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Abstract In this paper, we proposed to utilize a novel

spatio-spectral filter, common spatio-spectral pattern

(CSSP), to improve the classification accuracy in identi-

fying intended motions based on low-density surface

electromyography (EMG). Five able-bodied subjects and a

transradial amputee participated in an experiment of eight-

task wrist and hand motion recognition. Low-density (six

channels) surface EMG signals were collected on forearms.

Since surface EMG signals are contaminated by large

amount of noises from various sources, the performance of

the conventional time-domain feature extraction method is

limited. The CSSP method is a classification-oriented

optimal spatio-spectral filter, which is capable of separating

discriminative information from noise and, thus, leads to

better classification accuracy. The substantially improved

classification accuracy of the CSSP method over the time-

domain and other methods is observed in all five able-

bodied subjects and verified via the cross-validation. The

CSSP method can also achieve better classification accu-

racy in the amputee, which shows its potential use for

functional prosthetic control.

Keywords EMG � CSSP � Spatio-spectral filter

1 Introduction

Surface electromyography (EMG) has been proved to be

one of the major neural control sources for human com-

puter interface (HCI) by its numerous applications, such as

muscular diseases diagnoses [4] and prosthetic control [3].

Researchers have also successfully used surface EMG

signals to control computers [29], robots and wheelchairs

[2]. EMG signals are generated by the electric activities of

the contraction of muscle fibers, and, thus, they are able to

provide valuable information on the muscle condition. In

general, surface EMG signals generated from different

motions exhibit different characteristics in the time, spec-

tral, or spatial domain, and hence, they have been widely

used to recognize intended motions, say, in prosthetic

control. EMG characteristics are usually presented in the

time or spectral domain, such as the commonly used time-

domain (TD) features [21], Autoregressive (AR) features

[1, 17], and spectral magnitude averages (SMA) [24].

Surface EMG signals are always contaminated by large

amount of noises from various sources, such as inherent

noise from equipments, ambient noise, and motion artifacts

[7]. In addition, the complex muscle distribution makes the

crosstalk problem inevitable in surface EMG recording [6].

As a result, pre-processing of surface EMG is crucial for

subsequent feature extraction and classification. An effec-

tive pre-processing method can separate discriminative

EMG information from noise for a better classification

accuracy. Spectral filtering is a conventional way to filter

out unwanted noise, because discriminative EMG infor-

mation is usually dominant in some specific frequency

bands. Another important type of filtering techniques is

spatial filtering, which addresses the noise and crosstalk

problems by making use of spatial distribution information

of EMG data. Various spatial filters, such as one-ring
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differential system [5, 12], longitudinal and transversal

single and double differential [13], Laplacian filter [27, 28],

inverse binomial filter [8] and inverse rectangle filter [8],

have been proposed for EMG signal processing, and many

of them have shown improvements in noise reduction and

feature enhancement [20].

Similar to the cases in EMG research, spatial filtering

also plays an important role in electroencephalogram

(EEG) research. A well-designed spatial filter could

effectively improve the accuracy and information trans-

form rate of EEG-based brain computer interface (BCI)

systems. Recently, a novel spatial filter, common spatial

pattern (CSP), has shown an excellent performance in

EEG-based BCI systems [27]. By solving a generalized

eigenvalue problem, the CSP filter removes the signal’s

strong correlation among the original axes, and the distri-

butions are maximally dissimilar along the new axes. The

CSP method separates multi-channel EEG signals into a

series of projected vectors and the variances of the pro-

jected vectors are used as features for classification.

Several variants of CSP have been developed and the

most important one is the common spatio-spectral pattern

(CSSP), which was developed by Lemm et al. [23]. It

embeds a finite impulse response (FIR) spectral filter into

CSP to produce a spatio-spectral filter. Because CSSP

simultaneously performs filtering in the spatial domain and

the spectral domain, it can more effectively reinforce dis-

criminative signal features than the CSP method.

