
NeuroImage 81 (2013) 283–293

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
A novel approach to predict subjective pain perception from single-trial
laser-evoked potentials
G. Huang a,1, P. Xiao b,1, Y.S. Hung a, G.D. Iannetti c, Z.G. Zhang a,⁎, L. Hu b,⁎⁎
a Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
b Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China
c Department of Neuroscience, Physiology and Pharmacology, University College London, UK
⁎ Corresponding author. Fax: +852 25598738.
⁎⁎ Corresponding author. Fax: +86 23 68252983.

E-mail addresses: zgzhang@eee.hku.hk (Z.G. Zhang)
1 These authors contributed equally.

1053-8119/$ – see front matter © 2013 Elsevier Inc. All
http://dx.doi.org/10.1016/j.neuroimage.2013.05.017
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 9 May 2013
Available online 16 May 2013

Keywords:
Pain
Laser-evoked potentials (LEPs)
Pain prediction
Classification
Regression
Pain is a subjective first-person experience, and self-report is the gold standard for pain assessment in clinical prac-
tice. However, self-report of pain is not available in some vulnerable populations (e.g., patients with disorders of
consciousness), which leads to an inadequate or suboptimal treatment of pain. Therefore, the availability of a
physiology-based and objective assessment of pain that complements the self-reportwould be of great importance
in various applications. Here, we aimed to develop a novel and practice-oriented approach to predict pain percep-
tion from single-trial laser-evoked potentials (LEPs). We applied a novel single-trial analysis approach that com-
bined common spatial pattern and multiple linear regression to automatically and reliably estimate single-trial
LEP features. Further, we adopted a Naïve Bayes classifier to discretely predict low and high pain and amultiple lin-
ear prediction model to continuously predict the intensity of pain perception from single-trial LEP features, at both
within- and cross-individual levels. Our results showed that the proposed approach provided a binary prediction of
pain (classification of lowpain andhighpain)with an accuracy of 86.3 ± 8.4% (within-individual) and 80.3 ± 8.5%
(cross-individual), and a continuous prediction of pain (regression on a continuous scale from 0 to 10)with amean
absolute error of 1.031 ± 0.136 (within-individual) and 1.821 ± 0.202 (cross-individual). Thus, the proposed ap-
proach may help establish a fast and reliable tool for automated prediction of pain, which could be potentially
adopted in various basic and clinical applications.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Pain is an unpleasant multidimensional experience associated with
real or potential tissue damage (Loeser and Treede, 2008). Therefore,
pain experience does not simply reflect sensory information but can be
substantially influenced by various psycho-social contexts (e.g., the gen-
der of experimenter) (Aslaksen et al., 2007) and psycho-physiological
factors (e.g., fluctuations in vigilance and attention). Since pain is a sub-
jective first-person experience, self-report (e.g., Visual Analog Scales
[VAS] and Numeric Rating Scales) is the gold standard for the determina-
tion of the presence, absence, and intensity of pain perception in clinical
practice (Cruccu et al., 2010; Haanpaa et al., 2010). While self-report of
pain provides important clinical information for the adequate treatment
of pain patients in most situations (Brown et al., 2011), it fails to be
used in some vulnerable populations (e.g., patientswith disorders of con-
sciousness, including coma, vegetative state, and minimally conscious
state) (Schnakers andZasler, 2007). Lack or any inaccuracy of pain assess-
ment can lead to inadequate or suboptimal treatment of pain in these vul-
nerable patients, which may lead to various additional clinical problems
, huli@swu.edu.cn (L. Hu).
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(e.g., psychological distress or depression, the development of chronic
pain) (Roulin and Ramelet, 2012; Zwakhalen et al., 2006). Although reli-
able pain assessment is important to adequately treat patients suffering
from persistent pain (Gagliese and Melzack, 1997; Zwakhalen et al.,
2006), it is extremely difficult to detect and monitor pain in specific clin-
ical populations, such as non-communicative patients with disorders of
consciousness (Schnakers et al., 2010). In addition, the brain damage of
these patients may lead to confused, stereotyped, and uncoordinated be-
haviors (Roulin and Ramelet, 2012; Schnakers and Zasler, 2007), which is
the barrier to adopt behavioral responses as pain indicators. Therefore,
the availability of a physiology-based and objective assessment of pain
that complements the self-report of pain would be of great importance
in basic and clinical applications.

Nowadays, electroencephalographic (EEG) responses elicited by noci-
ceptive laser heat pulses that selectively excite nociceptive free nerve
endings in the epidermis (Bromm and Treede, 1984) are widely adopted
to investigate the peripheral and central processing of nociceptive senso-
ry input (Iannetti et al., 2003; Treede et al., 2003). Such laser-evoked po-
tentials (LEPs) aremediated by the activation of type-II Aδmechano-heat
nociceptors (Treede et al., 1995) and spinothalamic neurons in the
anterolateral quadrant of the spinal cord (Treede et al., 2003). LEPs con-
sist of several transient responses that are time locked and phase
locked to the onset of laser stimuli. The largest LEP response con-
sists of a biphasic negative–positive complex (N2 and P2 waves),
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maximal at the scalp vertex (Bromm and Treede, 1984) and largely
reflecting the activity of the bilateral operculoinsular and anterior
cingulate cortex (Garcia-Larrea et al., 2003). The strong relationship
between the N2 and P2 amplitudes in LEPs and the intensity of pain
perception have been well characterized (Bromm and Treede, 1991;
Garcia-Larrea et al., 1997; Iannetti et al., 2005; Kakigi et al., 1989), and
the correlations between N2 and P2 latencies and the intensity of pain
perception were also reported (Iannetti et al., 2005). All these findings
inspire us to explore the possibility of objective assessment of pain
based on the single-trial LEP features related to latencies and amplitudes
of N2 and P2 waves.

