
  

  

Abstract—Single-trial detection of evoked brain potentials is 
essential for many research topics in neural engineering and 
neuroscience. In present study, a novel approach, which 
combines common spatial pattern (CSP) and multiple linear 
regression (MLR), is proposed to for single-trial detection of 
pain-related laser-evoked potentials (LEPs). The CSP method 
is effective in separating laser-evoked EEG response from 
ongoing EEG activity, while MLR makes an automatic and 
reliable estimation of the amplitudes and latencies of N2 and P2 
from single-trial LEP waveforms. The MLR coefficients are 
further used for the prediction of pain perception, which is of 
great importance for both basic and clinical applications. The 
prediction is performed with both binary (classification of low 
pain and high pain) and continuous (regression on a continuous 
scale from 0 to 10) outcomes. The results show that the 
proposed methods could provide reliable performance at both 
with- and cross-individual levels. 
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I. INTRODUCTION 

Pain is a perception signaled by the real or potential tissue 
damage [1]. Pain assessment allows the healthcare providers 
to characterize the pain, clarify its impact, and evaluate other 
medical and psychosocial problems, which is important for 
the adequate treatment of pain patients. Since pain is a 
subjective first-person experience, self-report is the gold 
standard for the determination of the presence, absence, and 
intensity of pain in clinical practice [2]. However, it fails in 
some non-communicative populations (e.g., patients with 
disorders of consciousness, including coma, vegetative state, 
and minimally conscious state) [3]. Lack or any inaccuracy of 
pain assessment can lead to inadequate or suboptimal 
treatment of pain in these vulnerable patients, which may lead 
to various additional clinical problems (e.g., psychological 
depression, the development of chronic pain) [4, 5].  

Recently, laser evoked potential (LEP) has been 
introduced to investigate the peripheral and central 
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processing of nociceptive sensory input [7, 8]. LEPs consist 
of several transient responses that are time locked and phase 
locked to the onset of laser stimuli. The largest LEP response 
consists in a biphasic negative-positive complex (N2 and P2 
waves, peaking at approximately 200 and 350 ms when 
stimulating the hand dorsum), maximal at the scalp vertex [6], 
and largely reflecting the activity of the bilateral 
operculoinsular and anterior cingulate cortex [9]. The strong 
relationships between the N2 and P2 amplitudes in LEPs and 
the intensity of pain have been well characterized [10-13], 
which inspires us to explore the possibility of quantitative 
assessment of pain based on the single-trial LEP features (i.e., 
latencies and amplitudes of N2 and P2 waves). 

The serious noise contamination makes the pain 
prediction through LEP difficult. The response of the 
single-trial LEP is embedded in the large amplitude of the 
background ongoing EEG and other non-cortical artifacts. 
Hence, the key issue, addressed in pain prediction from 
single-trial LEP, is how to effectively remove the noise and 
extract reliable features from the single trial LEP. In this 
study, a new single-trial LEP feature extraction approach, 
which combines common spatial pattern (CSP) and multiple 
linear regression (MLR), was developed to address the key 
issue involved. The idea of CSP is to find a spatial filter such 
that the projected signals will have maximum differences in 
variance between two classes. CSP has been shown to be a 
powerful technique in brain-computer interface research to 
discriminate different mental intentions [15]. CSP performs a 
spatial filtering to simultaneously enhance the LEP 
waveforms and remove background ongoing EEG greatly. 
And MLR could automatically quantify the pain-related LEP 
features. After the feature extraction, both classification and 
regression is performed for the binary and continuous pain 
prediction at both with- and cross-individual level. The 
experimental results show that the proposed single-trial LEP 
feature extraction method can effectively remove the noise 
and achieve a reliable performance for pain prediction. The 
results from several classifiers and regression methods show 
no significant different in pain prediction. 
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II. METHODS 

A. Experiment setup 
Twenty-nine healthy participants (9 females and 20 

males) aged 17-25 years (mean 22.2 ± 1.9), without a history 
of chronic pain, participated in the study. All participants 
gave written informed consent, and the local ethics 
committee approved the experimental procedures. 

 

 
Figure 1.  Experiment design and laser evoked brain potentials.  

