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Abstract—To solve multiple comparisons problems in 

EEG/MEG analyses, cluster-based permutation test is possibly 

the most powerful approach, while it also inherits the advantage 

of well-controlled family-wise error rate from point-level 

permutation test. Because the cluster-level statistics used 

accumulate statistical power of all points in a cluster, 

cluster-based permutation test has a much higher sensitivity for 

widespread clusters. In this study, we demonstrate that, when 

the threshold for cluster inclusion is inappropriately set, the 

existence of larger clusters lowers the sensitivity for detecting 

the presence of smaller clusters, because the influence of large 

clusters on permutation distribution is overlooked in previous 

studies. Further, we demonstrated that increasing the threshold 

for cluster inclusion can efficiently solve this problem and then 

proposed a new guideline for threshold selection in the 

cluster-based permutation test. Results on simulated data and 

real data show the proposed guideline can greatly improve the 

sensitivity of cluster-based permutation test for detecting small 

clusters while retaining the same family-wise error rate. 

I. INTRODUCTION 

Point-wise comparison, which compares EEG/MEG data at 

massive time, spatial and/or frequency points, is gaining popularity 

for identifying significant effects of EEG/MEG experiments. 

Conventionally, researchers compare the peak amplitude or mean 

value of EEG/MEG data in a prespecified interval/region to examine 

the significant effect [1].  Compared with the conventional method, 

the point-wise comparison has several advantages. First, it does not 

depend on researchers’ prior knowledge for interval selection; hence 

it is less possible to miss any unexpected effects outside the 

interval/region of interest. Second, the point-wise comparison could 

provide more accurate and more detailed information about the time, 

spatial and/or frequency points with significant effects. However, 

these advantages are often obtained at some cost, like much heavier 

computational load. More seriously, point-wise comparison will 

inevitably induce the Multiple Comparisons Problem (MCP). For 

example, for a single point test with α=0.05, there is a 5% chance of 

incorrectly rejecting the null hypothesis if the null hypothesis is true 

(i.e. Type I error). However, since the probability of at least one 

incorrect rejection, noted as Family-Wise Error Rate (FWER), is 

1 − (1 − 𝛼)𝑚, FWER will be close to 1 when the number of points m 

is very large. Typically, the problem of FWER control in MCP would 

be more serious for joint domain analysis, like time-spatial, 

time-frequency or even time-frequency-spatial domain analysis, 

since the number of comparisons is extremely large.  
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Several methods could effectively control the FWER.  

Bonferroni correction controls the FWER strictly by setting α level to 

α/m for m comparisons [2]. However, Bonferroni correction comes at 

the cost of increasing the probability of false negatives (i.e., Type II 

error), and consequently reducing statistical power. In addition, in 

most cases of EEG/MEG analyses, the data are correlated with their 

neighbors, which does not agree with the independent assumption in 

Bonferroni correction. To alleviate the problem of statistical power, 

False Discovery Rate (FDR) [3, 4] is developed with a weak control 

of FWER (i.e., FWER is only guaranteed if all the null hypothesis is 

true). On the other hand, permutation test [5, 6] can automatically 

adapt to the degree of the correlation among data points with a 

statistic tmax (the most extreme positive or negative t-value). Unlike 

parametric tests, such as t-test, permutation test does not make 

specific assumptions about the shape of the population distribution. 

Depending on the definition of tmax, permutation test can be 

performed on point-level or cluster-level. 

Point-level permutation test [5] works for single point as follows. 

1). Repeat the permutation process for all possible combination. If the 

sample size is large, randomly permute labels for a larger number of 

times and calculate the t-value for each permutation. 2). Generate the 

distribution of t-value under the null hypothesis. With the 

distribution, calculated the threshold corresponding to a certain α 

level (e.g. 5%). The points with their t-value above the threshold are 

identified to be statistically significant. For multiple comparison, 

point-level permutation test uses the statistic tmax (the most extreme 

positive or negative t-value) to generate the permutation distribution. 

The distribution of tmax adaptively reflects the degree of the 

correlation among data points [8]. Similar to Bonferroni correction, 

this nonparametric method provides a strong FWER control (i.e. 

under any mixture of false and true null hypothesis) for MCP [10]. 

However, when the number of tests is extremely large, the 

permutation test will become conservative.  

Cluster-based permutation test uses the cluster-level statistic tmax 

instead of the point level statistic tmax, so that it can drastically 

increase the sensitivity of the statistical test while strictly controls the 

FWER [6]. As a weak FWER control method, cluster-based 

permutation test provides a higher sensitivity than FDR [7]. In fact, 

cluster-based permutation test provides a cluster-level FWER 

control, which is different from FDR.  

