al. 2009), and so on.

Exploring the relationship between EEG rhythm and fMRI large-scale brain
network is currently one of the hot topics. Jann et al. measured the phase-locking
activity of all the electrodes in the specific band of the whole brain based on global
field synchronization (GFS) and then discussed the relationship between the alpha
rhythm GFS and the resting-state brain network. The results show that the alpha
rhythmic phase-locking component is related to the activity of the DMN (Jann et al.
2009). Mantini further extended five typical rhythms (delta, theta, alpha, beta, and
gamma) and large-scale resting networks (Mantini et al. 2007). They found that a
resting-state brain network was related to multiple rhythms. For example, DMN is
related to alpha and beta rhythms, and the visual network is related to delta, theta,
alpha, and beta rhythms. These results indicated the common effects of nerve
oscillations in different frequency bands, in the same functional system. In recent
years, a large number of studies have begun to pay attention to the statistical
correlation between EEG rhythm and functional connectivity in long-distance
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resting-state networks. The effects of alcohol intake on EEG rhythm and resting-
state brain network function connection were studied by simultaneous EEG-fMRI
(Lei et al. 2014). The results revealed that drinking would increase the energy of
theta rhythms and be associated with the correlation of the default mode network
with dorsal attention network, suggesting that the slow-wave rhythm of the brain
may reflect the interaction of resting-state networks. The underlining electrophysi-
ological mechanisms for functional connectivity of fMRI need further be investi-
gated (Scholvinck et al. 2013).

18.4.4 ERPs-fMRI

Event-related potentials (ERPs) is the evoked potential of the human brain in
processing cognitive stimuli. The low SNR is the main challenge for single-trial
analysis. For some weak brain waves, especially the early ERPs, it is very difficult to
extract stable amplitude information in single trials. At present, with the help of
feature extraction, pattern recognition, and machine learning technology, there has
been considerable progress in weak signal extraction. For example, the ICA method
can be used to extract the weak event-related potential measured on multiple
electrodes into a clear independent component. Based on the sparse representation
and the external input autoregressive model algorithm, the latent period and the
amplitude can be extracted under the condition of low signal-to-noise ratio. After
further integration of trial-and-error information, a single-trial amplitude diagram
can be formed.

By observing the time delay information of amplitude map potential intensity,
ERPs related to cognitive processing, such as N170, P300, were found. Some
features extracted from the single test EEG data, such as the amplitude, incubation
period, and spatial topological distribution of ERP components, can be used to
further explore the relationship between electrophysiological characteristics and
functional magnetic resonance signal activity (Eichele et al. 2005; Nguyen et al.
2014; Bénar et al. 2007). Furthermore, the feature identified by machine learning
with task resolution can be used as a quantitative index for a single trial (Goldman
et al. 2009; Lei et al. 2009). In order to align the time of occurrence of stimulation
from EEG and sequence scanning time of fMRI, the “single experiment quantization
curve” can be obtained according to the amplitude of the single experiment, and the
design matrix is constructed, and the statistical parameters are generated.

18.5 Multimodal Brain Network

EEG and fMRI measure the functional activity of multiple networks distributed in
the whole cerebral cortex. Estimating network communication from both the
neuroelectric and hemodynamic signals may help to explain the complex
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relationships between brain regions. Currently, multimodal brain network can be
mainly subdivided into functional and effective connectivity (Friston and Price
2001). Functional connectivity demonstrates how different areas of the brain with
similar patterns of activation enable brain functions at rest and in response to external
stimuli. On the other hand, effective connectivity is to infer a causal relationship
between functionally linked activated areas and how they can be related through
structural connections depicted independently (see Fig. 18.3).

When considering the fusion of the networks reconstructed from EEG and fMRI
modalities, two frameworks were considered in the network space. First is the
multilayer network. In this framework, EEG and fMRI construct modal-specific
network separately, and then both networks were matched to share some common
node in the spatial or temporally domain (Lei et al. 2011a). Second is an alternative

Fig. 18.3 Illustration of the multimodal brain network. (a) EEG and fMRI original signals are
preprocessed and separated to (b) independent components. These components represent nodes in
our following network construction, and their time courses are utilized to inference the links (edges)
between brain networks. (c) Functional and (d) causality connectivity with the framework of
multilayer network or (e) functional and (f) causality network with the framework of hybrid
network. The green and blue links represent the edges estimated within the modality of EEG and
fMRI, respectively. The gray solid lines (or arrows) and dotted lines represent the identified links
and matching nodes between modalities, respectively
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framework which is the hybrid network analysis. In this framework, EEG and fMRI
were collapsed to a single space, and the hybrid network was constructed based on
the time course with the unified temporal scale (Yu et al. 2016). Here we introduced
those two frameworks in detail in the following sections.

18.5.1 Multilayer Network

Multilayer network explores functional or causal connectivity among nodes within
EEG and fMRI signals separately. The node can be voxel, region of interesting, or
even large-scale brain networks. In this framework, an additional step is needed to
identify the matching nodes in both modalities, in the spatial or temporally domain.
One typical multilayer network is estimated by multimodal functional network
connectivity (mFNC), which fused EEG and fMRI brain network after spatial ICA
(see Fig. 18.3D) (Lei et al. 2011a).

Multimodal FNC is a natural extension of the fMRI FNC to cover the interaction
among EEG FNs and to further explore the spatial matching between different
modalities. First, modality-specific preprocessing is executed for EEG and fMRI
data separately. This mainly includes spatial normalization of fMRI volumes and the
artifact removal of EEG. Second, the functional networks (FNs) are extracted using
spatial ICA in each modality. Other independent components (ICs) were character-
ized as physiological, movement related, or imaging artifacts.

Third, the interactions among FNs in each modality are explored by Granger
causality analysis (GCA). The time courses of EEG (or fMRI) components are
employed to explore the networks’ interactions. Finally, fMRI FNs are matched to
EEG FNs in the spatial domain using network-based source imaging (NESOI). This
step stitches EEG-FNC and fMRI-FNC to construct multimodal FNC, which is a
node with multilayer information. Each node of mFNC has a “common substrate” of
neuronal activity, though the link in each modality may be district different.

The simulation demonstrated the potential of mFNC to reveal the correct net-
works when EEG and fMRI have the same spatial location of neural sources. Further
analysis of visual experiment shown that mFNC has the potential to reveal the
information flow during simple visual processing. With the utilization of mFNC,
comprehensive relationships among FNs might be unveiled for the deep exploration
of neural activities and metabolic responses in a specific task or neurological state.

18.5.2 Hybrid Network

Hybrid network analysis collapse both EEG and fMRI modalities to a single space,
and the hybrid network was constructed based on the time course with the unified
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temporal scale (Yu et al. 2016). EEG signal is usually down sampled to the same
time resolution of fMRI. For example, EEG time series are segmented into epochs
that correspond to one concurrently recorded fMRI volume. Then each epoch was
converted to the frequency domain by the fast Fourier transform. The spectral power
was averaged within typical frequency bands, which include delta, theta, alpha, beta,
and gamma.

Yu and his colleague decomposed fMRI data into FNs with associated time
courses by group ICA (Yu et al. 2016). Both EEG electrodes and fMRI FNs served
as nodes, and EEG-fMRI brain graphs are built by computing Pearson correlation
coefficients within and between fMRI FNs time courses and EEG spectral power
time courses. Similar to mFNC, EEG power time courses were convolved with a
canonical HRF to account for the delayed hemodynamic response.

This method can be further extended to dynamic EEG-fMRI graphs, which are built
using a sliding window method. A window width of 40 s was used because a previous
study indicates that cognitive states may be correctly identified with as little as 30–60 s of
data (Shirer et al. 2012). Shorter time windows may result in a lower number of
statistically significant correlations in brain connectivity and greater variability of corre-
lation values (Allen et al. 2014; Yu et al. 2015), whereas a window size of about 40 s
provides a good trade-off between the ability to resolve dynamics and the quality of
connectivity estimation (Allen et al. 2014; Yu et al. 2015).

This method provides a new approach to examine EEG-fMRI associations within
a graph theoretic framework. Previous investigation found this method incorporate
fMRI spatial localization and EEG frequency information which could not be
obtained by examining only one modality (Yu et al. 2016).

18.6 Example Application

The FMRIB (FMRI Artifact Slice Template Removal) is an EEGLAB plug-in
toolbox (http://users.fmrib.ox.ac.uk/~rami/fmribplugin). It is a toolbox developed
by the University of Oxford Centre for Functional MRI of the Brain, and this toolbox
allow the removal of MRI artifacts from EEG signal. This toolbox is implemented
within the EEGLAB environment, providing an interface to remove gradient arti-
facts, detect R peak, and remove pulse artifacts from the EEG. All of the algorithms
can also be utilized as MATLAB command line. The following section provides a
very short introduction to use GUI to remove artifacts from EEG data. I assumed the
reader know the basics of EEGLAB, e.g., loading a dataset, viewing, events, data
structures, etc. If not, refer to the EEGLAB website for more basics about EEGLAB.