As illustrated in Fig. 1, Laser pulses (Electronical 
Engineering, Italy) were directed at the dorsum of left hand 
on a squared area (5 x 5 cm). Ten laser pulses at each of the 
four stimulus energies (E1: 2.5 J; E2: 3 J; E3: 3.5 J; E4: 4 J) 
were delivered randomly for a total of 40 pulses per 
participant. The pulse duration was 4 ms, and the 
inter-stimulus interval was ranged between 10 and 15 s. After 
each stimulus, the laser beam target was shifted by 
approximately 1 cm in a random direction, to avoid 
nociceptor fatigue or sensitization. An auditory tone was 
delivered 3~6 s after the presentation of each laser pulse to 
remind the participants to rate the intensity of the painful 
sensation elicited by the laser stimulus, using a VAS ranging 
from 0 (no pain) to 10 (pain as bad as it could be).  The EEG 
data were recorded using a 64-channel Brain Products system 
(Brain Products GmbH, Munich, Germany; pass band: 
0.01–100 Hz; sampling rate: 1,000 Hz) using a standard EEG 
cap based on the extended 10–20 system. The nose was used 
as the reference channel and electrooculographic signals were 
simultaneously recorded from eyelids and orbits.  

 

B. Feature selection 
To extract the reliable LEP features for pain prediction, 

common spatial pattern (CSP) and multiple linear regression 
(MLR) was used jointly. The whole process is as follows. 
First, all data was filtered by a bandpass filter (BPF) with the 
cut-off frequencies 1 and 30Hz. Second, EEG trials 
contaminated by eye-blinks and movements are corrected 
using Independent component analysis (ICA) algorithm. 
Then, CSP was adopted to further enhance the SNR of LEP 
responses by retrieving stimulus-evoked EEG responses from 
spontaneous EEG activity. Finally, MLR was used to 
automatically parameterize single-trial LEP responses using 
MLR coefficients, which captured the variability of 
single-trial N2 and P2 latency and amplitude. The details for 
CSP and MLR are as follows. 

1) Common spatial pattern (CSP) 
Although ICA, as a popular spatial filtering method, is 

effective in isolating EOG and EMG artifacts, its 
performance in finding components related to brain activity 
is still not satisfactory [14]. In the study, we applied another 
popular spatial filtering method, CSP, for separating 
laser-evoked EEG activity. In the CSP algorithm, the 
pre-stimulus and post-stimulus EEG waveforms are 
regarded as two classes. Then the components with the 
maximum discriminative power between pre-stimulus and 
post-stimulus activities can be identified from two classes. 
The components corresponding to the maximum variance of 
the post-stimulus activity can be considered as the stimulus 
evoked components and will be used to reconstruct the 
stimulus evoked EEG activity. When applying CSP in 
detecting single-trial LEP waveforms, the procedures and 
algorithms can be described as below. First, pre-stimulus and 
post-stimulus EEG waveforms of the same data length form 
two classes, and the two classes of waveforms recorded over 
all channels from the same trial will generate two matrices 

TN×∈�postpre, XX , where N is the number of channels and 
T is the number of samples per channel. CSP solves the 
following generalized eigenvalue problem 

wXXwXX TT
t preprepospost λ=                           (1) 

to find the projection vector w , which could simultaneously 
minimalizes the variance of preX  and maximize the variance 
of preX , where �·� is the averaging operator for trials in the 

same class and λ  is the generalized eigenvalue. Three 
eigenvectors corresponding to the largest eigenvalues were 
selected for reconstruction of the EEG waveforms of all 
channels. 

2) Multiple linear regression (MLR) 
The combination of BPF, ICA, and CSP can effectively 

improve the SNR of single-trial LEPs, but the measurement 
of LEP latency and amplitudes require manual operation and 
has the risk of uncertainty caused by researchers or surgeons. 
For a more objective measurement, we apply a multiple linear 
regression method [16] to automatically estimate the 
amplitudes and latencies of N2 and P2 from single-trial LEP 
waveforms from Cz. Denote )(tyN  and )(tyP  as the 
templates of N2 and P2 waves, which can generally be 
obtained as the averages of all trials of each participant, and 

)(tf  as the signal trial LEP waveforms that varies as a 
function of time t . The MLR method describes )(tf  as the 
weighted sum of the shifted versions of averages of N2 and 
P2, and performs the Taylor expansion as follows 
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where Na  and Pa  are the weights of N2 and P2 averages, Nl
and Pl  are the latency shift values of the N2 and P2 
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templates, )(' ty N  and )(' ty P are the temporal derivatives of 
N2 and P2 averages, respectively, and ε  is the residual term. 
Thus the single trial LEP waveform is approximated using 
the sum of the weighted averages of the N2 and P2 waves and 
their respective temporal derivatives. All the MLR 
coefficients ,1β  ,2β  � , 5β  are used as the features in the 
following classification. 