Although cluster-based permutation test is possibly the most 

powerful procedure for broad effects detection, it is shown to have 

lower sensitivity for smaller clusters so that some meaningful small 

EEG/MEG effects might be overlooked [8]. The sensitivity of 

cluster-based permutation test depends on the thresholds for cluster 

inclusion. Generally, strong and localized effects can be detected at 

higher thresholds for cluster inclusion, while weak and widespread 

effects prefer lower thresholds for cluster inclusion [9]. However, 

there is no guideline for the threshold selection in literature using 

cluster-based permutation test [6].  

In this work, we investigate in-depth the relationship between the 

threshold selection and sensitivity (especially for smaller effects) in 

cluster-based permutation test and find that the lower sensitivity of 
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cluster-based permutation test for small clusters is due to the 

overlooked influence of large clusters on permutation distribution. 

Further, we introduce a new guideline for threshold selection in the 

cluster-based permutation test and validate the guideline using 

synthetic data and real EEG data. 

The rest of the paper is organized as follows. Cluster-based 

permutation test is firstly introduced in Section II. Then, with a 

simple simulation model, the problem of the sensitivity for smaller 

effects is illustrated in Section III. To fix this problem, a guideline for 

the selection of threshold for cluster inclusion is proposed in Section 

IV. Both the simulation and real data is used to show the effectiveness 

and robustness of the guideline. The conclusion is arranged in Section 

V. 

II. CLUSTER-BASED PERMUTATION TEST 

Cluster-based permutation test provides an alternative way to the 
solve MCP, which could control the FWER, but not so conservative 
as Bonferroni-Correction. This procedure mainly includes the 
following two steps: 

1. Calculate the cluster-level statistic: Calculate t-value, noted as tpoint, for 
every point of interest in the temporal, frequency or spatial domain. All 
points with tpoint not exceed the point-level threshold corresponding to 
certain α level, noted as αpoint, are ignored. Cluster the remaining points in 
connected sets on the basis of temporal, frequency or spatial adjacency. 
Calculate cluster-level statistics, noted as tcluster, by taking the sum of tpoint 
within a cluster. Let tmax be the most extreme value of tcluster. 

2. Perform the permutation test: Repeat the permutation process and calculate 
their tmax to generate the permutation distribution. With the distribution, the 
cluster-level threshold is determined by certain α level, noted as αcluster. Any 
cluster under the true labels with its tcluster above the threshold will be 
checked out as statistical significant. 

The whole procedure is controlled by two level thresholds. 
Cluster-level threshold, the threshold for cluster detection determined 
by αcluster, guarantees the FWER under the null hypothesis. 
Point-level threshold, the threshold for cluster inclusion determined 
by αpoint, controls the points included in the cluster. The point-level 
threshold does not affect the FWER for the MCP, but does affect the 
sensitivity of the test. Since the sensitivity of this test is determined 
by the largest cluster in each permutation, the sensitivity for the 
smaller clusters (the second, third, …, largest clusters) will be 
reduced. 

 

III. EXISTING PROBLEMS 

In this section, we use a simulation model to demonstrate the 

problem of sensitivity in the conventional cluster-based permutation 

test. 

A. Simulation Model 

Considering the ERP signal 

𝑋(𝑡) = 𝑆(𝑡) + ℇ        (1) 

where 𝑋, 𝑆, ℇ ∈ ℛ𝑁×𝑇, 𝑋(𝑡) is 1 channel EEG signal with N=8 trials 

and T=1000 time points, 𝑆 is the signal, and ℇ~𝒩(0,1) is the white 

noise. To illustrate the problem of the sensitivity for smaller clusters 

detection in cluster-based permutation test, we simulate three types of 

multiple comparison experiments in time domain.  

Exp1: background noise, i.e. S(t)=0; 

Exp2: ERP with a smaller effect. S(51:100)=3, S(t)=0 for else;  

Exp3: Except the smaller effect, a larger effect is included. S(51:100)=3, 

S(501:900)=10, S(t)=0 for else. 

B. Results for αpoint = 0.05 and 0.0112 with αcluster=0.05 

Here we investigate the sensitivity of the smaller cluster in Exp1, 
2 and 3 with different value of αpoint (0.05 and 0.0112) but keep 
αcluster=0.05. 

With αpoint = 0.05, the point-level t-value for the points in the 
smaller cluster in theory is  

   𝑡𝑝𝑜𝑖𝑛𝑡 =
𝑥̅−0

𝑠𝑡𝑑(𝑥)/√𝑁
≈

3−0

1 √8⁄
= 8.49 

> 2.36 = 𝑡(𝛼𝑝𝑜𝑖𝑛𝑡 = 0.05, 𝑑𝑓 = 𝑁 − 1). 

Hence, these points would be clustered together with αpoint = 0.05. 
And the cluster-level t-value for the smaller cluster is  

𝑡𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑡𝑝𝑜𝑖𝑛𝑡 × 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 ≈ 8.49 × 50 = 424.5.   