The methods used in FMRIB are based on the experimentations of simultaneous
EEG-fMRI (Niazy et al. 2005). It requires that a volume trigger event
(or alternatively a slice timing event) is present in the data, i.e., an event for each
fMRI volume acquired. The sampling rate of the data should be sufficient as to not
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have any aliasing from high-frequency gradient noise. Our experiment data were
collected at 5000 Hz, which is much larger than the maximum gradient artifact
frequency in a typical EPI sequence, about 700–800 Hz.

18.6.1 Experiment

One healthy subject (female, age 22) participated in the simultaneous EEG-fMRI
study, which was approved by the Ethics Committee of the Southwest University.
She was without any history of psychiatric or neurological illness as confirmed by
psychiatric clinical assessment. Written informed consent was obtained after detailed
explanation of the study protocol. The study contained an eyes-open (EO) and an
eyes-closed (EC) one-minute resting state. In the EO condition, the subject was
required to concentrate on the “+” in the middle of the screen and then the sign term
to “•” in the middle of the screen; the subject needed to close her eyes. While in the
EC condition, she was informed that they needed to calm their mind into a relaxed
state and avoid consciously thinking about something. All procedures were in
accordance with the sixth revision of the Declaration of Helsinki.

The sample rate is 5 kHz, and the FCz is the reference in a nonmagnetic
MRI-compatible EEG system (BrainAmp MR plus, Brain Products, Munich, Ger-
many). All 9 Ag/AgCl electrodes were ring-type sintered nonmagnetic electrodes,
and they were placed on the scalp according to the international 10/20 system. An
additional electrode was dedicated to the electrocardiogram (ECG). Eighty fMRI
functional volumes were acquired using a 3T Siemens Trio scanner. These data used
an EPI sequence with the following parameters: TR/TE of 1500/29 ms, FOV of
192�192 mm2, flip angle of 90�, acquisition matrix of 64�64, thickness/gap of
5/0.5 mm, in-plane resolution of 3.0�3.0 mm2, and 25 axial slices.

Download the compressed FMRIB plug-in file into the “plugins” directory of
EEGLAB distribution (https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/fmrib1.21.zip).
Then download the compressed example dataset (12MB, http,//www.leixulab.net/
data.asp) and uncompressed it. Here, we loaded the example data set (EOEC.set). As
illustrated in Fig. 18.4, there is an event “R128” indicating fMRI volume timings for
the removal of gradient artifacts, and this event occurs every time a volume is
acquired. Total fMRI experiment time was 2 minutes. There were 80 fMRI volumes
collected, i.e., 80 “R128” markers. An ECG channel is also included to remove the
ballistocardiographic artifacts. View the data and scroll to the beginning of the
gradient artifacts. You can see that the data is contaminated with gradient artifacts
and other noise.
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18.6.2 Remove fMRI Gradient Artifacts

In the EEGLAB GUI, go to Tools > FMRIB Tools > FASTR: Remove FMRI
gradient artifacts. The interface illustrated in Fig. 18.5 will now show up. Enter
the values as in the figure below, and press OK. Here, because our data was sampled
with high resolution of 5000 Hz, we do not upsample the data, and set “1” in the
second text field. The MATLAB window will now show the selected settings and
show the progress of the process. When FASTR is finished, you will be asked if you
want to save the data; keep the default setting here. The data is downsample to
250 Hz to save memory. Go to Tools > Change sampling rate, and then enter 250 as
our new sampling rate. Then click OK. Store the date in the current file with the
name “ECEOcMRI250.set.” Now you can view the cleaned data. As illustrated in
Fig. 18.6, the red lines are the volume triggers indicating the start of the fMRI
acquisition. You can also notice the high amplitude ECG signal, which contains the
pulse artifacts.

The process contains several steps. FASTR can automatically align the volume
artifacts to correct for any jitter in the exact time of the onset of volume. This
operation is done on the first EEG channel, and the adjustments are then applied to
all the channels. This may useful if there is not synchronization system between EEG
and fMRI. Notice our data skipped this step. The main step is computing an average
template for the artifact then subtracted. FASTR does this by taking a moving-

Fig. 18.4 The loaded data contains an eyes-open and an eyes-closed one-minute resting state.
Obviously, the signal is contaminated with gradient artifacts and other noise. “R128” is fMRI
volume marker which is important for gradient artifacts correction
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Fig. 18.6 EEG signal after fMRI gradient artifacts correction

Fig. 18.5 Parameter in the main GUI of FASTR
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window average of slice artifacts and then subtracting the average template from the
center contaminated data. This is implemented with OBS algorithm. Then the data
are low-pass filtered. Finally, adaptive noise cancellation (ANC) is used to remove
any remaining residuals.

18.6.3 Detect QRS Events

FMRIB plug-in can detect heartbeats robustly. Its algorithm aligns all events and
corrects for false positives and negatives. The QRS/heartbeat detection tool has an
average sensitivity and specificity of 99%. Now we detected the QRS complexes. Go
to Tools > FMRIB Tools > Detect QRS events. Then an interface was shown and we
enter the following parameters. The ECG channel number is 9, and the default value
of “qrs” was used to name the QRS events, and select “Yes” to delete the ECG
channel when finished. The QRS events are now stored as type “qrs”; see Fig. 18.7
top panel for more details.

18.6.4 Remove Pulse Artifacts

We can now proceed with removing the pulse artifacts. Click on Tools > FMRIB
Tools > Remove pulse artifacts. In the interface, enter the parameters with Heart Beat
Event ¼ qrt, Optimal Basis Set with Number of PCs ¼4. When the process is done,
store the data as a new dataset, and call it “EOEC – CLEAN.” Now we can scroll
through the data to see the cleaned data (Fig. 18.7 bottom panel).

18.6.5 Batch Code for Remove Artifacts

As illustrated in Code 18.1, there are at least four steps to remove artifacts.
The functions pop_fmrib_fastr, pop_fmrib_qrsdetect and pop_fmrib_pas were

used to remove fMRI gradient artifacts, detect QRS events, and remove pulse
artifacts, respectively.

The batch analysis in Code 18.1 has the same output as our prior setting in GUI.
Here, you can find that removement fMRI gradient artifacts and pulse artifacts have
several options.
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Code 18.1 Batch analysis code for remove artifacts

Fig. 18.7 The main results of FASTR during pulse artifacts correlation
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18.7 Conclusion

Both spatial and temporal information are very important for understanding the basic
principle of brain activity and to explore the neural and pathological mechanism of
mental diseases. Simultaneous EEG-fMRI has broad prospects for application and
has developed rapidly in the past decade. The number of papers continues to grow,
and the scope of application continues to expand.

18.7.1 Future Direction

Although the advantages of simultaneous EEG-fMRI are obvious, there are many
technical difficulties in the combination of them. Because the data is multimodal and
collected at the same time, the signal will interfere with each other, and some
artifacts can hardly be removed. In the algorithm of artifact removal, the average
artifact subtraction has achieved some success (Green et al. 2017; Steyrl et al. 2017),
and the ICA based on blind source analysis has a wide application (Wang et al.
2018). However, how to further combine the pattern recognition, depth learning, and
some other brand-new methods, to develop a better artifact removal method? It is
still a difficult problem and need to be solved. In terms of hardware, there is no
mature artifact removal hardware system, and many parameters, such as the number
and distribution of carbon-wire loops, are still uncertain. Future research needs to
integrate both software and hardware and their interaction to further improve the
artifact removal effect.

With the improvement of hardware facilities and the innovation of software
methods, simultaneous EEG-fMRI is becoming a powerful tool and is enriching
the researchers’ tool kits (Table 18.3). Some representative research directions in the
future are:

1. Simultaneous EEG-fMRI combined with brain stimulation technology.
Transcranial magnetic stimulation (TMS) and transcranial direct current stimula-
tion (TDCS) are the most widely used noninvasive brain stimulation techniques.
It can stimulate the excitability of the cerebral cortex by stimulating the specific
parts of the brain and affect the metabolism of the brain and the electrical activity
of the brain. The combination of synchronous EEG-fMRI and transcranial elec-
trical/magnetic stimulation can provide electrophysiological and metabolic evi-
dence for the intervention effect. Bharath and so on used the synchronous
EEG-fMRI technique to study the changes in the brain function connection of
patients with writing spasm by repetitive TMS. The results showed that after the
stimulation, the two modes of EEG and fMRI showed the clustering coefficient
and the enhanced (Bharath et al. 2017) of the small-world network properties
(Ladenbauer et al.). Transcranial electrical stimulation was used to stimulate
0.75Hz in mild cognitive impairment patients during N2 sleep. They found that
electrical stimulation promoted the production of slow waves and spindle waves,
thereby enhancing and consolidating memory (Ladenbauer et al. 2017).
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2. Real-time artifact removal. At present, most simultaneous EEG-fMRI studies use
offline processing technology to explore the related neural mechanisms, but many
studies need to remove the nuclear magnetic artifacts online. For example, the
synchronous EEG-fMRI technique is used to explore the memory reactivation
process in the sleep stage, which requires the activation of memory during the
slow-wave sleep through sound, odor, and other stimuli. This requires a clear
slow wave can be seen in the synchronous acquisition to read the sleep phase.
Real-time artifact removal techniques such as reference layer adaptive filtering
(Steyrl et al. 2017) and carbon fiber cable sheath artifact correction (van der Meer
et al. 2016) lay the foundation for these studies.