In [18], Hahne et al. firstly used the CSP method in

EMG signal processing and observed an improved classi-

fication accuracy and higher robustness than the commonly

used TD method (with bipolar spatial filter). However, a

high-density electrode arrangement is usually needed to

guarantee a better performance of the CSP spatial filter

[14]. In [18], 22 monopolar surface EMG electrodes were

used. In practical applications, the high-density electrodes

arrangement ([10 channels) will often bring some prob-

lems for prosthetic control. Firstly, too many electrodes

will increase the production cost and power consumption

of prosthetic. Secondly, high-density electrodes will make

the prosthetic installation more complex and time-con-

suming for amputees. Thirdly, more electrodes also

increase the incidence of failure of the system, making the

prosthetic unstable. As far as we know, there is no report

on CSP’s successful application to low-density (\10

channels) electrode layout, no matter in EEG study or

EMG study. Another limitation of the CSP application to

EMG is that the important discriminative spectral domain

characteristics of surface EMG are overlooked. Spectral

characteristics of surface EMG provide alternative and

complementary information of muscle conditions, and,

therefore, including spectral characteristics is expected to

improve the accuracy in identifying intended motions.

In this work, we investigate the CSSP spatio-spectral

filter for classification of surface EMG signals in a low-

density channel layout. The CSSP method (1) employs an

additional spectral filter to separate discriminative EMG

features in the spectral domain, and (2) increases the

number of channels by generating ‘‘artificial’’ channels

with delayed signals to partially overcome the limitation of

low-density channels. To our knowledge, this study is the

first attempt to apply CSSP method in EMG analysis.

Five able-bodied subjects and a transradial amputee

participated in an experiment with eight tasks. Six bipolar

electrodes were used for surface EMG signal collection,

and they were placed uniformly at 1/3 of the distance from

elbow to wrist. The CSSP method is employed to perform a

spatio-spectral filtering and to extract features for classifi-

cation of eight-motion tasks. The performance of CSSP

largely depends on its accompanied parameters and the

parameter selection for EEG has been well studied [23].

However, because EMG and EEG have quite different

characteristics [15], the conventional parameter setting of

CSSP in EEG could not be directly applied to EMG.

Therefore, this study discusses how the parameter setting

influences the classification accuracy and how to select the

parameters. Linear discriminant analysis (LDA) was used

to classify eight tasks from EMG features extracted by

CSSP. The superiority of the CSSP method is illustrated by

comparisons with conventional temporal (TD), spectral

(SMA), and spatial (CSP) EMG analysis methods.

In the rest of the paper, Sect. 2 gives an introduction of

the experimental setup and the CSSP method. In Sect. 3,

the performance of the CSSP method is compared with TD,

SMA and CSP method. The discussion and the conclusions

follow in Sects. 4 and 5, respectively.

2 Methods

2.1 Experiment setup

Six subjects participated in the experiment, including five

able-bodied persons and a transradial amputee. All subjects

were right handed. Each subject was given the written

informed consent prior to the experiment. The experiments

are in accordance with the declaration of Helsinki. Ethical

approval of the study was sought and obtained from the

Bioethics Committee, School of Biomedicine Engineering,

Shanghai Jiao Tong University (ethic approval number

BM(E)2012045).

The EMG signals were collected by ME6000 (MEGA

Electronics Ltd, Finland) with built-in 3059 amplification,

a 3 dB bandpass of 8–500 Hz, a 14-bit A/D converter and a

sampling rate of 1,000 Hz. Six bipolar electrodes were

distributed uniformly at 1/3 of the distance from elbow to
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wrist. Figure 1 shows the positions of the electrodes for

both able-bodied persons and the amputee.

During the experiment, the subjects were instructed to

perform eight motions, which were wrist flexion and exten-

sion, hand grasp and open, supination and pronation, radial

flexion and ulnar flexion (as shown in Fig. 2). The experiment

included 10 runs. In each run, the subjects performed each

motion for 10 s with approximately 40 % force. Between two

runs, subjects would have a break as they want. Each subject

finished the experiment in less than 20 min. EMG pattern

classification was conducted within 100 ms sequential anal-

ysis windows from 3 to 8 s for each motion. Hence, 4,000

feature samples were collected for each subject in all.