In practice, due to the inclusion of neighboring spurious points, the 

cluster-level t-value is 483.82 in the experiment. The cluster 

threshold with αcluster=0.05 is 10.11, 27.35 and 889.5 for Exp 1-3, 

and the permutation distribution is shown in Fig. 1a. It is clear 

that the existence of the larger cluster makes the cluster level 

threshold dramatically increased. The smaller cluster, which would 

be detected in Exp2, does not survive in Exp3. It could also be noted 

that in Exp2 with the smaller cluster, the cluster level threshold is 

also a little bit higher than Exp1 with background noise. 

 

Figure 1.  Permutation distribution for Exp 1-3 with (a) αpoint = 0.05 and (b) 

αpoint = 0.0112. The cluster-level threshold for the smaller cluster is marked 

with an asterisk. 

   If we reduce the αpoint from 0.05 to 0.112, the points in the 
smaller cluster with their t-value 

𝑡𝑝𝑜𝑖𝑛𝑡 ≈ 8.49 > 3.42 = 𝑡(𝛼𝑝𝑜𝑖𝑛𝑡 = 0.0112, 𝑑𝑓 = 𝑁 − 1). 

will still be clustered together.  However, with αpoint = 0.112 the 
cluster threshold in Exp 2 and 3 is 10.44 and 10.11, which are similar 
close to 10.00 in Exp 1 with background noise (Fig. 1b).  

 

IV. GUIDELINE FOR POINT-LEVEL THRESHOLD SELECTION 

In the last section, with inappropriate point-level αpoint=0.05, the 
existence of larger clusters induces lower sensitivity for the detection 
of smaller clusters. Hence, how to decide the value of point-level 
threshold is key important to the statistic power of cluster-based 
permutation test. In this section, an empirical guideline for threshold 
selection in the cluster-based permutation test is proposed. The 
performance is tested on both simulation dataset and real dataset.  

A.  Point-level threshold selection 

Cluster-level threshold is determined by the main effect 
corresponds to largest cluster at the cluster-level αcluster of the 
permutation distribution. In the study above, with certain αpoint level, 
the value of the cluster-level threshold will be cumulated by the size 
of the main effect in the permutation, which is related to the size of 
the largest cluster with the true label. Hence the existence of the 
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larger cluster may influence the sensitivity for the smaller cluster 
detection. Furthermore, if we decrease αpoint to certain value (increase 
the point-level threshold) until the t-value for each points in the 
largest cluster with the true label in the permutation at αcluster of the 
permutation distribution below the point-level threshold, the 
cluster-level threshold will not be influenced by the largest cluster 
with the true label. In this case, the cluster-level threshold will only be 
determined by the background noise and the sensitivity for the 
smaller cluster will not be influenced by the larger cluster any more.  

For single comparison, the t-value for a single point with the true 
labels would be infinite, but there is always a boundary for the 
threshold in the permutation distribution at certain α level with 

sample size  N > log2
1

α
+ 1. For example, with sample size N=8, the 

threshold in permutation test with α=0.05 would be always less than 

or equal to √35/3, which is determined by the sequence [1, 1, 1, 1, 1, 

0, 0 ,0].  

 

Figure 2.  The boundary for (a) point-level threshold and (b) point-level 

αpoint in blue curve at cluster-level αcluster=0.05 with N from 6 to 1000. 

 Hence in the cluster-based permutation test for multiple 

comparison, if point-level threshold is larger than the boundary 

(point-level αpoint less than the boundary) at certain αcluster with 

sample size  N > log2
1

αcluster
+ 1, then the cluster-level threshold 

will not be cumulated by the size of the largest cluster with the true 

label. In practice, we are unable to get an effective way to calculate 

the boundary with any αcluster and N. But we could still provide the 

boundary for point-level threshold with some special value of 

cluster-level αcluster. Empirically, at αcluster=0.05 with sample size 

N ≥ 6, the largest t-value corresponding αcluster of the permutation 

distribution is determined by the sequence [1, 1, 1, 1, 1, 0, ……,0] 

with five 1s, and 0s for the rest 𝑁 − 5 values. Hence the boundary 

for point-level threshold is √
𝟓(𝑵−𝟏)

𝑵−𝟓
 (Fig. 2), the corresponding 

boundary for point-level αpoint is shown in Fig. 3b. Hence, for N=8, 

the boundary for the point-level αpoint is 0.0112. Similarly, at 

αcluster=0.01 with sample size N ≥ 8, the boundary for point-level 

threshold is √
𝟕(𝑵−𝟏)

𝑵−𝟕
 . 

B. Simulation dataset study 

It should be noted that the guideline of point-level threshold 

selection is proposed by the study of single comparison. Whether the 

boundary is hold in cluster-level multiple comparison is a question. 