Table 18.3 The MATLAB software for EEG-fMRI fusion

Toolbox Application in EEG-fMRI fusion Other functions
References
and Links

SPM Preprocess of EEG and fMRI
data; EEG-informed fMRI anal-
ysis (general linear model);
fMRI-constraints EEG imaging

Group inference of EEG and
fMRI data; general linear
model; dynamic causal model

Friston et al.
(1994)

www.fil.ion.
ucl.ac.uk/spm

GIFT Fusion of EEG-fMRI in feature
level; group ICA of EEG and
fMRI; joint ICA and parallel
ICA

Fusion of fMRI and DTI,
fMRI and gene data; visuali-
zation, sorting, and average of
ICs

Calhoun et al.
(2001)

EEGIFT http://icatb.
sourceforge.
net

FIT

EEGLAB Artifact correction; independent
component analysis

EEG time-frequency decom-
position; single trail analysis

Delorme and
Makeig
(2004)

FMRILAB http://sccn.
ucsd.edu/
eeglab

fMRIB Artifact correction http://users.
fmrib.ox.ac.
uk/~rami/
fmribplugin

BERGEN http://fmri.
uib.no/tools/
bergen_
plugin.htm

STEFF Simulation fusion in EEG and
fMRI

Lei et al.
(2010)

http://www.
leixulab.net/
software.asp

NIT Artifact correction;
EEG-informed fMRI analysis;
fMRI-constraints EEG imaging

The fMRI module has fMRI
specific preprocessing; the
EEG module has EEG spe-
cific preprocessing

Dong et al.
(2018)

http://www.
neuro.uestc.
edu.cn/NIT.
html
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3. Multimodal neural feedback. Neural feedback based on EEG signals has a history
of several decades and has accumulated a lot of experience, but the brain
mechanism related to the effect of intervention is still unclear. On the basis of
real-time noise removal, Zich used motion imagination to train stroke patients
through EEG neural feedback, and collect fMRI synchronously, and explore the
relationship between neural feedback based on motion imagination and activation
of sensory motor cortex (Zich et al. 2015). A closed loop based on two modes of
man-machine interaction and the evaluation of the effect of intervention with
fMRI can help to promote the rehabilitation training and effect tracking of the
related diseases.

18.7.2 Scientific Questions Answered by EEG/fMRI Fusion

FMRI is sufficient for questions of where, and EEG is sufficient for questions of
when in some cognitive neuroscience researches (Friston 2009). Then, what is the
sort of scientific question which really requires EEG/fMRI fusion? This question is
particularly important for the extensive application of simultaneous EEG-fMRI.

At present, simultaneous EEG-fMRI is widely used in the fields of epilepsy and
sleep. This is because in the epileptic study, simultaneous EEG-fMRI can be a
noninvasive, precise location of the epileptic focus. In the sleep study, sleep stages
must rely on the synchronous acquisition of EEG signals, which makes the simul-
taneous EEG-fMRI technology irreplaceable in these two fields. In the future
research, researchers should give full play to the advantages of simultaneous
EEG-fMRI, select the appropriate analytical methods, and solve the scientific prob-
lems of concern.

In initial, people used simultaneous EEG-fMRI technique to reveal the areas of
the brain with changed BOLD signal in response to epileptic spikes detected in the
EEG signal. Established diagnostic application in the last 10 years improves our
understanding of the spatiotemporal characteristics of epileptic networks (Vulliemoz
et al. 2010). Another promising application is the study of rest-state network.
Researches both in EEG (Chen et al. 2008; Laufs et al. 2003) and fMRI (Mantini
et al. 2007) have illustrated that these networks are pervasive in resting state and
during task performance and hence provide robust measures of the interacted brain
activity.
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Chapter 19
EEG/ERP Data Analysis Toolboxes

Gan Huang

Abstract The development and application of new methods allow us to perform
more advanced analyses on EEG signals. However, the understanding of the math-
ematical and methodological details about these new methods would be no easy for
the researchers without engineering and mathematics background. As a collection of
tools for EEG signal processing and data visualization, EEG/ERP analysis toolboxes
make the researchers be able to perform the complex analysis by simply clicking
buttons or running some lines of MATLAB script. In this chapter, we firstly make a
brief overview about the currently popular toolboxes in EEG/ERP analysis, such as
EEGLab, FieldTrip, BrainVision Analyzer, etc., and then focus on the introduction
of Letswave, which is an intuitive and streamlined tool to process and visualize EEG
data, with a shallow learning curve. Examples are provided for a better understand-
ing of Letswave7 in EEG/ERP data analysis.

Keywords Toolbox · Letswave · Signal processing · Data visualization

19.1 Brief Overview

In the recent decades, a variety of new methods have been developed and applied in
the area of EEG analysis. By integrating these methods, the development of
EEG/ERP toolboxes provides the researcher with powerful and convenient tools
for EEG signal visualization and processing. In the following, we make a brief
overview of these most frequently used toolboxes in EEG/ERP analysis.

EEGLAB (Delorme and Makeig 2004): Currently the most widely used open-source
toolbox for EEG/ERP analysis, which provides the basic operations from data
importing, segmentation, ICA, bandpass filtering, baseline correction to time-
frequency analysis, etc. EEGLAB has been developed by Arnaud Delorme and
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Scott Makeig at the Salk Institute (La Jolla CA, USA) since 1997. Based on
different levels of programming sophistication, EEGLAB provides both menu-
based graphic user interface (GUI) and script-based command-line interface
(CLI) on the platform of MATLAB. Rich plugins make it easier for users to
complete more diverse tasks with EEGLAB.

FieldTrip (Oostenveld et al. 2011): Another famous MATLAB-based open-source
EEG analysis toolbox. The development team is from the Donders Institute for
Brain, Cognition and Behaviour (Radboud University, the Netherlands), led by
Robert Oostenveld and Jan-Mathijs Schoffelen. FieldTrip provides a set of
functions with some advanced operations for EEG analysis, such as source
analysis and cluster-based permutation test. However, no graphic interface
makes it difficult for beginners to use, especially those without any programming
foundation.

Letswave: As another comprehensive EEG/ERP analysis toolbox, Letswave was
developed by the team of André Mouraux (Institute of Neuroscience, Université
catholique de Louvain, Belgium). Compared to other EEG signal processing
toolboxes, Letswave emphasizes on intuitive and streamlined tools to process
and visualize EEG data, with a shallow learning curve. More detailed introduc-
tion about Letswave is arranged in the following section.

Some other toolboxes may be not developed just for EEG signal processing but
also provide excellent tools on EEG/ERP analysis. For example, BrainStorm (Tadel
et al. 2011) shares a comprehensive set of user-friendly tools with the scientific
community using MEG/EEG as an experimental technique. Statistical parametric
mapping (SPM) (Litvak et al. 2011), designed for the analysis of brain imaging data
sequences, is compatible for the analysis of fMRI, PET, SPECT, EEG, and MEG.
Different from most of the open-source toolboxes, MNE-Python (Gramfort et al.
2013) provides a collection of functions for MEG/EEG processing and visualization
on the Python platform.

In addition to these free academic toolboxes, there are some excellent EEG
analysis commercial programs that are often used with some specialized amplifiers,
such as BrainVision Analyzer for Brain Product and Scan for Neuroscan. In most
cases, the commercial tools for EEG analysis are developed with programming
languages, which should be called program since they normally exactly generate
an executable program. While the free tools should be called as toolboxes, because it
is a set of scripts on certain platform, not a program in the strict sense. Compared
with free toolboxes, commercial program normally provides a more efficient and
friendlier user interface, but the higher prices limit their use in academia community.
To the best of the authors’ knowledge, we have seen any research group packaged
their newly developed methods into a plugin for these programs for the others to use.