The aim of the present study was to develop a novel approach to
rapidly and reliably predict pain from single-trial LEP features (Fig. 1),
which can be achieved through the following two major steps. First, a
novel method that combines common spatial pattern (CSP) and multi-
ple linear regression (MLR) was proposed to achieve an automated and
reliable single-trial estimate of LEP features. Second, a Naïve Bayes clas-
sifier and amultiple linear predictionmodel were trained to respective-
ly distinguish low and high pain and predict the intensity level of pain
perception from single-trial LEP features. Such training and predicting
were achieved at both within-individual level, where the classifier
and prediction model were trained on and applied to single-trial LEPs
from the same individual, and cross-individual level, where the classifi-
er and prediction model were trained on a cohort of individuals and
applied to another individual.
Materials and methods

Experimental design and EEG recording

Twenty-nine healthy participants (9 females and 20 males) aged
17–25 years (mean 22.2 ± 1.9), without a history of chronic pain,
participated in the study. All participants gave written informed
Fig. 1. EEG based pain prediction. EEG signal is recorded (a) following the nociceptive stimulatio
perception after each nociceptive stimulus. Noise contaminated in the recorded EEG signal is rem
signal is further parameterized using MLR (c), and a set of MLR coefficients, which capture sing
The relationship betweenMLR coefficients and intensity of pain perception on a single-trial ba
the models, the intensity of pain perception can be decoded/predicted (e) using estimated sin
consent, and the local ethics committee approved the experimental
procedures.

Radiant-heat stimuli were generated by an infrared neodymium
yttrium aluminum perovskite (Nd:YAP) laser with a wavelength of
1.34 μm (Electronical Engineering, Italy). Laser pulses activate directly
nociceptive terminals in the most superficial skin layers (Baumgartner
et al., 2005; Iannetti et al., 2006). Laser pulses were directed at the
dorsum of left hand on a squared area (5 × 5 cm) defined prior to the
beginning of the experimental session. A He–Ne laser pointed to the
area to be stimulated. The laser pulse was transmitted via an optic fiber
and its diameterwas set at approximately 7 mm(~38 mm2) by focusing
lenses. The pulse duration was 4 ms, and four different energies (E1:
2.5 J; E2: 3 J; E3: 3.5 J; E4: 4 J) of stimulationwere used. After each stim-
ulus, the laser beam target was shifted by approximately 1 cm in a ran-
dom direction to avoid nociceptor fatigue or sensitization.

Prior to data collection, a small number of laser pulses with different
stimulus energies were imposed on the stimulated territory to ensure
that theparticipantswere familiarwith the stimulation. Ten laser pulses
at each of the four stimulus energies (E1–E4)were delivered, in random
order, for a total of 40 pulses per participant (Fig. 2, top panel). The
inter-stimulus interval (ISI) was ranged between 10 and 15 s. An audi-
tory tone was delivered 3–6 s after the presentation of each laser pulse
to remind the participants to rate the intensity of the painful sensation
elicited by the laser stimulus, using a VAS ranging from 0 (not pain) to
10 (pain as bad as it could be).

Participants were seated in a comfortable chair in a silent,
temperature-controlled room. They wore protective goggles and
were asked to focus their attention on the stimuli and relax their mus-
cles. The EEG data were recorded using a 64-channel Brain Products sys-
tem (Brain Products GmbH, Munich, Germany; pass band: 0.01–100 Hz;
sampling rate: 1000 Hz) using a standard EEG cap based on the extend-
ed 10–20 system. The nose was used as the reference channel, and all
channel impedances were kept lower than 10 kΩ. To monitor ocu-
lar movements and eye blinks, electro-oculographic signals were
n on the target territory of human body, and the subject rates verbally the intensity of pain
oved using effective single-trial analysis techniques (e.g., ICA, CSP) (b). The denoised EEG
le-trial variability of LEP responses (e.g., N2 and P2 latency and amplitude), are obtained.
sis can be coded/trained (d) using both classification and regression approaches. Based on
gle-trial MLR coefficients.



Fig. 2. Experiment design and laser-evokedbrain potentials. Top panel: Laser-evoked brain responseswere recorded following the laser stimulation of the left handdorsum. Four different
stimulation energies (E1: 2.5 J; E2: 3 J; E3: 3.5 J; E4: 4 J) were used, and 10 trials of each of the 4 stimulation energies were delivered in random order, for a total of 40 trials. The
inter-stimulus intervalwas randomly distributed between 10 and 15 s. Between 3 and 6 s after each laser stimulus, subjects were reminded by an acoustical signal (beep) to rate verbally
the intensity of pain perception using a VAS ranging from 0 to 10. Bottom panel: Group averages and scalp topographies of LEPs at different intensity of pain perception (I1–I4).
Group-level average LEPs were recorded at electrode Cz (nose reference), and categorized according to the intensity of pain perception (colored waveforms). Gray scale represents
the F-values obtained for each time point using a one-way repeated measures ANOVA to assess the effect of “intensity of pain perception” on LEPs. Both N2 and P2 amplitudes showed
the strongest modulation with the “intensity of pain perception” (marked in dark gray).
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simultaneously recorded from 4 surface electrodes: one pair placed
over the upper and lower eyelids, and the other pair placed 1 cm
lateral to the outer corner of the left and right orbits.
Data analysis: single trial feature extraction

Since themagnitude of laser-evoked brain responses is often several
factors smaller than themagnitude of background EEG and non-cortical
artifacts (Hu et al., 2010), the prediction of pain perception from
single-trial LEPs would rely on advanced signal processing techniques
to (1) enhance greatly the signal-to-noise ratio (SNR) and (2) estimate
automatically and reliably single-trial LEP features. Thus, we proposed
to enhance the SNR of single-trial LEPs using the combination of (1)
bandpass filtering (BPF), (2) independent component analysis (ICA),
and (3) common spatial pattern (CSP), and to estimate single-trial LEP
features using (4) multiple linear regression (MLR) (Fig. 3, top panel).
BPF and ICA were applied to perform a filter on EEG recordings in the
spectral and spatial domains respectively, to remove irrelevant noise
and artifacts. CSP was adopted to further enhance the SNR of LEP
responses by retrieving stimulus-evoked EEG responses from spontane-
ous EEG activity. Finally, MLR was used to automatically parameterize
single-trial LEP responses using MLR coefficients, which captured the
variability of single-trial N2 and P2 latency and amplitude. The four an-
alytic steps were detailed in the following subsections.
Bandpass filtering and independent component analysis
To provide a filter in the spectral domain, continuous EEG data were

bandpass filtered between 1 and 30 Hz (zero-phase digital filtering)
(Delorme andMakeig, 2004). EEG trials were extracted using an analysis
window of 1500 ms (500 ms pre-stimulus and 1000 ms post-stimulus),
and baseline corrected using the pre-stimulus time interval.