Remark It should be noted that, in [18], the authors

applied CSP on monopolar EMG data, because monopolar

data generally contain more information than bipolar data.

However, monopolar recording is not available in most

commercial EMG systems. In this study, the hardwired

bipolar recording is provided by ME6000, which can only

output bipolar data. Compared with monopolar recording,

hardwired bipolar recording has higher CMRR, higher

input impedance and stronger DC signal suppression and,

thus, provides better-quality signals than numerical bipolar

signals. This study shows that the CSSP method is suited to

analyze bipolar EMG data.

2.2 Existing EMG feature extraction methods

To make an overall understanding about the problem in

EMG recognition, we firstly review three conventional

methods, TD, SMA, and CSP, which extract EMG features

in temporal, spectral and spatial domain, respectively.

1. Time-domain (TD)

The TD features were originally proposed by Hudgins

et al. [21], where the continuous EMG signals were

segmented into multiple frames and TD features were

extracted from each frame. The EMG signal from one

channel can be represented as a finite time sequence

ðx1; x2; . . .; xtÞ; where t is the number of samples in a

frame. TD feature set for this time sequence includes

four statistics, which are

(1) Mean absolute value (MAV)

MAV ¼ 1

t

Xt

i¼1

jxij; ð1Þ

(2) Number of zero crossings (ZC)

ZC ¼
XN

i¼2

sgn �xixi�1ð Þ; ð2Þ

(3) Waveform length (WL)

WL ¼ 1

N � 1

XN

i¼2

xi � xi�1j j; ð3Þ

(4) Number of slope sign changes (SSC)

SSC ¼
XN

i¼3

sgn � xi � xi�1ð Þ xi�1 � xi�2ð Þ½ � ð4Þ

where sgn(x) is a sign function, defined as

sgnðxÞ ¼ 1 if x [ 0

0 otherwise

�
ð5Þ

The effectiveness of the TD feature set in EMG study has

been repeatedly proven in the literature [19, 21, 31]. In

[11], Englehart et al. showed that the TD feature set is

powerful for continuous EMG classification.

2. Spectral magnitude averages (SMA)

The SMA feature provides spectral information of EMG

signal in different frequency bands. As proposed by Du

[9], SMA is an improvement of the Power Spectral

Density (PSD) method. Considering the high variance of

the PSD features, the SMA method defines the spectral-

based features as averaged PSD values within frequency

intervals. The whole frequency span is divided into a

series of equidistant bands, and the averaged spectral

magnitude within each band is calculated. To make

better classification accuracies of the SMA method, all

the features are generally logarithm transformed.

Although the SMA method is not as often used as the

TD method in EMG signal recognition, it provides

alternative and complementary information of the signal

in the spectral domain.

3. Common spatial pattern (CSP)

The CSP method was proposed by Fukunaga [16] and

was used to extract the abnormal components from

EEG by Koles [22]. Later, CSP was successfully

applied by Ramoser et al. [26] to motor imagery based
Fig. 1 The positions of six pairs of EMG sensors for amputee

(a, b) and able-bodied (c, d) subjects
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BCI systems and it was shown that the CSP can

considerably improve the classification accuracy of the

motor imagery BCI.

Consider a two-class classification problem. Let Xc 2
Rn�t denotes one trial of signal with class c (c = 1 or

2), where n is the number of channels (i.e., recording

electrodes) and t is the number of samples per channel.

The CSP method solves the following generalized

eigenvalue equation

X1X1
T

� �
w ¼ k X2X2

T
� �

w ð6Þ

to find the generalized eigenvector or the projection vector

w to maximize the variance difference between two

classes of trials, where h�i is the averaging operator for

trials in the same class and k is the generalized eigenvalue.

The projection vector w is also called as a spatial filter. In

general, only a few pairs of w corresponding to the largest

and smallest eigenvalues k are selected and the log-

transformed variances of the projected vectors, i.e.,

f ¼ logðvarðwXÞÞ; ð7Þ

are used as features for classification.