Some free toolboxes and commercial programs may not provide full functionality
for EEG analysis but only provide analysis functions in some specialized areas, such
as SIFT (Delorme et al. 2011), MVGC (Barnett and Seth 2014), Hermes (Niso et al.
2013), TRENTOOL (Lindner et al. 2011), EEGNET (Lawhern et al. 2016), and
Chronux (Bokil et al. 2010) for connectivity estimation and LORETA, BESA, and
Curry for source analysis.
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The web links of all toolboxes and programs are listed as follows:

• EEGLAB: https://sccn.ucsd.edu/eeglab/
• FieldTrip: http://www.fieldtriptoolbox.org/
• Letswave: https://letswave.cn/
• BrainStorm: https://neuroimage.usc.edu/brainstorm
• SPM: https://www.fil.ion.ucl.ac.uk/spm/
• MNE-Python: https://mne-tools.github.io/
• Analyzer: https://www.brainproducts.com/promo_analyzer2.php
• Scan: https://compumedicsneuroscan.com/tag/scan/
• SIFT: https://sccn.ucsd.edu/wiki/SIFT
• MVGC: http://www.sussex.ac.uk/sackler/mvgc/
• Hermes: http://hermes.ctb.upm.es/
• TRENTOOL: http://www.trentool.de/
• EEGNET: https://sites.google.com/site/eegnetworks
• Chronux: http://chronux.org/
• LORETA: http://www.uzh.ch/keyinst/loretaOldy.htm
• BESA: http://www.besa.de/
• Curry: https://compumedicsneuroscan.com/curry-8-released/

19.2 The Introduction of Letswave

19.2.1 General Overview

Letswave is a free, open-source MATLAB toolbox to analyze EEG and other
neurophysiological signals, covered under the terms of the GNU General Public
License. The project is managed by André Mouraux (Institute of Neuroscience,
Université catholique de Louvain, Belgium), in collaboration with Gan Huang
(Shenzhen University, China), Bruno Rossion (Institute of Neuroscience, Université
catholique de Louvain), Li Hu (Institute of Psychology, Chinese Academy of
Sciences, China), and Giandomenico Iannetti (University College London, UK).
The development of Letswave started in 2006. The first four versions are developed
in Borland Delphi. It is switched to MATLAB platform since Letswave5. Up to
today, the newest version of the Letswave is Letswave7, and it continues to be
developed.

Letswave can be used on Windows, Mac, or Linux system with MATLAB 2010
or later version. Considering the major updating of graphics system in MATLAB
2014b, MATLAB with the version later than 2014b is highly recommended for
running Letswave. The basic processing requirement is 4GB RAM. For larger
dataset analysis, 8GB RAM is recommended, and 16GB or more of RAM would
be helpful in time-frequency analysis.

Letswave includes the following four modules, which is shown in Fig. 19.1:

• Manage module is the main interface of Letswave. It can be launched by typing
“letswave” in the command window of MATLAB. The role of the manage

19 EEG/ERP Data Analysis Toolboxes 409

https://sccn.ucsd.edu/eeglab/
http://www.fieldtriptoolbox.org/
https://letswave.cn/
https://neuroimage.usc.edu/brainstorm
https://www.fil.ion.ucl.ac.uk/spm/
https://mne-tools.github.io/
https://www.brainproducts.com/promo_analyzer2.php
https://compumedicsneuroscan.com/tag/scan/
https://sccn.ucsd.edu/wiki/SIFT
http://www.sussex.ac.uk/sackler/mvgc/
http://hermes.ctb.upm.es/
http://www.trentool.de/
https://sites.google.com/site/eegnetworks
http://chronux.org/
http://www.uzh.ch/keyinst/loretaOldy.htm
http://www.besa.de/
https://compumedicsneuroscan.com/curry-8-released/


module is mainly data management, such as dataset import/export/delete/rename,
epochs/channels/events management, and also multiple datasets selection for
further operation. In the manage module, all the datasets are managed by the
affixes in their filenames, which are separated by space. Multiple datasets can be
easily and quickly selected from tens of thousands of datasets by the affixes
filtering in the left side. After the selection, the interface to the other modules is
provided in the menu of the manage module and right-clicking menu.

• Batch module contains multiple functions for EEG signal analysis, including
data preprocessing, segmentation, time/frequency domain analysis, and statistical
analysis. Batch module allows the GUI-based users to do the same processing on
a single dataset or multiple datasets at the same time. It is also easier for the users
to do multiple processing steps on the same dataset(s). This processing history
can also be viewed in the batch module. Furthermore, users can define their own
processing flow, which may involve multiple datasets and multiple processing
steps. The frequently used processing flow can also be saved in the menu of the
manage module. For another similar dataset(s), the users can call out the
processing flow and just modify the input datasets to run the analysis. More
interestingly, once the processing flow has been made, the script has also been
generated automatically. Just by clicking the button of “script”, users can get the
corresponding script without writing any code.

• Viewer module is used for the observation of one or multiple dataset(s). Viewer
module includes a set of viewers, which are used for the observation of the
continuous data and the result in time domain and time-frequency domain,
respectively. For example, there is a batch of time domain datasets with multiple
channels and several epochs. The viewer allows the users to display the result in

Fig. 19.1 The framework of Letswave. There are four modules in the GUI design, which are
manage module, batch module, viewer module, and figure module
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their own way, that is, show the datasets in separated windows in different rows
or columns for different datasets/channels/epochs or superimpose them in the
same windows. Spatial topography information can be jointly displayed for a
single time/frequency point or the mean value from certain interval. Simple
statistic of the mean, maximum, and minimum value with their location on the
selected interval would make the work of peak detection with their latency
information become simple and intuitive.

• Figure module is used for figure generation, that is, to customize the figure to
show the waveform, time-frequency response, and the topography which could
be used in the publication or presentation or importing to the other graphics
software for further editing. Different from the other existence toolboxes, the
figure module is very open. The GUI-based user can make their graphics from
certain templates or directly from a blank canvas. It allows user to flexibly
customize the layout, free to the style of font, line, and map. Further, the graphics
can also be saved as a template. The user can generate a new graphic in the same
style with different data sources by using this template.

19.2.2 To GUI-Based Users

With the graphic interface, the users can easily to run the whole progress for EEG
analysis, from data importing, preprocessing, time-frequency analysis to statistical
analysis. Compared with the existence toolboxes, there are two major features in the
design of Letswave7.

Firstly, the function of data management is strengthened in Letswave. With number
of subjects increasing, the lack of data management and batch processing func-
tions makes the existence toolbox be difficult to handle the large number of
datasets by GUI. Take an experiment with a two-way ANOVA design for
example. If there are 3 levels for each factor and 120 subjects were included in
the experiment and 1 dataset for 1 condition from 1 subject, then there would be
more than 1000 raw datasets involved in the study. Including intermediate files
and the final results, the number of the datasets involved in this study would be
three or four times larger than 1000. Even selecting the target datasets for the
corresponding processing would be difficult for GUI-based user. Hence, the
datasets management and data batch processing are necessary in the design of
the EEG signal processing toolbox. Hence, in Letswave, the datasets are managed
by affixes; two list boxes in the left side of the manage module make it easy to
dataset selection.

Secondly, the function for data visualization is separated into two parts, which are
data observation during data analysis in viewer module and figure generation for
publication in figure module. Data observation does not require beauty of the
image, but is highly demanding in terms of convenience and observability during
the whole process of the data processing, from data import, artifact rejection in the
preprocessing to the joint result observation in time-frequency-spatial domain.
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19.2.3 To Script-Based Users

In addition to the GUI, script may be the most commonly used feature in Letswave.
The following unique designs make the script writing super easy in Letswave:

19.3 Full Transparency Between Script and GUI

In batch module, Letswave runs a processing flow by running the corresponding
MATLAB script. Once the processing flow has been made, the corresponding
MATLAB script has already been generated automatically. Users can click the
“script” button in the batch module to get the full script. Hence, the users, who
have learned the use of GUI, almost already understand the writing of script.

The script for the single-step operation can also be gotten with the “script” button
in each step, which can tangibly reduce the users’ dependence on the tutorial and the
help document. This feature is essential, since it can effectively help the script-based
user to speed up the script writing and improve the script quality. More importantly,
it can really reduce the script-based user’s entry threshold. Even the users without a
solid background for MATLAB programming are able to write high-quality script
for batch EEG signal processing.

Not only batch module, the operations in other modules can also become scripts
automatically. Hence, from data import, to preprocessing, time/frequency analysis,
and statistical analysis, to the final figure generation, the whole process can be easily
and quickly written as a script for the EEG signal analysis.

19.4 Easy Access to the Data

Each dataset can be easily accessed by clicking “send to workspace” in the right
menu in the manage module, which would be appeared as a variable with the name
of “lwdata” in the workspace of MATLAB. Then the script-based user can make
their own operation on the dataset in MATLAB. After the operation, the user can
also save the dataset in the format of Letswave by clicking “read from workspace” in
the right menu in the manage module.

Similarly, the other information is also easily to be accessed in the other modules,
such as the event information, the channel name, and statistical result about the
mean, maximum, and minimum value.
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19.5 The Simplest Grammar

In Letswave, we provide a rich library of functions for the script-based users, which
are starting with FLW_. The grammar of all the functions in this library is uniform.
For one step of operation, we just need to define the option and then call the
corresponding FLW function.

option=struct('XXX',xxx,'XXX',xxx);
lwdata= FLW_XXX.get_lwdata(lwdata,option);

The parameters setting in the option is identical to the parameter’s selection in the
GUI. It just needs to be noticed whether the input and output of the function is a
single dataset or multiple datasets.

19.5.1 To Developers

Developers can also make their own methods integrated into Letswave by develop-
ing the FLW file. For these advanced users, the requirements on the programming
will be much higher.