Following, EEG trials contaminated by eye-blinks and movements
were corrected using the ICA algorithm (Delorme and Makeig, 2004;
Jung et al., 2001; Makeig et al., 1997). As described by Mognon et al.
(2011), artifacts related to eye-blinks and movements could be auto-
matically identified based on the combination of stereotyped artifact-
specific spatial and temporal features. In all datasets, the independent
components having a large EOG channel contribution and a frontal

image of Fig.�2


Fig. 3. Flowchart describing the procedure to enhance the SNR of single-trial LEP responses. Top panel: The EEG responses (A, both resting EEG and LEP responses, and for both
training and test), measured at Cz, were bandpass filtered between 1 and 30 Hz (step 1). In the training dataset, noise trials in the filtered EEG responses (B) were corrected
using ICA (step 2), and the ICA corrected EEG responses (C) were spatially filtered using CSP (step 3). The spatially-filtered EEG responses (D) were further modeled using MLR
(step 4). This procedure generated both single-trial EEG responses with enhanced SNR (E) and the corresponding filter models (ICA, CSP, and MLR models), which were applied
on the test trial to significantly enhance its SNR (from top to bottom). Bottom panel: SMI, indicated the ratio between “LEP-like” responses (signal) and “LEP-irrelevant” residual
(noise), was used to assess the filter effect of each single-trial analysis step. One-way repeated-measures ANOVA revealed that the single-trial analysis steps can significantly
enhance the SMI (F = 79.24, p b 0.001).
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scalp distribution were removed, and the remaining independent com-
ponents were used to reconstruct the denoised EEG trials.

Common spatial pattern
CSP is a mathematical tool to decompose two populations of multi-

variate signals into a set of spatial patterns, whichmaximize their differ-
ences in terms of variance (Muller-Gerking et al., 1999; Ramoser et al.,
2000). Thismethodwasfirst applied in thefield of EEG analysis to detect
abnormalities (Koles, 1991; Koles et al., 1990), and has recently been
shown to be a powerful technique in brain–computer interface research
for discriminating different mental intentions (Blankertz et al., 2008). In
thepresent study, onepopulation consisted of EEG recordings before the
presentation of laser stimulation (pre-stimulus EEG activity: −500 to
0 ms), and the other population consisted of EEG recordings after the
presentation of laser stimulation of the same trial (post-stimulus EEG
activity: 0 to 500 ms, where the Aδ related LEP responses were domi-
nantly observed). The pre- and post-stimulus EEG activities over all
channels of the same trial formed two matrices Xpre;Xpost∈RN�T ,
where N is the number of channels and T is the number of samples in
each trial. To maximize the difference between the variance of Xpre

and Xpost, CSP is objective to estimate the generalized eigenvector or
the projection vector w by solving the generalized eigenvalue problem
as follows:

XpostX
T
post

D E
w ¼ λ XpreX

T
pre

D E
w; ð1Þ

where ⟨·⟩ is the averaging operator across trials for the same population
and λ is the generalized eigenvalue. The matrixW ¼ w1; ⋯;wN½ �∈RN�N ,
wherew1, ⋯, wN areN eigenvectors estimated fromEq. (1), is the spatial
filter, and A ¼ W−1∈RN�N is the spatial pattern represented as a
weighting of EEG channels. Importantly, CSP provided an ordered list
of spatial patterns according to the discriminative power between two
populations. As a result, the spatial pattern with the maximal variance
of Xpostwould capture theminimal variance of Xpre, and vice versa. Typ-
ically, only a few spatial patterns were sufficient for the discrimination

image of Fig.�3
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between two populations (Muller-Gerking et al., 1999). These few spa-
tial patterns, which can isolate stimulus-evoked EEG responses
(contained only in Xpost) from spontaneous EEG activity (contained
in Xpost as well as Xpre), worked as an effective spatial filter. In the
present study, three eigenvectors corresponding to the largest eigen-
values of Xpost and lowest eigenvalues of Xpre were selected to recon-
struct spatial-filtered single-trial EEG responses of all channels (see
Section 1 in the Supplementary Materials for the reason of selecting
three CSP components).

Multiple linear regression
To estimate single-trial LEP features automatically and reliably, we

applied a multiple linear regression method (Mayhew et al., 2006) to
LEP trials recorded at Cz within the post-stimulus time interval (0 to
500 ms), which were filtered using the combination of BPF, ICA, and
CSP. The MLR approach takes into account the variability of both N2
and P2 latency and amplitude of LEPs, and models single-trial LEP re-
sponses as follows:

f tð Þ ¼ aNyN t þ lNð Þ þ aPyP t þ lPð Þ; ð2Þ

where f(t) is a modeled single-trial LEP waveform that varies as a func-
tion of time t, yN(t) and yP(t) are the templates of N2 and P2 waves,
which can generally be obtained as the average of all LEP trials of each
participant, aN and aP are the weights of N2 and P2 templates, and lN
and lP are the latency shift values of the N2 and P2 templates, respective-
ly. Since the N2 and P2 peaks of the LEPs reflect the activity of the
different neural generators (Garcia-Larrea et al., 2003), and their am-
plitudes can be differentially modulated by several experimental fac-
tors (e.g., spatial attention and probability of perception) (Lee et al.,
2009; Legrain et al., 2002), wemodeled the N2 and P2waves separate-
ly, thus avoiding the assumption that all generators contributing to the
LEP responses covary linearly (Hu et al., 2011). Using the Taylor expan-
sion, the MLR model can be written as follows:

f tð Þ≈aNyN tð Þ þ lNaNy
0
N tð Þ þ aPyP tð Þ þ lPaPy

0
P tð Þ þ ε

¼ β1yN tð Þ þ β2y
0
N tð Þ þ β3yP tð Þ þ β4y

0
P tð Þ þ β5;

ð3Þ

where y′N(t) and y′P(t) are the temporal derivatives of N2 and P2 tem-
plates, respectively, and ε is the residual term. Thus the single trial LEP
waveform is approximated using the sum of the weighted averages of
N2 and P2 templates and their respective temporal derivatives. Consid-
ering that these weights (β1, β2, β3, β4, β5) captured the single-trial var-
iability of N2 and P2 latency and amplitude in LEPs, these coefficients
could be closely related to the subjective intensity of pain perception.
Correlations between these estimated single-trial coefficients and the
corresponding single-trial ratings of pain perception were measured
using Pearson's correlation coefficient for each participant (Hu et al.,
2011). The obtained correlation coefficients were transformed to Z
values using the Fisher R-to-Z transformation andwere finally compared
against zero using a one-sample t-test.