2.3 CSSP

The main idea of CSSP method is to embed an FIR filter

into the CSP filter. Consider the delayed signals

(dsX; d2sX; . . .; dmsX) as the new channels, i.e.,

X̂ ¼

X
dsX

..

.

dmsX

0

BB@

1

CCA; ð8Þ

where s is the delay constant, m is the order of the FIR

filters. By solving the new generalized eigenvalue

equation

hX̂1X̂T
1 iŵ ¼ khX̂2X̂T

2 iŵ; ð9Þ

several pairs of ŵ corresponding to largest and smallest

eigenvalues k can be obtained. With the project vector

ŵ ¼ ðŵ0; ŵs; ŵ2s; . . .; ŵmsÞ; we have the projected signal

Ẑ ¼ ŵ0Xþ ŵsdsXþ � � � þ ŵmsdmsX ð10Þ

¼
Xn

k¼1

ck

ŵ0
k

ck

Xk þ
ŵs

k

ck

dsXk þ � � � þ
ŵms

k

ck

dmsXk

� �
ð11Þ

where

ck ¼
ŵ0

k

jŵ0
k j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ02

k þ ŵs2

k þ ŵ2s2

k þ � � � þ ŵms2

k

q
: ð12Þ

ðc1; . . .; cnÞ is the spatial filter, and

ðŵ0
k=ck; ŵ

s
k=ck; . . .; ŵms

k =ckÞ is the FIR filters for channel

k. Similarly, the log-transformed feature,

f̂ ¼ logðvarðŵX̂ÞÞ; ð13Þ

is used for classification.

Fig. 2 Eight motions for every subject to perform, which are wrist flexion and extension, hand grasp and open, supination and pronation, radial

flexion and ulnar flexion from a to h
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It is worth noting that, with insufficient number of

features, both CSP and CSSP have a tendency to overfit,

i.e., to learn the noise in the training set rather than the

signal. CSSP is more easily overfitted because it involves

more channels than CSP. The overfitting problem of CSP

could be serious in EEG research, where the time window

used for feature extraction is usually long (typically longer

than 3 s) and, thus, the number of feature samples is small.

In EMG research, the time window used for feature

extraction is generally short (say, 100 ms), and thus, the

number of EMG feature samples will be large. Hence, the

overfitting problems will not be so serious in EMG.

Furthermore, the performance of CSSP strongly depends

on several parameters: the order of the FIR filter, m, and

the delay constant, s [23], and the number of the CSSP

components [30]. In this paper, we also studied the

parameters selecting in CSSP. Firstly, the number of

components used in CSP and CSSP will be discussed. And

then under the fixed number of components, we will

explore effect of the FIR filter, m, and the delay constant, s
in CSSP. The results will be presented in Sect. 3.

2.4 Multi-class CSP/CSSP classification

Aiming to recognize right- and left-hand motor imagery in

BCI, the original CSP/CSSP methods are limited to solve

the two-class problem. To deal with the multi-class clas-

sification in this work, we adopted the One vs. One (OvO)

strategy (performing two-class CSP and CSSP on all pos-

sible combinations of classes) for both CSP and CSSP

methods. Hence, for the eight-motion classification prob-

lem, there are C2
8 ¼

8�ð8�1Þ
2
¼ 28 combinations in all.

Linear discriminant analysis (LDA) [10] was employed as

the classifier, which is also widely used to discriminate

EEG signal for different imagery motions after CSP and

CSSP filtering [26]. All the results came from the average

of fivefold cross-validation.

3 Results

Table 1 shows the classification results of TD, SMA, CSP

and CSSP methods. For SMA method, the frequency range

evaluated is from 0 to 500 Hz and it is equally divided into

10 bands for classification. For both CSP and CSSP

method, six components are used and the OvO multi-class

strategy is adopted. In CSSP method, the delay s = 1 ms,

and the order of the filter m is limited to 3. Hence, the

feature dimensions are 24 (4 statistics 9 6 channels) for

TD, 60 (10 bands 9 6 channels) for SMA, 168 (C8
2 = 28

combinations 9 6 components) for CSP and 168 (C8
2 = 28

combinations 9 6 components) for CSSP.