Before the developing, the understanding of the data structure of Letswave is
important (Fig. 19.2). In Letswave, each dataset is saved in the hard driver by two
files, which are “lw6” and “mat” files. “Lw6” file is a basic description about the
dataset, including some simple information such as filename, data size, the starting
point, and step size for each dimension. Some information, like the channel, event,
and history, are kept in the “lw6” file as structure variables. “Mat” file is using a
six-dimension matrix to save the data with respect to epoch, channel, and index, z, y,
x correspondingly. In MATLAB, the dataset “lwdata” is composed of header and
data, which are form lw6 and mat file, respectively.

The developing of FLW function mainly includes four parts of work. Firstly,
design the UI which would be integrated into batch module. Secondly, define the
parameter setting for Letswave generating the script automatically. Thirdly, imple-
ment their methods. Finally, put the FLW file into the corresponding place for
Letswave to call it. A guide about how to write a FLW file is also included in the
toolbox.
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19.6 Download and Setup

19.6.1 Download

The latest version can be downloaded as an archive from the NOCIONS Github
repository (https://github.com/NOCIONS/letswave7/archive/master.zip). The users
can also download the zip file by visiting the NOCIONS Github repository (https://
github.com/NOCIONS/letswave7) and manually download it.

Fig. 19.2 The data structure for a dataset in Letswave
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19.6.2 Installation

• Unzip the zip archive of Letswave7 in the folder of your choice.
• Launch MATLAB.
• In the MATLAB menu ribbon, click on “Set Path”.
• In the Set Path window, click button “Add Folder” (Fig. 19.3).
• Select the location of the Letswave7 folder.
• Save the modified path and close.

To check whether the installation is successful or not, input “letswave7” in the
command windows of MATLAB. The pop-up of manage module, which is the main
interface in Letswave7, indicates that the installation is successful.

19.7 Example for Single-Subject Analysis

In this part, a dataset with P300 experiment will be used to illustrate the data
processing for single subject. After the preprocessing with frequency filtering, bad
electrodes interpolation, and ICA decomposing, both time domain analysis and time-
frequency domain analysis will be performed on the single-subject level.

Fig. 19.3 In the Set Path window, click the “Add Folder” button
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19.7.1 Dataset Importing

The dataset is a P300 experiment for one subject, recorded by BrainAmp (Brain
Products GmbH, Germany) with 64 channels, 1000Hz sampling rate, and referenced
to FCz. Visual oddball experiment with the red as the target stimuli (marked as “S
9”) and white as the nontarget stimuli (marked as “S 10”) on the screen. Each square
lasts 80ms with the ISI 200ms. Six hundred trials of the stimuli in all are arranged in
a 2-min session, in which target stimuli come with the possibility of 5%. The
participant is asked to count the number of red square and report after the session
to make the participant keep attention on the screen. Download the raw dataset
(https://github.com/NOCIONS/letswave7_tutorial/raw/master/rawdata1.zip), and
unzip the rawdata1.zip file. There are three files, which are sub093.eeg, sub093.
vhdr, and sub093.vmrk.

Open MATLAB, and input “letswave7” in the command windows of MATLAB
to open Letswave7. Set the path of Letswave to the folder of the dataset, like “C:
\Users\Adminstrator\Desktop\SynologyDrive\rawdata1” here (Fig. 19.4).

Select File->Import->Import EEG/MEG data files in the menu of the manage
module, and then the dialog of import data will pop up. Press the button add files to
add the file sub093.eeg. Press the button import files to import the dataset. During
the importing, it will display “processing.” Once the importing is finished, the
corresponding dataset will turn red and display “done.” Close the dialog of import
data; the dataset sub093 will be appeared in the manage module.

Select dataset sub093, and click View->Continuous Data Viewer in the menu to
check the data quality of the imported dataset. In the viewer of the continuous data, it
can be seen the channel P1 is obviously abnormal (Fig. 19.5). A strong 50Hz power
frequency interference covers the signal. Even after a notch filter, there is still a
strong noise. Hence in the following processing, channel P1 is treated as a bad
electrode, which would be interpolated by the surround channels.

Fig. 19.4 Set the path of Letswave to the folder of the dataset
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19.7.2 Useless Channels Removing

Before removing useless channels, usually it is necessary to assign the coordinate
information for each channel in the dataset firstly. But Letswave7 can automatically
assign the channel location with commonly used 10–20 system. If the other EEG
coordinate system is used, the users can still manually assign the correct channel
location by clicking Edit->Electrodes->Edit electrode coordinates in the menu.

To make an efficient analysis and save the storage space, removing the useless
channels is necessary. In this example, channel IO will be removed, which records
the electrooculogram (EOG) signals. To remove channel IO, select the dataset
sub093 in the manage module, and click Edit->Arrange signals->Rearrange or
delete epochs, channels, indexes in the menu. In the batch module (Fig. 19.6), press
the button Add all to add all the channels into the left list box. Then select channel
IO, and press button Remove to delete channel IO. Click the button Run in the
bottom of batch module, and then a new dataset with the name sel_chan sub093 will
be appeared in the data list of the manage module.

19.7.3 Frequency Filtering

Frequency filtering is an effective way to filter out the high-frequency artifact,
low-frequency drift, and the 50/60Hz power-line interference. In this case, the
bandpass filter is set as 0.05–30Hz. Select the dataset sel_chan sub093 in the manage
module, and click Process->Frequency analysis and filters->Butterworth filters
in the menu. In the batch module, set the low cutoff frequency (Hz) as 0.05Hz, and

Fig. 19.5 Check the quality of the imported dataset
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click the button Run to run the bandpass filtering. A new dataset with the name butt
sel_chan sub093 will be appeared in the data list of the manage module.

19.7.4 Bad Electrodes Interpolation

In this step, channel P1 would be interpolated with the surround channels. Select the
dataset butt sel_chan sub093 in the manage module, and click Edit->Electrodes-
>Interpolate channel using neighboring electrodes in the menu. In the batch
module, select channel P1 in the Channel to Interpolate list box, and then click
the button Find closest electrodes. Since the number of channels used for inter-
polation is 3 for the default setting, Letswave7 will find the closest electrodes P3,
Pz, and CP1 for interpolation automatically according to the location of the chan-
nels. Click the button Run for the bad electrodes interpolation. A new dataset with
the name chan_interp butt sel_chan sub093 will be appeared in the data list of the
manage module.

19.7.5 ICA Decomposing

Independent component analysis (ICA) is a kind of blind signal separation (BSS)
method. Linearly, ICA can be modeled as in Fig. 19.7. Consider X is the recorded

Fig. 19.6 Useless channels removing
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EEG signal with the dimension channel � time, S is the source signal with the
dimension component � time, and A is the mixing matrix with the dimension
channel � component. The aim of ICA is to find the mixing matrix A to make
each component (each row) to be independent of each other. According to the linear
model, ICA can be used for artifact removing in EEG signal processing by the
following steps:

1. Run ICA algorithm to get the mixing matrix A.
2. Automatically, we can have the source signal S ¼ pinv(A) � X.
3. Identify the artifact component manually in S. By setting the corresponding row

as 0, we have S_bar.
4. By S_bar with the artifact removed, we can automatically get

X_bar ¼ A � S_bar.

The signal X_bar is the result by ICA artifact removal. In Letswave7, steps 2 and
4 can be completed automatically, in which pinv(A), also called unmixing matrix, is
the pseudo-inverse matrix for matrix A. Step 1 (computer ICA matrix) and step
3 (identify artifact component) need to be performed manually. Hence, in
Letswave7, we need two steps to finish the work of artifact removal by ICA.

Select the dataset chan_interp butt sel_chan sub093 in the manage module, and
click Process->Spatial filters (ICA/PCA)->Compute ICA matrix in the menu. In
the batch module, select number of components as decide by user, and set the
components numbers as 40. Click the button Run for compute ICA matrix. A new
dataset with the name ica chan_interp butt sel_chan sub093 will be appeared in the
data list of the manage module.

After computing the ICA matrix, we need to manually identify the components
with artifact. Select the dataset ica chan_interp butt sel_chan sub093 in the manage
module, and click Process->Spatial filters(ICA/PCA)->Apply ICA/PCA spatial
filter in the menu. The interface is popped up for manually removing component for
spatial filter (Fig. 19.8). Different types of information is marked with different
colors. The black color represents the original signal X, color blue for source S, and
color orange for the filtered signal X_bar. In the left panel (black), we can select the
dataset, epoch, and channel to check the original signal X as the black curve in the
middle panel. Next, we can select the component in the left panel (blue) to check the
time, frequency, and spatial feature of each component of source S in the bottom
panel (blue). After identifying the component as the artifact in the right panel in
orange, the orange curve in the middle panel would show the corresponding filtered
signal X_bar. We can check the result of ICA filtering immediately. In this study,
component 1 is identified as the eye blink artifact. The scalp topography suggests
the “equivalent current dipole” (ECD)s close to the eyes. The waveform in the time
domain looks like a spike. The power in the frequency domain concentrates at
low-frequency band (<5Hz). All these suggest comp 1 as the eye blink artifact.
After removing this component by selecting comp 1 in the right panel, the blink

Fig. 19.7 Linear model
for ICA
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artifact has been effectively removed as compared the orange curve X_bar with the
black curve X in the middle panel. Similarly, component 2 as the artifact with lateral
eye movement. The clear evidence can be observed from the scalp topography.
Select comp 1 and comp 2 in the right panel, and click the buttonOK. A new dataset
with the name sp_filter ica chan_interp butt sel_chan sub093 will be appeared in the
data list of the manage module, which is a result of artifact removing by ICA.