Performance evaluation
To quantitatively assess the performance of each analysis step

(BPF, ICA, CSP, and MLR) for enhancing the SNR of single-trial LEPs,
raw data, and denoised data after each analysis step were evaluated
using a similarity index (SMI) (Su et al., 2012), which is the power
ratio between the “LEP-like” data in a testing trial and the residual.
Let z be the average of training trials and zk be the kth testing trial,
and the SMI is calculated as follows:

SMI ¼ 10 log10
σ2 Pð Þ
σ2 Rð Þ

 !
; ð4Þ
whereP ¼ zTzk
zTz

z is the orthogonal projection of zk on to z, and R =zk − P

is the residual part. A large SMI indicates that the testing trial zk is similar
to the average z of training trials, and vice versa. Since SMI is sensitive to
the average response of training trials, the control of its quality is achieved
in the following two aspects:

First, BPF, ICA, and CSP were only performed on single-trial LEP re-
sponses, which indicated that these analysis steps did not result in a
test trial similar to the average response of training trials (i.e., not sen-
sitive to the average response). Indeed, only the last analysis step,
MLR,was sensitive to the average response of training trials, as the av-
erage response was used as the model to fit the response of test trial.
Second, the quality of average response was greatly improved
from the former three analysis steps (BPF, ICA, and CSP), that
allowed to remove the majority of artifacts from single-trial LEP
responses. The average responses of training trials with improved
SNR were used in the MLR analysis.

SMI values calculated from all data were compared using a 5-level
(raw data, data after BPF, data after ICA, data after CSP, and data after
MLR) one-way repeated-measures ANOVA. When the main effect of
the ANOVA was significant (p b 0.05), post hoc pairwise comparisons
(two-sample t-test) were performed.

Prediction of pain perception

Based on the estimated MLR coefficients β1, β2, β3, β4 and β5, we
(1) discretely predicted the intensity of pain perception by classifying
EEG trials into two levels (low pain: VAS b 5, high pain: VAS ≥ 5)
using a Naïve Bayes classifier, and (2) continuously predicted the in-
tensity of pain perception for each EEG trial within the scale range
from 0 to 10 using a multiple linear prediction model. Both the binary
(classification of low pain and high pain) and continuous (regression
on a continuous scale from 0 to 10) prediction of pain perception was
performed at the within- and cross-individual levels. Note that all five
MLR coefficients (β1, β2, β3, β4, and β5) were used as LEP features for
the prediction of pain perception since the use of all five coefficients
contributed to the (almost) best prediction performance (see Section
2 in the Supplementary Materials for details about the feature selec-
tion). Note also that at cross-individual level, both single-trial LEP fea-
tures (MLR coefficients) and single-trial ratings of pain perception were
normalized to minimize the commonly observed inter-individual vari-
ability. For each participant, single-trial LEP features were normalized by
subtracting the mean and dividing by the standard deviation (i.e., repre-
sented as z values), and single-trial ratings of pain perception were
rescaled within the range from 0 to 10 (defining 0 as the lowest pain rat-
ing and 10 as the highest pain rating for each participant).

Binary prediction: classification of low pain and high pain
LEP trials were divided into two groups: training trials and test trial(s)

(see Cross validation section for details). Training trials were divided into
two categories (labeled as low pain: VAS b 5, and high pain: VAS ≥ 5)
according to the pain perception ratings for each participant. The MLR
coefficients β1, β2, β3, β4 and β5 were extracted from both training and
testing trials, and were used as LEP features for subsequent classification.
A Naïve Bayes classifier (Witten and Hall, 2011) was first trained with
single-trial LEP features (i.e., five MLR coefficients) of training trials (to
code the relationship between single-trial LEP features and the corre-
sponding labels of pain perception), and then applied to the test trial(s)
to predict single-trial labels from the corresponding single-trial LEP
features.

It'swell known that theNaïve Bayes classifierwas capable of provid-
ing an accurate classification even with a small number of training data
(Witten and Hall, 2011; Zhang, 2004). Therefore, it is particularly
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suitable for the present study, since the number of LEP trials was limited
for each individual. A comparison between the Naïve Bayes and other
popular classifiers, such as linear discriminant analysis (Duda et al.,
2000) and support vector machine (Cortes and Vapnik, 1995), was
summarized in Section 3 of the Supplementary Materials.

The prediction performance was evaluated using the classification
accuracy, i.e., the percentage of accurate predictions. In addition, to
demonstrate that the larger the difference of VAS between categories,
the higher the classification accuracy, and vice versa, we performed
several binary predictions to distinguish multiple categories of pain
perception at within-individual level, which were summarized in
Section 4 of the Supplementary Materials.

Continuous prediction: regression of pain perception intensity
A linear regression analysis was adopted to model the relationship

between single-trial LEP features and the corresponding intensity of
pain perception for continuous prediction of the pain perception
from the LEP features. For the kth training trial, the linear regression
model can be written as follows:

Ik ¼
X5
i¼1

αiβik þ c; ð5Þ

where Ik is the intensity of pain perception, βik (i = 1, 2,…, 5) are the LEP
features (i.e., MLR coefficients) extracted fromEq. (3), andαi and c are the
coefficients of linear regression model, which were estimated using the
ordinary least squaresmethod. Following, the generated linear regression
modelwas applied to the test trial(s) to predict the single-trial intensity of
pain perception from the corresponding single-trial LEP features. A com-
parison between ordinary least squares and othermethods (such as lasso
and ridge) (Tibshirani, 1996)was summarized in Section 5 of the Supple-
mentary Materials.

The prediction performance was evaluated using the Mean Abso-
lute Error (MAE), which can be written as follows:

MAE ¼ 1
N

XN
n¼1

In−Î n
��� ���; ð6Þ

where In and Î n are the real and predicted intensity of pain perception
for trial n, and N is the number of trials of each participant for
within-individual prediction, or of all participants for cross-individual
prediction. The MAE represented the absolute difference between the
predicted values and real values in linear regression analysis, and it
served as a straightforward measure on how close the predicted values
were to the real intensity of pain perception in the present study.

Cross validation

Leave-one-out cross validation (LOOCV) (Duda et al., 2000) was
used in two stages of data analysis: (1) single-trial LEP feature extrac-
tion (CSP and MLR) and (2) prediction of pain perception (Naïve
Bayes classifier and linear regression model). For example, when we
performCSP analysis, the spatialfilterwas obtained fromall training tri-
als, and applied to both training and test trials to enhance their SNRs.