For TD method, the health subjects could achieve good

performances with the error rate less than 5 %. However,

the amputee’s error rate (13.25 %) is much lower. The

results from SMA are better than TD in all the subjects

except Subject C. Compared with the results with high-

density electrode arrangement [18], the performance of

CSP is degraded seriously in low-density electrode condi-

tion. With limited number of electrodes, CSP could not

perform better than TD in all the health subjects. But the

error rate of the amputee by CSP is 2 % better than that of

TD. In contrast, CSSP is more suitable for low-density

EMG detection. The classification errors of CSSP method

are always the lowest among the four methods under the

test for both able-bodied persons and the amputee. We also

test four classification methods on data from less number of

channels. It can be clearly seen from Table 2 that the

classification error gradually decreases with the number of

channels for all four classification methods. Moreover,

CSSP always provides the best result among four classifi-

cation methods. Based on the results, we used all available

six channels in CSSP.

Table 1 Classification errors rate (%) of the six subjects with dif-

ferent feature sets

Subject Method

TD SMA CSP CSSP

A 1.95 1.27 3.08 0.93

B 2.80 1.23 6.38 0.65

C 4.48 5.25 6.75 1.98

D 2.53 1.73 3.73 1.15

E 0.45 0.03 0.45 0.03

F* 13.25 12.08 11.13 9.35

Mean 4.24 3.60 5.25 2.35

The results of using 3, 4 and 5 channels are averaged across all

possible combinations of 3, 4 and 5 channels from 6 channels. * For

CSP with 3 channels, the covariance matrix in LDA is singular in

some conditions. The results with fewer channels (1 or 2) are not

presented because the covariance matrix in the LDA classifier is

easier to be singular for CSP. The best results are marked in bold

Table 2 Classification errors rate (%) with different number of

channels

Channels 3 4 5 6

TD 13.32 8.25 5.68 4.24

SMA 9.13 5.84 4.33 3.60

CSP N.A.* 10.29 7.10 5.25

CSSP 7.06 4.53 3.25 2.35

On these data, the CSSP feature set outperforms all other feature sets.

The amputee is marked by asterisk. The best results are marked in

bold
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We now discuss the optimal selection of parameters

used (number of CSSP components, filter order, and delay

constant) in CSSP. In summary, these parameters are

selected from a set of candidates as the values with the

optimal classification results.

1. Optimal selection of number of CSSP components:

Due to the fact that the only 6 channels of EMG sig-

nals were collected in the experiment, the maximum

number of components available is 6 for CSP method.

Meanwhile, with the filter order m = 3, the maximum

number of components for CSSP method is 24

((m ? 1) 9 6 channels). The CSP and CSSP results

with different numbers of components are shown in

Fig. 3. The averaged classification errors of CSP

method decreases as more components are selected.

For CSSP method, more components (more than 6

components) would make the result better for the

amputee, but not any better for the other subjects.

Considering a higher computational complexity for

more components, 6 components are selected for CSSP

method. For different orders of the FIR filter or dif-

ferent delay constant s, the features from 6 compo-

nents always provide the best results or the results

close to the best.

2. Optimal selection of filter order and delay constant:

Figure 4 summarizes the averaged classification errors

with different orders of the FIR filter m and the delay

constant s when 6 CSSP components are selected. For

each subject with all different orders of the FIR filter,

the delay s = 1 ms always performs better than the

others. A higher-order filter would provide more

flexible magnitude response, but it would also decrease

Table 3 The pairwise classification errors for TD, SMA, CSP and CSSP method (from left to right, top to bottom in each cell) with the eight