The order for ICA and segmentation should also be discussed in preprocessing.
Since ICA is a data-driven method for artifact removal, we need enough data to run
ICA. While, excessive amount of data can greatly increase computing time, but the
improvement of the accuracy in the result is limited. Normally, we run the ICA after
segmentation, since segmentation could shorten the data length and remove irrele-
vant noises. However, in this case of the P300 study, the overlap between trials is

Fig. 19.8 Artifact component identification
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very serious; running ICA after segmentation would unnecessarily increase calcu-
lation time. Hence, ICA is applied before segmentation.

In this case, we run the ICA by selecting the number of the components as 40.
Normally, the maximum number of independent components that can be separated is
equal to the number of channels in the original signalX. IfX has been referenced, the
maximum number should minus 1. For each channel has been interpolated, the
maximum number should minus 1 again. In addition, decreasing the number of
independent components to separate is a way to reduce the computing time for the
ICA matrix. In this case, since the channel number 64 is large enough, we set the
number of independent components as 40 is OK.

19.7.6 Segmentation

Select the dataset sp_filter ica chan_interp butt sel_chan sub093 in the manage
module, and click Process->Epoch segmentation->Segment relative to events
(one file per event code) in the menu. In the batch module, select event codes S 9
and S 10, and set the epoch starting time and duration as -1 and 3. Click the button
Run in the bottom of batch module, and then two new datasets with the name ep_S
9 sp_filter ica chan_interp butt sel_chan sub093 and ep_S 10 sp_filter ica
chan_interp butt sel_chan sub093 will be appeared in the manage module.

In the menu, there are two items for segmentation, which are Segment relative to
events and Segment relative to events (one file per event code). They have similar
function, but the output would be different. If multiple event codes have been
selected, Segment relative to events will segment all the epochs with different
event codes into one dataset. However, with Segment relative to events (one file
per event code), separated dataset will be generated according to different event
codes. For example, in this case of P300 dataset, the target and nontarget events are
marked as S 9 and S 10. Hence with Segment relative to events (one file per event
code), two datasets have been generated.

Since no obviously artifact has been observed for both the two datasets, it is not
necessary to perform artifact rejection on these datasets. Hence, this step is omitted
in the preprocessing of this P300 dataset. If necessary, the operation of artifact
rejection can be done by clicking Edit->Arrange signals->Rearrange or delete
epochs, channels, indexes in the menu.

19.7.7 Rereference

In the study of P300, the average of bilateral mastoids regions normally is selected as
reference. Hence, we will rereference to the mean value of TP9 and TP10. Select the
datasets ep_S 9 sp_filter ica chan_interp butt sel_chan sub093 and ep_S 10 sp_filter
ica chan_interp butt sel_chan sub093, and click Process->Rereference signals-
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>Rereference in the menu. In the batch module, select the TP9 and TP10 as the new
reference in the left list box, and select all channels in the right list box for apply
reference to. Click the button Run in the bottom of batch module to finish the work
of artifact rejection. Two new datasets with the name reref ep_S 9 sp_filter ica
chan_interp butt sel_chan sub093 and reref ep_S 10 sp_filter ica chan_interp butt
sel_chan sub093 will be appeared in the manage module.

Here, TP9 and TP10 are selected for using the mean value of the two channels as
the new reference. For the common average reference, we can select all channels in
the left list box, and then the average of all channels will be used as the new
reference.

19.7.8 Baseline Correction

In the previous processing, the epochs are segmented from -1s to 2s. Hence, the
baseline is set from -1s to 0s for baseline correction. Select the datasets reref ep_S
9 sp_filter ica chan_interp butt sel_chan sub093 and reref ep_S 10 sp_filter ica
chan_interp butt sel_chan sub093, and click Process->Baseline operation-> Base-
line correction in the menu. Keep the default setting in the batch module, and click
the button Run in the bottom of batch module to finish the work of artifact rejection.
Two new datasets with the name bl reref ep_S 9 sp_filter ica chan_interp butt
sel_chan sub093 and bl reref ep_S 10 sp_filter ica chan_interp butt sel_chan
sub093 will be appeared in the manage module.

19.7.9 Averaging

After the ten steps of preprocessing, we can simply average the epochs to do time
domain analysis. Select the datasets bl reref ep_S 9 sp_filter ica chan_interp butt
sel_chan sub093 and bl reref ep_S 10 sp_filter ica chan_interp butt sel_chan
sub093, and click Process->Average->Compute averag, std, median across
epochs in the menu. Keep the default setting in the batch module, and click the
button Run in the bottom of batch module for averaging. Two new datasets with the
name avg bl reref ep_S 9 sp_filter ica chan_interp butt sel_chan sub093 and avg bl
reref ep_S 10 sp_filter ica chan_interp butt sel_chan sub093 will be appeared in the
data list of the manage module.

To observe the waveform of time domain analysis result in the multiviewer, select
datasets avg bl reref ep_S 9 sp_filter ica chan_interp butt sel_chan sub093 and avg
bl reref ep_S 10 sp_filter ica chan_interp butt sel_chan sub093, and click the view in
the right-click menu. Selecting both the two datasets, selecting channel Pz, opening
the topography in the toolbar, and setting the cursor to 0.35, the P300 result from
single subject is shown as it is in Fig. 19.9.
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19.7.10 Continuous Wavelet Transform

To perform CWT for time-frequency analysis before the time domain averaging,
select the datasets bl reref ep_S 9 sp_filter ica chan_interp butt sel_chan sub093 and
bl reref ep_S 10 sp_filter ica chan_interp butt sel_chan sub093, and click Plugins-
>my_tfa->Averaged CWT in the menu. Keep the default parameter setting in the
batch module, and click the button Run in the bottom of batch module. Two new
datasets with the name avg cwt bl reref ep_S 9 sp_filter ica chan_interp butt
sel_chan sub093 and avg cwt bl reref ep_S 10 sp_filter ica chan_interp butt sel_chan
sub093 will be appeared in the manage module.

The operation of Plugins->my_tfa->Averaged CWT combines the steps of
CWT and averaging together, which can be performed by Process->Frequency
analysis and filters->CWT (Continuous Wavelet Transform) and Process-
>Average->Compute average, std, median across epochs, respectively, in the
menu. Since the time-frequency analysis is time-consuming and also need a larger
space for storage, the computer with small memory would easily go to the error of
“out of memory”. Hence, we combine the steps of time-frequency analysis and
averaging together as a plugin for saving the storage space.

After the time-frequency analysis, baseline correction in time-frequency domain
is necessary as it is in time domain. Select the datasets avg cwt bl reref ep_S
9 sp_filter ica chan_interp butt sel_chan sub093 and avg cwt bl reref ep_S
10 sp_filter ica chan_interp butt sel_chan sub093, and click Process->Baseline
operation-> Baseline correction in the menu. It is suggested to shrink the interval
for baseline correction in time-frequency domain. Hence, we set the -0.75 to -0.25

Fig. 19.9 The result of time domain analysis for P300 on single-subject level
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seconds as the baseline in the batch module. Click the button Run in the bottom of
batch module for baseline correction. Two new datasets with the name bl avg cwt bl
reref ep_S 9 sp_filter ica chan_interp butt sel_chan sub093 and bl avg cwt bl reref
ep_S 10 sp_filter ica chan_interp butt sel_chan sub093 will be appeared in the
manage module.

Select datasets bl avg cwt bl reref ep_S 9 sp_filter ica chan_interp butt sel_chan
sub093 and bl avg cwt bl reref ep_S 10 sp_filter ica chan_interp butt sel_chan
sub093. Click the view in the right-click menu, set the separate graphs (columns) as
datasets, select both the two datasets, select channel Pz, and set color range from -10
to 10; the result of time-frequency analysis can be observed in the multiviewer
(Fig. 19.10). Open the topography, and set the cursor to x¼0.35 and y¼3; we can
observe the phase-locked P300 activity on the topography.