To evaluate the denoising effect of each step in the 
proposed single trial LEP feature extraction approach, a 
similarity index (SMI), which is the power ratio between the 
“LEP-like” data in a testing trial and the residual, is defined. 
Let z  be the average of the training trials and kz  be the kth 
testing trial. The SMI is calculated as 
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where z
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=  is the orthogonal projection of kz  on to 

z  and PzR k −=  is the residual part. A large SMI means 
testing trial kz  is more similar to the average z  (which 
assumed to be a clean LEP signal because noise is smoothed 
out by across-trial averaging), and vice versa. 
 

C. Pattern Recognition 
In this study, the work of pain prediction includes two 

parts, which are classification of low pain and high pain, and 
regression of pain perception intensity. The MLR 
coefficients ,1β  ,2β  � , 5β  were extracted from both 
training and testing trials (see Cross validation section for 
details), and were used as LEP features for subsequent pain 
prediction. 

For the low pain and high pain classification, LEP trials 
were labeled into two categories according to the pain 
perception ratings for each participant (low pain: VAS < 5, 
and high pain: VAS � 5). Three classifiers are investigated 
for the classification, which were Naïve Bayes, LDA and 
SVM. The classification accuracy is used to evaluate the 
results. 

Similarly, three regression methods were adopted to 
model the relationship between single-trial LEP features and 
the corresponding intensity of pain perception for continuous 
prediction of the pain perception from the LEP features. 
Beside the Ordinary Least Square (OLS) linear estimator, we 
also tested the performance of lasso and ridge regression. 
Both ridge and lasso estimators imposed a constraint (ridge: 
L2 norm; lasso: L1 norm) on the regression coefficients to 
decrease the prediction variance at the expense of slightly 
increased bias and to address the problem of multicolinearity. 
The prediction performance was evaluated using the Mean 
Absolute Error (MAE), which can be written as follows:  
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where nI  and nÎ  are the real and predicted intensity of pain 
perception for trial n, and N is the number of trials of each 
participant for within-individual prediction, or of all 
participants for cross-individual prediction. 

Leave-one-out cross validation (LOOCV) was used in two 
stages of data analysis: (1) single-trial LEP feature extraction 
(CSP and MLR) and (2) prediction of pain perception 
(classification and regression). For example, when we 
perform CSP analysis, the spatial filter was obtained from all 
training trials, and applied to both training and test trials to 
enhance their SNRs. It should be noted that different 
LOOCV strategies were adopted to predict pain perception 
at both the within- and cross-individual levels. In the present 
study, there were 29 participants with 40 LEP trials each. At 
the within-individual level, LOOCV was achieved by 
dividing 40 LEP trials into 39 training trials and 1 test trial, 
and the same procedure was repeatedly performed 40 times 
to make sure that each LEP trial was used as the test trial for 
once. At the cross-individual level, LOOCV was achieved 
by dividing 29 subjects into 28 training subjects  and 1 test 
subject, and similarly, the same procedure was repeatedly 
performed 29 times to make sure that each subject was used 
as the test subject once (all LEP trials from this subject were 
used as test trials). Considering the substantial 
inter-individual variability of both LEP features and pain 
perception (e.g., one participant has high LEP responses and 
low pain perception, while another participant may have low 
LEP responses and high pain perception), both single-trial 
LEP features and single-trial ratings of pain perception 
intensity were normalized for each participant at the 
cross-individual level. 

 

III. RESULTS 

A. Feature extraction 
Figure 2 describes the whole process of single-trial LEP 

analysis. Four steps are included in the procedure, which are 
BPF and ICA, CSP and MLR. Step by step, the LEP features, 
which decode the information of pain intensity, would be 
retained and enhanced, and the unwanted noise would be 
removed. As shown in the bottom panel of Fig. 2, the value of 
SMI is gradually increased by the operation in each step. 
One-way ANOVA results indicate that the SMI has been 
significant improved by MLR (p < 0.01). 