It should be noted that different LOOCV strategies were adopted to
predict pain perception at both the within- and cross-individual levels.
In the present study, there were 29 participants with 40 LEP trials each.
At the within-individual level, LOOCV was achieved by dividing 40 LEP
trials into 39 training trials and 1 test trial, and the same procedure was
repeatedly performed 40 times to make sure that each LEP trial was
used as the test trial once. At the cross-individual level, LOOCV was
achieved by dividing 29 subjects into 28 training subjects and 1 test
subject, and similarly, the same procedure was repeatedly performed
29 times to make sure that each subject was used as the test subject
once (all LEP trials from this subject were used as test trials).
Considering the substantial inter-individual variability of both LEP fea-
tures and pain perception (e.g., one participant has high LEP responses
and low pain perception, while another participant may have low LEP
responses and high pain perception), both single-trial LEP features
and single-trial ratings of pain perception intensity were normalized
for each participant at the cross-individual level. The comparison of pre-
diction performance with and without the normalization of both
single-trial LEP features and single-trial ratings of pain perception was
summarized in Section 6 of the Supplementary Materials.

Comparison between binary prediction and continuous prediction

To compare the reliability of binary and continuous prediction
methods, a unifying measure, named Proportional Reduction in Loss
(PRL) (Cooil and Rust, 1994; Rust and Cooil, 1994), is calculated as:

PRL ¼ Emax−Eð Þ=Emax; ð7Þ

where E is the expected loss, which can be estimated from the classifi-
cation accuracy in binary prediction, and from MAE in continuous pre-
diction, and Emax is the maximum possible expected loss, where the
prediction is completely unreliable (i.e., at the chance level). A perfectly
correct predictionwould have the loss E = 0, then PRL = 1. In contrast,
a completely unreliable prediction would have the loss E = Emax, then
PRL = 0. That is, the higher the PRL, the more reliable the prediction.

For binary prediction (two-class classification), we have Emax = 50%
and E = 100% − accuracy(%). For continuous prediction, E is the MAE
value of the linear regression and Emax is the MAE value calculated
when the prediction is totally random, which is realized by resampling
without replacement. Specifically, Emax is calculated by the following
steps: (i) randomly assigning one value within 0–10, representing the
predicted pain perception intensity, to each single trial for each partici-
pant; (ii) calculating the MAE value from the randomly assigned
values of all 40 trials for each participant; and (iii) repeating steps
(i) and (ii) for 100 times for each participant, and calculating the aver-
age MAE value (i.e., Emax).

Results

Laser-evoked brain responses

Laser stimuli elicited a clear pinprick perception and reproducible
time-locked LEPs in all participants (mean VAS = 5.8 ± 1.2), related to
the activation of Aδ fibers (Bromm and Treede, 1984). Fig. 2 shows the
group-level average LEP waveforms at Cz (nose reference) and the scalp
topographies of N2 and P2 waves for each level of pain perception inten-
sity (I1–I4). Across subjects, latencies and amplitudes of N2 and P2 peaks
for each level of pain perception intensitywere as follows: N2 latency (I1:
256 ± 19 ms, I2: 230 ± 23 ms, I3: 204 ± 35 ms, I4: 198 ± 51 ms;
F = 16.5, p b 0.001); N2 amplitude (I1: −11 ± 7 μV, I2: −22 ±13 μV,
I3: −32 ± 15 μV, I4: −43 ± 16 μV; F = 27.94, p b 0.001); P2 latency
(I1: 338 ± 33 ms, I2: 350 ± 37 ms, I3: 356 ± 36 ms, I4: 364 ± 45 ms,
F = 2.36, p = 0. 075); P2 amplitude (I1: 8 ± 5 μV, I2: 16 ± 9 μV, I3:
26 ± 11 μV, I4: 33 ± 9 μV; F = 39.94, p b 0.001). Scalp topographies
of the N2 and P2 waves were markedly similar across four levels of pain
perception intensity. Consistent with previous studies (Kunde and
Treede, 1993; Valentini et al., 2012), the N2wave extended bilateral-
ly towards temporal regions, whereas the P2wave wasmore central-
ly distributed.

Single trial LEP features

The procedure to enhance the SNR of single-trial LEP responses was
illustrated in Fig. 3. First, a 1–30 Hz bandpass filter was applied to both
resting EEG and LEP responses (both training and test trials) for effec-
tively attenuating low- and high-frequency artifacts (Fig. 3, top panel;
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step 1). Then, ICA algorithm was applied to the bandpass filtered train-
ing trials for correcting EEG trials that contaminated by eye-blinks and
movements (Fig. 3, top panel; step 2). Following, CSP algorithm was
applied on ICA corrected resting EEG and LEP responses (pre- and
post-stimulus EEG activities respectively) to extract a few spatial pat-
terns that can maximally differentiate LEP responses from spontaneous
EEG activity (Fig. 3, top panel; step 3). Next, MLR algorithmwas applied
on CSP refined resting EEG and LEP responses tomodel the variability of
single-trial latency and amplitude of N2 and P2 waves, which could not
only enhance the SNR of single-trial LEP responses, but also provide an
effective way to parameterize single-trial LEP responses using five MLR
coefficients (β1, β2, β3, β4, and β5) (Fig. 3, top panel; step 4). All filter
models (ICA, CSP, and MLRmodels) that generated from training trials,
were subsequently applied on the test trial(s) (Fig. 3, right part of the
top panel).

In the bottom panel of Fig. 3, we show how these filters significantly
enhanced the SMI step by step (raw data: −8.7 ± 5.4, data after BPF:
−7.6 ± 4.6, data after ICA: −6.5 ± 4.6, data after CSP: −4.7 ± 4.0,
data after MLR:−0.7 ± 3.3; F = 79.24, p = b0.001). Post hoc compar-
ison revealed that (1) the enhancement of SMI from rawdata to data after
CSP was significant (p b 0.05), and (2) the enhancements of SMI from
raw data, data after BPF, data after ICA, and data after CSP to data after
MLR were all significant (p b 0.05 for all comparisons). Note that the in-
crease of SMI, which indicated the ratio between “LEP-like” responses
(signal) and “LEP-irrelevant” residual (noise), quantified the performance
of tested filters to enhance the SNR.