motions listed in Fig. 2

TD SMA

CSP CSSP

(b) Wrist

extension

(c) Hand

grasp

(d) Hand

open

(e) Supination (f) Pronation (g) Radial

flexion

(h) Ulnar

flexion

(a) Wrist flexion 0.0

0.0

0.0

0.0

0.3

0.7

0.3

0.5

0.0

0.0

0.0

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.1

0.4

0.7

1.0

(b) Wrist extension 0.0

0.0

0.0

0.0

1.0

0.6

0.0

2.0

0.4

2.5

0.0

2.3

0.1

0.0

0.0

0.0

0.0

0.1

0.0

0.0

0.0

0.0

0.0

0.0

(c) Hand grasp 2.3

0.4

5.8

0.0

0.5

1.1

2.9

0.2

0.9

0.8

6.3

0.1

0.6

0.0

3.2

0.1

3.1

1.5

5.3

0.6

(d) Hand open 0.4

6.0

0.3

0.7

0.7

8.4

0.8

0.2

0.9

3.2

0.2

0.8

0.2

0.0

0.0

0.0

(e) Supination 0.2

1.1

0.0

0.2

0.3

2.7

0.2

0.1

0.0

0.0

0.4

0.0

(f) Pronation 0.1

0.3

0.0

0.0

0.4

0.1

0.5

0.3

(g) Radial flexion 0.0

0.0

0.0

0.0

1
2

3
5

10

1 2 3 4 5 6

0

2

4

6

8

Delay τ [ms]

the Order of the FIR Filters m

C
la

ss
ifi

ca
tio

n 
E

rr
or

[%
]

Fig. 4 Performance comparison of CSSP with different delay

constant s and the order of the FIR filter m

Fig. 3 The classification errors of CSP and CSSP methods with

different numbers of components (labeled on the top). The results for

each subject are marked in different colors. And the averaged errors

are marked in black (color figure online)
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the generalization of the CSSP method. Here, as shown

in Fig. 4, the third-order FIR filter has the best

performance for delay constant s = 1 ms. With the

introduction of the delayed signals, the length of the

signal would be reduced from l to l - m 9 s. Hence,

for CSSP method, the length of the signal is 97 ms

with a third-order FIR filter and s = 1 ms.

4 Discussion

The results presented in the previous section illustrated the

improved performance of the CSSP method over other

three methods. In this section, we illustrate how the CSSP

spatio-spectral filtering is able to have an improved clas-

sification accuracy than the CSP method.

Subject C is taken as an example because this subject

has the worst performance among five able-bodied sub-

jects and, thus, the classification error is more evident for

comparison. The eight-motion classification problem is

divided into 28 two-class problems. Table 3 shows the

classification errors of the four methods for the 28 two-

class problems on Subject C. The parameter setting is

the same as it is in the last section. However, for these

two-class problems, the number of CSP or CSSP fea-

tures is reduced to 6, which is equal to the number of

components.

As illustrated in Table 3, most motions could be distin-

guished easily from each other. A special case, motion

(d) versus (f), is italicized in Table 3, in which more than

8 % classification error is made by CSP method. Figure 5

depicts the spectral information (obtained using the Welch’s

method [25]) of 6-channel EMG signals in the special case.

All these motions show similar spectral patterns in the fre-

quency domain. The dominant energy of the origin EMG

signal is in the range of 20–150 Hz. The bar charts below are

the classification accuracies of the SMA method in each

frequency band. The six panels in the right column of Fig. 5

show the frequency response of the FIR filters embedded in

CSSP for each channel in the CSSP components.

Based on the results shown in Fig. 5, the advantages and

disadvantages of the four methods are discussed as follows.

1. TD: MAV is an estimate of the mean amplitude of the

EMG signals and ZC is a simple measure of the

frequency. By making a difference in consecutive

samples, the statistics WL and SSC can make an

indirect reflection about the amplitude and frequency

in high-frequency domain. Hence, the TD feature set

provides a relatively comprehensive measure of EMG

amplitude and frequency. Although the TD method

does not take advantage of the spatial information and

therefore could not provide the best results in the four

methods, its stability and simplicity make it commonly

used for EMG signal recognition.
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Fig. 5 Left panel the Welch’s spectral estimates of surface EMG

signals for motions (d) and (f), which are plotted in solid and dash
lines respectively. Different colors denote different channels and the

bar chart below shows the classification accuracies of different

frequency bands with their standard deviations in the SMA method.