19.8 Example for Multiple-Subject Analysis

19.8.1 Datasets Merge

Based on the single-subject analysis, we will focus on the multiple-subject analysis
in this part. Before this, we need to arrange the datasets. For ease of the group
analysis, we need firstly to downsample the datasets from 1000Hz to 250Hz by
clicking Edit->Resample Signals->Downsample signals (integer ratio) and set-
ting the down sampling ratio to 4. And then we need to rename these datasets, since
the filename is too long for displaying. Select these dataset ds avg bl reref ep_S
9 sp_filter ica chan_interp butt sel_chan sub093, and press the rename in the right-

Fig. 19.10 The result of time-frequency analysis for P300 on single-subject level
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clicked menu, and rename the selected dataset to Sub093 P300 target. Similarly,
rename the dataset ds avg bl reref ep_S 10 sp_filter ica chan_interp butt sel_chan
sub093 to Sub093 P300 nontarget.

Copy all the results on single-subject level to a new folder such as rawdata2 here.
In this example, all 93�2 files, which are the average of all the epochs in the two
conditions of target and nontarget from 93 subjects, can be downloaded here (https://
github.com/NOCIONS/letswave7_tutorial/raw/master/rawdata2.zip). For multiple-
subject analysis, we need to merge the averaged P300s from 93 subjects into one
dataset, in which each subject in the new dataset is treated as an epoch. Select the tag
nontarget in the include list box from the left part of the manage module
(Fig. 19.11), and select all the datasets in the dataset list box in the right part of
the manage module. Select Edit->Arrange signals->Merge dataset epochs, chan-
nels, indexes, keep the default setting in the batch module, and click the button Run
to merge all these selected datasets in the condition of nontarget into one dataset
merge_epoch Sub001 P300 nontarget. In the same way, we can merge all the
datasets in the condition of target by selecting the tag target in the include list
box and get the dataset merge_epoch Sub001 P300 target with 93 epochs.

Select the tag merge_epoch in the include list box, and select all the datasets in
the manage module. Similar with the averaging operation on the single-subject level,
select Process->Average->Compute average, std, median across epochs. Keep
the default setting in the batch module, and click the button Run to average all the
epochs in the two datasets, which is actually run the grand average for all the subjects

Fig. 19.11 Datasets merge
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in the conditions of target and nontarget. Two new datasets with the name avg
merge_epoch Sub001 P300 nontarget and avg merge_epoch Sub001 P300 target
will be appeared in the manage module.

To view the result of grand average, select datasets avg merge_epoch Sub001
P300 nontarget and avg merge_epoch Sub001 P300 target, click the view in the
right-click menu, and select channel Pz. To observe the results with the same order
as it is in the single-subject level, select the dataset avg merge_epoch Sub001 P300
target, and click the button dataset up. Enabling the cursor and the 2D topography
in the toolbar and setting the location of the cursor to be 0.332, the grand average
topography of the P300 experiment can be observed in both the conditions of target
and nontarget at the peak time point of the P300 component (Fig. 19.12).

19.8.2 Statistical Analysis on Predefined Interval

With the hypothesis that the maximum or mean value of ERP from the
predefined interval 0.2 to 0.7s at channel Pz would be different between target
and nontarget conditions, paired-sample t-test will be performed on the
93 subjects.

Firstly, we need to pick up the maximum and mean value from the interval 0.2 to
0.7s at channel Pz for both target and nontarget conditions. Select the datasets
merge_epoch Sub001 P300 nontarget and merge_epoch Sub001 P300 target, and
click the view in the right-click menu. Select dataset merge_epoch Sub001 P300
target and channel Pz, set the Superimposed waves as epochs, enable the interval
selection in the toolbar, and set the explore interval as 0.2–0.7s. Press the button

Fig. 19.12 The time domain result of the P300 for multiple-subject analysis
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Table; a table is popped up with the statistic of the maximum and mean value; copy
these data to the external software, such as Excel or SPSS, for the further statistical
analysis. Similarly, select the dataset merge_epoch Sub001 P300 nontarget, and
press the button Table; pick up the same value on another dataset, and copy it to the
external software (Fig. 19.13).

Here the statistical inferences are done in Excel. Previously, we copy the maxi-
mum and mean value in the condition of target to columns A and B and copy the
maximum and mean value in the condition of nontarget to columns C and D. In item
E1, input “¼T.TEST(A:A,C:C,2,1)” for the paired-sample t-test on the maximum
value. The result p¼ 6.8 � 10^-40 indicates that for the maximum value of the EEG
signal in the interval 0.2–0.7s on channel Pz, there is a significant difference between
the conditions of target and nontarget. Similarly, input “¼T.TEST(A:A,C:C,2,1)”
in item E2 for the paired-sample t-test on the mean value. The result p ¼ 3.2 �
10^-28 indicates that for the mean value of the EEG signal in the interval 0.2–0.7s on
channel Pz, there is a significant difference between the conditions of target and
nontarget (Fig. 19.14).

19.8.3 Point-Wised Statistical Analysis

Different from the hypothesis-driven approach as is shown above, we can also do the
point-wised statistical analysis, which is a data-driven method without any previous
experience for interval selection. Select the datasets merge_epoch Sub001 P300

Fig. 19.13 Detect the peak and mean value of the P300 for all subjects in the interval of 0.2–0.7s at
channel Pz
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nontarget and merge_epoch Sub001 P300 target, and click Statistics->Compare
two datasets (paired sample/two sample t-test). Keep the default setting in the
batch module, and click the button Run to get the point-wise t-test result ttest
merge_epoch Sub001 P300 target in the manage module.

Select dataset ttest merge_epoch Sub001 P300 target, and click the view in the
right-click menu; select the channel as Pz, and keep the index as p-value. Since we
set the significant level α ¼ 0.05, we can set the Y-axis as 0–0.05 to watch the
interval with the p-value lower than 0.05. It could be found except the main cluster
around 0.2–0.7 seconds; there are still several clusters in the other time intervals,
even before the stimulus, which indicates a high family-wise error rate (Fig. 19.15).
Bonferroni correction can be done by simply setting the y-axis as 0–0.000001. Since
there are 750 time points and 63 channels in the test, the corrected α value by
Bonferroni method is 0.05/750/63 ¼ 10^-6.

Cluster-based permutation test is an efficient way to reduce family-wise error rate.
In the same way in the point-wise t-test, select the datasets merge_epoch Sub001
P300 nontarget and merge_epoch Sub001 P300 target, and click Statistics->Com-
pare two datasets (paired sample/two sample t-test). Enable the bottom panel for
the cluster-based permutation test. To get a more precise result, set the number of

Fig. 19.14 Paired-sample t-test in Excel
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permutations as 20000, which would take more time for computing. Click the button
Run; the result would be kept in the dataset with the same name ttest merge_epoch
Sub001 P300 target.

Open the dataset ttest merge_epoch Sub001 P300 target by clicking the view in
the right-click menu. The uncorrected result is exactly the same as it is in the point-
wise t-test. Set the index as “cluster p-value”, and set the cursor as 0.332, which is
the peak of the P300 component. It can be found that only the main cluster on
channel Pz is reserved after cluster-based permutation test; the other clusters are
excluded as false positive (Fig. 19.16).

19.9 Figure Generation and Batch Processing

19.9.1 Figure Generation

Figure generation is an important feature in Letswave7. Based on the result of
multiple-subject analysis and statistical analysis, we can generate Fig. 19.17 by the
following steps:

Step1: Open the figure module

• Select the datasets avg Sub001 P300 nontarget and avg Sub001 P300 target in
the folder of rawdata1.

• Click Figure->General Figure creator to open the figure module with a
blank canvas.

Fig. 19.15 Point-wised paired-sample t-test result on channel Pz
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Step2: Create the subfigures

• Set the width and height of the figure as 1000 and 400.
• Add a curve with the title P300, font size 12, and position x¼80, y¼ 70,

w¼870, and h¼300.
• Add a topography with the title 0 ms, font size 12, and position x¼ 100,

y¼180, w¼120, and h¼120.

Fig. 19.16 The result from cluster-based permutation test
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• Add a topography with the title 332 ms, font size 12, and position x¼ 230,
y¼180, w¼120, and h¼120.

• Add a topography with the title 500 ms, font size 12; enable the color bar in
the content panel and position x¼100, y¼180, w¼120, and h¼120.

Step3: Add the content

• Click the content button in the toolbar, and select P300 in the subfigure. Add a
curve with width as 3, the data source as avg merge_epoch Sub001 P300
target, and channel as Pz.

• Add a curve with the color as blue [0,0.45,0.74], width as 3, line style as
dashed, data source as Sub093 P300 nontarget, and channel as Pz.

• Add a rect with face opacity 0.25, edge opacity 0, position x ¼ 0.196, y¼ -2,
w ¼ 0.516, and h ¼ 14. And sort the rect above the curve1 and curve2.

• Add a line with width as 1, line style as dashed, and the position as x1¼0,
y1¼-2, x2¼0, and y2¼1.2.

• Add a line with width as 1, line style as dashed, and the position as x1¼0.332,
y1¼-2, x2¼0.332, and y2¼11.3.

• Add a line with width as 1, line style as dashed, and the position as x1¼0.5,
y1¼-2, x2¼0.5, and y2¼2.8.