Here, the simulation model Eq. (1) is used to explore this problem.  

Only one large effect is kept with S(501:900)=D and S(t)=0 for else, 

where the value of D is used to control the signal noise ratio, αcluster is 

always kept to 0.05 in the study. Fig. 3 shows the value of 

cluster-level threshold with the different value of D and αpoint. With 

D=0, there is no signal. It is exactly the same as Exp1 with only 

background noise. With the αpoint increases from 0.001 to 0.05, the 

cluster-level threshold is increased from 88.51 to 97.16, but not so 

greatly. With D=30, the signal-noise ratio for the larger cluster is 

great. The cluster-level threshold is directly determined by the size 

of the larger cluster with αpoint>0.03. While if αpoint<0.015, the 

cluster-level threshold is not influenced by the larger cluster any 

more. With a moderate signal-noise ratio, like D=1 for αpoint=0.0112, 

under the complex effect of signal and noise, the cluster-level 

threshold is still larger than that with D=0, but the cumulate effect is 

not happened. In fact, the guideline for the point-level threshold 

selection provides the low boundary to prevent the cumulate effect 

happening. With certain level of signal-noise ratio, the cluster-level 

threshold will still be influenced by some clusters.  

 

Figure 3.  The cluster-level threshold with different value of αpoint and D. 

C. Real dataset study 

The cluster-based permutation test in temporal-spatial domain 
was studied with a visual oddball ERP dataset from Groppe et al. 
2009, Experiment 3 [11]. Groppe et al. also used this dataset as an 
example in the review for the method in MCP [8]. The dataset was 
collected from -0.1 to 0.92s with 8 subjects, 26 channels and 
sampling rate 250Hz. Fig. 4 shows the averaged ERP for target and 
standard conditions. Fig. 5 and 6 show the procedure of cluster-based 
permutation test with αpoint=0.05 and 0.0112. For cluster detection, an 
electrode’s spatial neighborhood was defined as all electrodes within 
approximately 5.4 cm, resulting in 3.8 neighbors for each electrode 
on average [8]. 

 

Figure 4.  The ERPs for the visual oddball experiment. 
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With αpoint=0.05, all the points above the point-level threshold 
form several clusters in Fig. 5a. In the cluster-based permutation test, 
the cluster-level threshold is determined by the largest cluster in the 
7th permutation (Fig. 5d), which is mainly determined by the largest 
cluster with the true label. In result, the cluster-level threshold is 
larger than the cluster-level t-value for the second largest cluster (Fig. 
5c). Hence, the second largest cluster is not survived in result (Fig. 
5b). By carefully comparing the permutation distribution of the Fig. 
1a and Fig. 5c, there is the similar inflection points at 7.81% in both 
real and simulation dataset, which corresponds to the 10th 
permutation in the distribution.  

 

 

Figure 5.  The procedure for cluster-based permutation test with αpoint=0.05. 

(a) clusters obtained from temporal-spatial adjacent points with their tpoint 

above point-level threshold, (b) the largest cluster survived in result, (c) 
permutation distribution for tmax, (d) the clusters in the 7th permutation of the 

distribution, the largest one (the yellow cluster) determines the cluster-level 

threshold. 

With αpoint=0.0112, as the boundary we get in the Section IV.A, 
the cluster-level threshold is determined by the cluster from channel 
12 to 21 at around 0.05s (Fig. 6d). It is not influenced by the largest 
cluster with the true label any more. Hence, both the largest and the 
second largest cluster are survived (Fig. 6b).  

 

V. CONCLUSION AND DISCUSSION 

The performance of cluster-based permutation test is controlled 

by the two parameters. Cluster-level αcluster controls the FWER, and 

point-level αpoint will influence the sensitivity. In this paper, it is 

found that with the inappropriately parameter setting of point-level 

αpoint (i.e. point-level threshold for cluster inclusion), which is 

commonly used in the research literature, the existence of larger 

cluster will dramatically decrease the sensitivity for smaller cluster 

detection. The reason is that the value of the cluster-level threshold 

may be cumulated by the size of the main effect in the test. 

Decreasing the point-level αpoint (increase the point-level threshold) 

would avoid this problem effectively. Empirically, the guideline for 

point-level threshold selection is given for cluster-level αcluster=0.05 

and 0.01 with different sample size. Both the simulation and real 

data show the proposed guideline can improve the sensitivity of 

cluster-based permutation test for detecting small clusters while 

retaining the same FWER. 

 

Figure 6.  The procedure for cluster-based permutation test with 

αpoint=0.0112. (a) clusters obtained from temporal-spatial adjacent points with 
their tpoint above point-level threshold, (b) the largest two clusters survived in 

result, (c) permutation distribution for tmax, (d) the clusters in the 7th 

permutation of the distribution, the largest one (the yellow cluster) 
determines the cluster-level threshold. 
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