 
Figure 2.  The SMI of four steps (BPF, ICA, CSP and MLR) in the 
single-trial analysis procedure One-way repeated-measures ANOVA was 
performed.  

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 12,2021 at 15:00:01 UTC from IEEE Xplore.  Restrictions apply. 



  

B. Classification of low pain and high pain 
Table I summarized the classification accuracy for 

classification of low pain and high pain using MLR 
coefficients. Naïve Bayes and SVM achieved the highest 
prediction accuracy (86.29 ± 8.36 and 80.86 ± 8.16) at 
within- and cross-individual levels respectively. As revealed 
by one-way repeated-measures ANOVA, no significant 
difference of prediction accuracy among different classifiers 
at both within- and cross-individual levels (within-individual 
classification, F = 0.14, p = 0.87; cross-individual 
classification, F < 10-6, p = 1.00). 

TABLE I.  PERFORMANCE OF DIFFERENT CLASSIFIERS (NAÏVE BAYES, 
LDA, AND SVM; ASSESSED USING PREDICTION ACCURACY) TO PREDICT THE 
INTENSITY OF PAIN PERCEPTION (THE BEST PERFORMANCE FOR WITHIN- AND 

CROSS-INDIVIDUAL LEVELS WAS RESPECTIVELY MARKED IN BOLD). 
GAUSSIAN RADIAL BASIS FUNCTION WAS USED AS THE KERNEL IN SVM. 

 Within-individual Cross-individual 
Naïve Bayes 86.29±8.36 80.26±8.22 

LDA 81.98±10.88 80.69±8.34 
SVM 84.66±9.65 80.86±8.16 

 

C. Regression of pain perception intensity 
The performance of different estimators (OLS, ridge, and 

lasso) to estimate the regression model was summarized in 
Table II. At within-individual level, both ridge and lasso 
estimators outperformed OLS estimator slightly, while their 
performance was almost identical at cross-individual level. 
As revealed by one-way repeated-measures ANOVA, there 
was no significant difference of prediction performance 
(assessed using MAE) among different regression estimators 
at within- and cross-individual levels (within-individual 
regression, F = 1.25, p = 0.29; cross-individual regression, F 
= 0.16, p = 0.86). It should be noted that the performance of 
ridge or lasso is highly dependent on the hyper-parameters 
used, which are normally selected using the cross-validation 
that is very time-consuming. 

TABLE II.  PERFORMANCE OF DIFFERENT CLASSIFIERS (NAÏVE BAYES, 
LDA, AND SVM; ASSESSED USING PREDICTION ACCURACY) TO PREDICT THE 
INTENSITY OF PAIN PERCEPTION (THE BEST PERFORMANCE FOR WITHIN- AND 

CROSS-INDIVIDUAL LEVELS WAS RESPECTIVELY MARKED IN BOLD). 
GAUSSIAN RADIAL BASIS FUNCTION WAS USED AS THE KERNEL IN SVM. 

 Within-individual Cross-individual 
OLS 1.031±0.1 1.821±0.2 
Ridge 1.014±0.1 1.821±0.2 
Lasso 1.013±0.1 1.821±0.2 

 

IV. CONCLUSION 
In this study, a new single-trial LEP feature extraction 

method, which combines CSP and MLR, is proposed for 
classification of pain perception. CSP could enhance the 
quality of LEP features through a spatial filtering, while 
MLR was applied to automatically estimate the amplitudes 
and latencies of N2 and P2 from single-trial LEP waveforms, 
which avoids the risk of uncertainty caused by manual 
operation. Our results showed that the proposed approach 

provided an accuracy of 86.3 ± 8.4% (within-individual) and 
80.3 ± 8.5% (cross-individual) for classification of low pain 
and high pain using Naïve Bayes classifier, and an MAE of 
1.031 ± 0.136 (within-individual) and 1.821 ± 0.202 
(cross-individual) for regression on a continuous scale from 
0 to 10 using OLS. The results from other classifiers and 
regression methods show no significant difference. The 
proposed approach may help establish a fast and reliable tool 
for automated prediction of pain, which could be potentially 
adopted in various basic and clinical applications.  
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