• Select 0 ms in the subfigure. Set the data source as “avg merge_epoch
Sub001 P300 Target”, x from 0 to 0, head radius as 0.5, shrink as 0.95,
range from -2 to 12 to keep it the same as the range of P300 curve. For the
electrodes, set the size as 8 and marker the channel Pz.

• Select 332 ms in the subfigure. Set the data source as “avg merge_epoch
Sub001 P300 Target”, x from 0.332 to 0.332, head radius as 0.5, shrink as
0.95, range from -2 to 12 to keep it the same as the range of P300 curve. For
the electrodes, set the size as 8 and marker the channel Pz.

• Select 500 ms in the subfigure. Set the data source as “avg merge_epoch
Sub001 P300 Target”, x from 0.5 to 0.5, head radius as 0.5, shrink as 0.95,

Fig. 19.17 The result from cluster-based permutation test
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range from -2 to 12 to keep it the same as the range of P300 curve. For the
electrodes, set the size as 8 and marker the channel Pz.

Step4: Set the axis parameters

• Click the axis button in the toolbar, select P300 in the subfigure, and enable
the Box and Legend.

• Select curve1 in the list box of the content; change its name to Target in the
legend. Select curve2 in the list box of the content; change its name to
NonTarget in the legend.

• For x-axis, set the x-lim from -0.5 to 1.5 second. Enable the grid and the label;
set label as “Time [sec]”.

• For y-axis, enable the grid and the label; set the label as “Amp [\muV]”.

19.9.2 Batch Processing

In this part, all the time domain analysis on single-subject level will be done again
but using batch processing. After data importing, remove channel IO, which is
exactly the same operation as what we do in Sect. 19.3. After that, click the tab
selection in the left, and select Process -> Frequency analysis and filters ->
Butterworth filters in the menu of the batch module, and set the low cutoff
frequency (Hz) as 0.05Hz (Fig. 19.18). From this step, the operation in the batch
processing would be different. We call out the Butterworth filter from the batch
module, NOT the manage module.

Step by step, add all the steps in the batch module to get the final processing flow
as it is shown in Fig. 19.19. By pressing the button “Run”, we can run the whole
batch processing. In the step of Identify Artifact Component, we still manually
select comp 1 and comp 2 in the right panel in orange color and click the buttonOK.
It needs more than 2 minutes for all the processing on the testing, in which the step of
computing ICA matrix is time-consuming.

To reuse the batch, we can save the entire process. Click the save button in the
toolbar of the batch module, and save the process as “P300.lw_script”, for example.
For the next time, we can click the open button to load the process. It should be
noticed that since the processing object has been changed, the users need to change
the input datasets in all the steps of load.

If the batch processing is frequently used, we can put the saved .lw_script file,
like “P300.lw_script” in this case, into the path of the Letswave installed
“../letswave7/plugins/”. After that, restart Letswave7, and the batch operation will
come out in the menu of the batch in both the manage module and batch module.

Once the processing flow has been made, the corresponding MATLAB script has
already been generated automatically. Users can click the “script” button in the batch
module to get the full script. Once the users have learned the use of GUI, they almost
already understand the writing of script.
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Fig. 19.18 Add the step of frequency filtering in batch module

Fig. 19.19 Add the step of frequency filtering in batch module
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Chapter 20
Summary and Conclusions

Zhiguo Zhang and Li Hu

Abstract EEG remains useful and irreplaceable in multiple clinical applications
and scientific researches, with regard to its massive advantages. As EEG continues to
spread widely over time, EEG signal processing is still a highly promising and
evolving field. Recent developments of EEG processing techniques, such as
advanced machine learning for EEG and EEG-related multimodality brain imaging,
are expected to make EEG a more powerful and versatile tool in the future.

Keywords EEG signal processing · Machine learning · Multimodality imaging

20.1 EEG: Still Useful and Irreplaceable

Among all existing techniques for assessing the brain functions, EEG could still be
the most widely used one (Biasiucci et al. 2019). Some people may have thought that
EEG is sort of outdated and limited of utility, as many advanced functional brain
imaging techniques that can provide higher temporal and/or spatial resolutions have
been well developed and applied in recent decades. However, the role of EEG in
clinical applications and scientific researches can hardly be replaced by any other
functional brain imaging techniques, considering that EEG’s advantages (e.g.,
noninvasiveness, easiness-to-operate, and cheapness) have not been challenged by
other techniques (Cavanagh 2019). These advantages of EEG make it particularly
suitable for the acquisition of “big brain data,” which should be collected from a
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large number of participants with many times (Sejnowski et al. 2014). For example,
if a researcher intends to collect functional brain data from a large group of normal
children or the elderly in a longitudinal study, EEG will definitely be on the top of
his/her selection of neuroimaging techniques, because other techniques such as
functional near-infrared spectroscopy (fNIRS) and fMRI are much more expensive
and more difficult to operate. In the foreseeable future, EEG will still be a powerful
and widespread technique and will be used by more and more researchers with
different backgrounds and purposes (Biasiucci et al. 2019; Cavanagh 2019).

Another advantage of EEG, which is often overlooked, is that EEG is equipped
with well-established data analysis methods and pipelines. However, students and
researchers in the fields of psychology, clinical neuroscience, and psychiatry often
have difficulty in the analysis of EEG data. Although many powerful and user-
friendly EEG processing toolboxes exist, most of them are focused on one or several
aspects of EEG signal processing. So, it is difficult for people without an engineering
background to learn and to use many toolboxes. On the other hand, it is also difficult
for students and researchers in engineering areas, like electrical engineering, com-
puter sciences, and artificial intelligence, to understand the nature and characteristics
of EEG, which hinders them from applying their knowledge and skills of signal
processing on EEG signals. Therefore, there is a huge gap between the knowledge
about EEG (its origin, acquisition, properties, experiments, etc.) and the skills of
signal processing and feature extraction. A manual providing both essential knowl-
edge about EEG and basic skills of EEG signal processing in a comprehensive,
simple, and easy-to-understand way is urgent and helpful to bridge the gap.

20.2 Current Trends and Future Directions

EEG signal processing is still a highly dynamic and evolving field. The development
of EEG signal processing methods is driven by two major factors. First, there are
increasing and new expectations and requirements from EEG users. Second, the
rapid developments of data analytics techniques (such as machine learning, data
fusion, complex network analysis, etc.) enable more and more potential applications
of EEG. Although our goal in writing this book has been to present a comprehensive
introduction of EEG signal processing and feature extraction methods, it is impos-
sible to include all related researches in this book because of the fast emergence of
new EEG analysis methods and new applications. In the following, we discuss two
trends of EEG signal processing, machine learning and multimodality, and also
mention some topics that are not covered by this book.

• Machine learning: Undoubtedly, machine learning is the most popular and fast-
developed data analysis technique in recent years. Particularly, deep learning, as
an important and useful branch of machine learning techniques, has been widely
applied to predict behavioral variables and psychophysiological states from EEG
data in a variety of fields, especially in the field of brain-computer interface. In
this book, Chap. 15 is devoted to elaborate basic concepts and classical
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algorithms of machine learning, whereas Chap. 16 briefly introduces the appli-
cations of deep learning on EEG. Admittedly, only two chapters cannot cover all
topics related to the applications of machine learning on EEG. Emerging methods
of machine learning, such as transfer learning, reinforcement learning, and
ensemble learning, have been gradually used on EEG data. For example, some
new deep neural networks, such as generative adversarial networks and spiking
neural networks, have already been applied as powerful tools for EEG decoding,
and transfer learning is often adopted by researchers in the area of brain-computer
interface to increase the accuracy of cross-individual prediction. Readers who are
interested in these new techniques should keep a close eye on related journals and
preprint repositories (e.g., arXiv and bioRxiv).

• Multimodality: Simultaneous EEG-fMRI is an important multimodal neuroim-
aging technique, which is introduced in Chap. 18. Multimodal neuroimaging can
normally provide a more complete and more complementary picture of the brain
and the interaction between the brain and other organs, thus making it become
more favorable to researchers. EEG can be acquired (1) with some other brain
imaging techniques, such as MRI and fNIRS; (2) with some types of physiolog-
ical signals, such as ECG and EMG; and (3) with some brain stimulation
techniques, such as transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS). EEG-related multimodality imaging has two
specific difficulties in EEG signal processing. First, EEG may introduce artifacts
into other signals (such as EMG) or be contaminated by other signals (such as
MRI) or stimulation (such as TMS). So, noise removal is of particular importance
in EEG-related multimodal imaging. Second, how to fuse EEG with other
modalities to provide complimentary information also poses a great challenge
for data analyses. Data-driven multivariate methods and machine learning
methods can play a role in the analyses of multimodal brain imaging data.

Besides the above two major topics that are not completely covered by this book,
there are still some other related contents, such as real-time implementation (which is
highly desired in practical applications such as brain-computer interface and
neurofeedback) and clinical uses, which have not been fully discussed in this
book. Anyhow, we believe this book has already covered almost all mainstream
EEG signal processing and feature extraction methods. We hope what readers learn
from the book can make them better prepared for learning new knowledge and skills
that are not included in this book.
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