Fig. 4 shows the correlations between single-trial LEP features (MLR
coefficients: β1, β2, β3, and β4), estimated usingMLR algorithm, and the
corresponding intensity of pain perception. Both β1 and β3, which cap-
tured the variability of single-trial N2 and P2 amplitudes respectively,
were significantly and strongly correlated with the corresponding
intensity of pain perception (β1: mean R = 0.74, p b 0.001; β3: mean
R = 0.52, p b 0.001). In addition, both β2 and β4, which captured
the variability of single-trial N2 and P2 latencies respectively, were
significantly but weakly correlated with the corresponding intensity
of pain perception (β2: mean R = 0.34, p b 0.001; β4: mean R = 0.28,
p b 0.001). As expected, β5, which captured the variability of residual
noise, was not significantly correlated with the corresponding intensity
of pain perception (β5: mean R = 0.04, p = 0.176).
Binary prediction: classification of low pain and high pain

Table 1 summarized the classification accuracy for binary prediction
of low pain and high pain using MLR coefficients. Two-way repeated
measures ANOVA to assess the effect of classification scenarios (factor
1: within- and cross-individual levels) and LEP features (factor 2: β1, β2,
β3, β4, β5, and all MLR coefficients) on prediction accuracy revealed that
(1) theprediction accuracywas significantly different usingdifferent clas-
sification scenarios (F = 79.25, p b 0.001), with higher accuracy for pre-
diction at within-individual level than at cross-individual level; (2) the
prediction accuracy was significantly different using different LEP fea-
tures (F = 28.29, p b 0.001); and (3) therewas no significant interaction
between the two factors (F = 1.856, p = 0.140). At within-individual
level, post hoc analysis revealed that the prediction accuracy was signifi-
cantly higher for β1 than β2, β4, and β5 (p = 0.007, p = 0.014, and p =
0.002 respectively); for β3 than β5 (p = 0.041); for all MLR coefficients
than β2, β3, β4, and β5 (p = 0.002, p = 0.021, p = 0.004, and p =
0.001 respectively). At the cross-individual level, post hoc analysis re-
vealed the prediction accuracy was significantly higher for β1 than β2,
β4, and β5 (p b 0.001 for all comparisons); for β3 than β2, β4, and β5

(p b 0.001 for all comparisons); for all MLR coefficients than β2, β3, β4,
and β5 (p b 0.001, p = 0.011, p b 0.001, and p b 0.001 respectively).

A comprehensive comparison of classification accuracy using all
possible combinations of MLR coefficients was provided in Section 2
of the Supplementary Materials.
Continuous prediction: regression of pain perception intensity

The prediction of pain perception intensity using linear regression
model at both within- and cross-individual levels was shown in Fig. 5.
Across participants, MAE values were 1.031 ± 0.136 and 1.821 ± 0.202
for within-individual and cross-individual levels, respectively. The proba-
bility density distribution of prediction error indicated that the 50% and
95% error intervals were respectively [−0.890, 0.699] and [−2.685,
2.943] at within-individual level, and were respectively [−1.591, 1.530]
and [−4.270, 4.626] at cross-individual level. It should be noted that, at
cross-individual level, single-trial MLR coefficients and single-trial rat-
ings of pain perception intensity were normalized for each participant,
whichmade it impossible to directly compare the predictionperformance
(indexed byMAEvalues) betweenwithin-individual and cross-individual
levels.

To statistically compare their prediction performance, single-trial rat-
ings of pain perception were rescaled within the range from 0 to 10 (de-
fining 0 as the lowest pain rating and10 as the highest pain rating for each
participant) after prediction for pain prediction atwithin-individual level.
The same scaling, calculated from real single-trial ratings of pain percep-
tion,was appliedonpredicted single-trial ratings. After rescaling, theMAE
values were 1.607 ± 0.207 across participants for pain prediction at
within-individual level, which was significantly lower than those at
cross-individual level (1.821 ± 0.202; p b 0.001, paired sample t-test).

Comparison between binary prediction and continuous prediction

At within-individual level, the PRL values for binary and continuous
predictions were respectively 0.73 ± 0.17 and 0.52 ± 0.08 (p b 0.001,
paired two-sample t-test). The result indicated that continuous predic-
tion could provide a prediction of pain perception intensity at a finer
scale than binary prediction (continuous value from 0 to 10 vs. either
low or high pain), while binary prediction is significantly more reliable
than continuous prediction.

Discussion

In the present study, we aimed at developing a fast, automated,
and reliable approach for (1) estimating single-trial LEP features
and (2) predicting pain perception from estimated single-trial LEP
features. We applied a novel single-trial analysis approach that com-
bined CSP andMLR to automatically and reliably estimate single-trial
LEP features, and adopted a Naïve Bayes classifier to discretely pre-
dict low and high pain and amultiple linear prediction model to con-
tinuously predict the intensity of pain perception from single-trial
LEP features, at both within- and cross-individual levels. Our results
showed that the proposed approach provided a binary prediction of
pain (classification of low pain and high pain) with an accuracy of
86.3 ± 8.4% (within-individual) and 80.3 ± 8.5% (cross-individual),
and a continuous prediction of pain (regression on a continuous scale
from 0 to 10) with an MAE value of 1.031 ± 0.136 (within-individual)
and 1.821 ± 0.202 (cross-individual). Considering the good perfor-
mance of the proposed approach in various pain prediction scenarios,
this study may help establish a fast and reliable tool for automated pre-
diction of pain, which could be potentially adopted in various basic and
clinical applications.

Pain prediction: technical notes and improvements

A practically useful tool to predict pain perception of humans should
be sufficiently rapid, accurate, and automatic, in order to satisfy the re-
quirement of most real-world applications. To achieve these goals, our
study proposed a novel and practice-oriented strategy of pain predic-
tion, which showed several distinctions as compared with previous
studies on pain prediction (Brodersen et al., 2012; Bromm and Treede,
1991; Marquand et al., 2010; Prato et al., 2011; Schulz et al., 2012).



Fig. 4. Correlations between single-trial MLR coefficients (β1, β2, β3 and β4) and intensity of pain perception. Both β1 and β3 significantly correlated with the intensity of pain perception
(β1: mean R = 0.74, p b 0.001; β3: mean R = 0.52, p b 0.001). Both β2 and β4 significantly (but relatively weakly as compared with β1 and β3) correlated with the intensity of pain
perception (β2: mean R = 0.34, p b 0.001; β4: mean R = 0.28, p b 0.001). The black solid lines and green dash lines represent the mean and SD of the best linear fit across participants.