Asterisk denotes that two frequency bands have significantly different

classification accuracies (p \ 0.05; paired two-sample t test). Right
panel the frequency responses of FIR filters for each channel in the

components made by CSSP method. Different colors denote different

channels. In each component, 24 coefficients contain the information

of 6 FIR filters for 6 channels, see Eq. (11) (color figure online)
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2. SMA: As compared in Sect. 3, the SMA method could

provide higher classification accuracy than the TD

method in the eight-task problem for almost all the

subjects except Subject C. In Table 3, the performance

of SMA is quite unstable. SMA performs quite well in

most two-class classification cases, but a large error

rate was made by SMA when motion (c) or (h) is to be

distinguished from other motions. In the special case

of (d) versus (f), it can be clearly seen that the SMA

method shows high classification accuracy in the

middle-frequency band (200–300 Hz) and the high-

frequency band (350–500 Hz), which implies that the

EMG features in these frequency bands are more

discriminative.

3. CSP: For CSP method, the limitation of channel number

degrades its performance, which is not as effective as TD

method in most cases. In addition, the components

extracted by the spatial filters generally have the same

energy distributions as the original EMG signals. In

the conditions that the difference of the two motions

is mainly in the dominant energy frequency band

(20–150 Hz), the amplitude type features provided by

the CSP method might have good performance. How-

ever, two motions may be better discriminative in

frequency bands other than the dominant band. As seen

in Fig. 5, the motions (d) and (f) are mainly distin-

guished in the middle- (200–300 Hz) and high-fre-

quency bands (350–500 Hz), which do not coincide

with the dominant energy frequency band (20–150 Hz).

As a result, a large classification error of 8.4 % is made

by the CSP method. Therefore, overlooking frequency

characteristics of EMG is an inherent limitation of the

CSP method.

4. CSSP: As an improvement of the CSP method, the

CSSP method takes the frequency characteristics into

account by automatically selecting both the spatial and

spectral filters to maximize the difference between two

classes. As shown in Fig. 5, most FIR filters embed-

ded in CSSP have high-frequency responses in the

middle- (200–300 Hz) and high-frequency bands

(350–500 Hz), where the two motions are more

discriminative. That is to say, by embedding high-

pass FIR filters in the CSSP method, highly discrim-

inative features in some specific frequency bands are

retained while less-discriminative features in other

frequency bands are restrained. Consequently, the

CSSP method has a substantially lower classifica-

tion error than the CSP method (CSSP: 0.2 %; CSP:

8.4 %) in this special case. More generally, the CSSP

method adaptively designs FIR filters to keep highly

discriminative features for classification, which

explains its improved performance than the CSP

method.

5 Conclusions

This paper makes the first attempt to apply the CSSP

method in the problem of surface EMG classification,

which could provide a joint spatio-spectral filter for better

discriminability.

In the spatial domain, CSSP can automatically design a

spatial filter to remove the signal’s strong correlation and

separate the signals maximally, which makes up the

shortages of the fixed spatial filter, such as the bipolar

differential. The CSP method could also provide well-

designed spatial filter in a high-density electrode condition.

But the performance of CSP is seriously degraded in the

low-density electrode condition. By increasing the number

of channels through generating ‘‘artificial’’ channels with

delayed signals, CSSP would achieve satisfactory results in

low-density EMG recognition.

In the spectral domain, we found that overlooking fre-

quency characteristics of EMG is an inherent limitation of

the CSP method. Using the CSSP method, the adaptively

designed FIR filters could enhance highly discriminative

features in some specific frequency bands and restrain the

others to improve the performance.

Experimental results show that the CSSP method can

achieve improved classification accuracy than the con-

ventional methods in all five able-bodied subjects and one

amputee. The CSSP method is expected to find applications

in human–computer interaction such as functional pros-

thetic control.
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