290 G. Huang et al. / NeuroImage 81 (2013) 283–293
The possibility of pain prediction using non-invasive neuroimaging
techniques was first explored by several research groups using func-
tional magnetic resonance imaging (fMRI) (Brodersen et al., 2012;
Brown et al., 2011; Marquand et al., 2010; Prato et al., 2011). Because
of the high spatial resolution, whole-brain fMRI technique could not
only reveal spatially distributed patterns of activity underlying specific
perceptual, cognitive states (Brodersen et al., 2012; Marquand et al.,
2010; Raij et al., 2005), but also provide a prediction of pain perception
with a relatively high accuracy (Brown et al., 2011; Marquand et al.,
2010). Atwithin-individual level,Marquand et al. (2010)was able to clas-
sify three levels of painful stimuli with a prediction accuracy ranging from
68.3% to 91.7%. At cross-individual level, Brown et al. (2011) reported an
averaged classification accuracy of 86.6% to distinguish nonpainful and
painful stimuli. Note that, as comparedwith the fMRI-based pain predic-
tion studies,we have obtained quite comparable results using EEG tech-
nique in the present study (at within- and cross-individual levels,
respectively, a prediction accuracy of 86.3 ± 8.4 and 80.3 ± 8.5 to clas-
sify low- and high pain, and an MAE of 1.031 ± 0.136 and 1.821 ±
0.202 to regress pain perception on a continuous scale from 0 to 10).
Importantly, as compared with fMRI, EEG was much less expensive,
portable, and widely equipped in hospitals, clinics, and research units
(Hüsing et al., 2006). Thus, EEG-based pain prediction is more conve-
nient and feasible for practical applications.

Alongwith the functionalmagnetic resonance imaging-based studies,
Schulz et al. (2012) first described the use of single-trial multi-channel
EEG recordings to classify low and high pain and to predict the individual
Table 1
Classification accuracy for binary prediction of low pain and high pain using each of MLR c

MLR coefficients

β1 (%) β2 (%) β3 (%

Within-individual 85.2 ± 9.4 74.6 ± 14.7 79.7
Cross-individual 78.8 ± 10.3 55.1 ± 13.5 74.0
sensitivity to pain. A multivariate pattern analysis strategy has been
adopted in all these EEG- or fMRI-based pain prediction studies, since
multivariate pattern analysis holds the unique advantage of being able
to reveal important pattern information jointly presented by a number
of variables (spatial pattern in fMRI, temporal and time–frequency pat-
terns in EEG) and thus is free of the sophisticated feature extraction
process (O'Toole et al., 2007). However, such amultivariate pattern anal-
ysis strategy usually had an extremely high computational complexity
(O'Toole et al., 2007), and could not provide an effective prediction of
pain in practical applications. To provide a rapid and reliable prediction
of pain from single-trial EEG recordings, we proposed to build the classi-
fier and regression model using LEP features that (1) showed a strong
correlation with subjective pain perception and (2) captured a high
SNR, instead of using all available EEG samples in themultivariate pattern
analysis strategy. Among all explored LEP features (i.e., N1, N2, and P2
waves, event-related desynchronization at alpha band and gamma
band oscillations), N2 and P2 waves captured the highest SNR, and the
strongest correlation with subjective pain perception (Iannetti et al.,
2008; Zhang et al., 2012). Therefore, N2 and P2 waves were the most
commonly used measurements to assess LEPs in clinical practice, while
other LEP features were restricted in clinical recommendations (Cruccu
et al., 2008; Treede et al., 2003). In the present study, we have followed
the clinical LEP recommendations, and proposed an innovative single-
trial analysis approach to enhance the SNR of LEP responses and to pa-
rameterize N2 and P2 related LEP features (i.e., MLR coefficients that
coded the single-trial variability of N2 and P2 latency and amplitude)
oefficients and all MLR coefficients.

) β4 (%) β5 (%) All (%)

± 12.1 74.2 ± 17.1 70.6 ± 19.3 86.3 ± 8.4
± 10.0 58.3 ± 13.2 55.9 ± 12.6 80.3 ± 8.5

image of Fig.�4


Fig. 5. The prediction of intensity of pain perception using linear regressionmodel at both within- and cross-individual levels. Dots in green, yellow, and red indicate the real intensity of
pain perception, predicted intensity of pain perception, and the prediction error. Trails were sorted according to the real intensity of pain perception to better the visualization (increase
from left to right). Top panel: The prediction performance of linear regressionmodel forwithin-individual strategy of a representative participant (MAE = 1.205). The probability density
distribution of prediction error indicated that the 50% and 95% error intervals were respectively [−1.153, 0.590] and [−2.792, 3.092]. Middle panel: The prediction performance of linear
regression model for within-individual strategy of all participants (MAE = 1.031 ± 0.136). The probability density distribution of prediction error indicated that 50% and 95% error in-
tervals were respectively [−0.890, 0.699] and [−2.685, 2.943]. Bottom panel: The prediction performance of linear regression model for cross-individual strategy of all participants
(MAE = 1.821 ± 0.202). The probability density distribution of prediction error indicated that 50% and 95% error intervals were respectively [−1.591, 1.530] and [−4.270, 4.626].
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(Figs. 3 and 4). Such single-trial analysis approach (the combination
of BPF, ICA, CSP, and MLR) could not only significantly improve the SNR
of single-trial LEP waveforms (Fig. 3, bottom panel; F = 79.24,
p b 0.001), but also be executed rapidly and automatically, thus avoiding
any bias due to manual operation. It should be noted that the perfor-
mance of ICA and CSP depends on the number of channels and the layout,
and we have provided evidence showing that the proposed single-trial
analysis achieved a good performance using the 64-channel montage
on the extended 10–20 system. Montage with fewer channel, preferable
in clinical application,would be evaluated in our future study. In addition,
the proposed framework to predict pain could be adapted for predicting
subjective sensation from event-related potentials in various sensory
modalities.

Pain prediction: physiological considerations

Many studies contributed to revealing the physiological significance
of brain activations after the presentation of nociceptive stimulus
(e.g., intensive laser stimulation) (Apkarian et al., 2005; Baumgärtner
et al., 2010; Brooks and Tracey, 2005; Davis and Moayedi, 2012;
Garcia-Larrea et al., 2003; Tracey and Mantyh, 2007). However, brain
response and brain area that specifically respond to pain have not
been unveiled (Davis et al., 2012; Mouraux and Iannetti, 2009). On
one hand, brain activations to nociceptive stimulus were functionally
similar to other brain responses elicited by intense stimuli belonging
to non-nociceptive sensorymodalities (e.g., tactile, auditory, and visual)
(Mouraux et al., 2011;Mouraux and Iannetti, 2009). On the other hand,
brain areas showing activation to nociceptive stimuluswere also associ-
ated with non-nociceptive sensory functions and high-level cognitions
(e.g., attention, salience) (Davis, 2006; Davis et al., 2000; Downar
et al., 2003; Legrain et al., 2011). The fact that non-nociceptive neurons
are intermingled with and possibly outnumber nociceptive neurons
even in brain areas that respond to nociceptive stimulus (Davis et al.,
2012; Kenshalo et al., 2000) hampered the exploration of nociceptive-
specific brain areas and responses. We are aware that N2 and P2
waves in LEPs are functionally similar to other vertex potentials elic-
ited by intense stimuli belonging to non-nociceptive sensory modal-
ities (Mouraux and Iannetti, 2009) and largely reflect saliency-related
neural processes possibly related to the detection of relevant changes
in the sensory environment (Downar et al., 2000). Therefore, even if
we have achieved a relatively high accuracy to predict pain perception
(Table 1 and Fig. 5), the present study does not claim to make any
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progress of establishing an objective neuronal marker of pain percep-
tion. Note that the gamma band oscillations, which we have previously
proven to have a close relationship with pain perception (regardless of
stimulus repetition) (Zhang et al., 2012), normally have a very low SNR,
thus not suitable for such a practice-oriented strategy of pain prediction
at the current stage.

Bear in mind that, in clinical applications, N2 and P2 waves in LEPs
are recommended to diagnose the deficit of the nociceptive system
(e.g., lesions in spinal root) (Treede et al., 2003). Identical to this prin-
ciple, the use of N2 and P2 waves in LEPs to predict the subjective pain
perception possesses important clinical significance (e.g., to monitor
the effect of analgesic drug or the recovery of nociceptive system for
non-communicative patients). Importantly, a careful experimental pro-
tocol design (e.g., a sufficiently long and variable ISI; for example, an ISI
larger than 10 s and varied randomly across trials) should be required
during the EEG recording to rule out any possible intra-individual vari-
ability (e.g., attention, habituation, and negative emotion), other than
subjective pain perception, coded by single-trial LEP waveforms.

As correctly stated in previous studies, the pain prediction at cross-
individual level (a classifier and/or a regression model was trained on a
group of individuals and applied on another individual) would be need-
ed in most practical applications (Brodersen et al., 2012; Schulz et al.,
2012). However, because of the inherent inter-individual differences
(inter-individual variability) of the brain structure and function (espe-
cially for pain perception, or say, pain is unique for each individual), a
tailored approach, which incorporates individual factors that are partic-
ularly related to inter-individual variability of pain perception into the
pain prediction model, could be the ultimate solution in pain research
and pain therapy (Davis, 2011). If the pain prediction is performed at
cross-individual level, we would completely ignore individual peculiar-
ities, which are particularly serious for highly sensitive contexts, e.g.,
pain perception (Brodersen et al., 2012). The direct consequence of
ignoring inter-individual variability is the inaccuracy prediction of
pain perception (i.e., prediction bias), normally showing a higher pre-
dicted pain for low real pain and/or a lower predicted pain for high
real pain (Supplementary Fig. 3; MAE = 2.573 ± 0.259). If the pain
prediction was performed on a within-individual level, we would un-
avoidably need the real pain ratings for each individual, which implies
that such pain prediction strategy cannot be used in some real-world
applications (e.g., for non-communicative patients).

The intuitive solution to minimize such discrepancy would be reduc-
ing the inter-individual variability through normalization for both LEP
features and ratings of pain perception. In the present study, for each par-
ticipant, single-trial LEP features were normalized by subtracting the
mean and dividing by the standard deviation (i.e., represented as z
values), and single-trial ratings of pain perception intensitywere rescaled
within the range from0 to 10 (defining 0 as the lowest pain rating and 10
as the highest pain rating for each participant). Such normalization could
significantly increase the prediction accuracy (Supplementary Fig. 3;MAE
values before and after normalization were respectively 2.573 ± 0.259
vs. 1.821 ± 0.202; p b 0.05). Indeed, such inter-individual variability
cannot be completely removed using normalization (after rescaling
of pain perception intensity from 0 to 10, MAE values at within-
and cross-individual levels were respectively 1.607 ± 0.207 and
1.821 ± 0.202; p b 0.001). In summary, whereas a pain prediction at
within-individual level could have a high prediction accuracy but less
clinically applicable, a pain prediction at cross-individual level cannot be
very accurate due to the intrinsic inter-individual variability. Normaliza-
tion of LEP features and ratings of pain perception, serving as a tradeoff
between the above explained discrepancy, could reduce the level of
inter-individual variability and provide a more accurate prediction of
pain perception. This strategy (normalization) could be adopted when
the subjective pain perception ratings of the tested individual are not
available and the difference of brain structure/function between the
tested individual and norm collective is large enough (e.g., for non-
communicative patients).
As explained above, both intra- and inter-individual variability, in-
stead of the contaminated noise in the recorded neural responses, could
intrinsically hamper our pursuit of a sufficiently high accuracy of painpre-
diction. In addition to exploring the pain-specific neural responses and
controlling the experimental protocol to minimize the intra-individual
variability, as well as adopting normalization to minimize the inter-
individual variability, we may need to incorporate various physiological
(e.g., heart rate and body temperature) and trait-based measurements
(fear of pain and pain catastrophizing) to achieve a higher pain prediction
accuracy (Brown et al., 2011; Ochsner et al., 2006; Seminowicz andDavis,
2006; Tousignant-Laflamme et al., 2005; Zwakhalen et al., 2006).

Conclusions

In the present study, we proposed a practice-oriented EEG-based
pain prediction strategy, which adopted single-trial analysis to estimate
LEP features for an effective pain prediction. Such analytical strategy
could be executed rapidly, reliably, and automatically, thus satisfying
most requirements of various basic and clinical applications. In addition,
we have performed pain prediction with various scenarios (e.g., binary
two-level classification and continuous linear regression, aswell as pain
prediction at within- and cross-individual levels) to achieve a compre-
hensive understanding of practical issues of pain prediction. A careful
experimental protocol design should be followed to minimize the
intra-individual variability (e.g., variability of attention, negative emo-
tion for the same individual), and a normalization strategy should be
adopted to minimize the inter-individual variability (i.e., individual pe-
culiarities). All these improvements could thereby potentially help opti-
mize the prevention, diagnosis, monitoring, and treatment of pain for
non-communicative patients and patients with disorders of conscious-
ness (Schnakers et al., 2010; Schulz et al., 2012).
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