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Abstract. A high quality power density estimation for certain frequency
components in a short time is of key importance in Steady-State Visual
Evoked Potentials (SSVEP) based Brain Computer Interface (BCI). In
this paper, the effect of the window functions in SSVEP based BCIs is
discussed. EEG signal is a typical color noise with a high energy of the
low frequency component. The main findings are that (1) The spectral
leakage for EEG signals has some regular patterns. An obvious oscillation
with the corresponding frequency can be observed. The amplitude of the
oscillation decreases with the growth of the frequency. A short analysis
is also given for the leakage. (2) The leakage from the low frequency
component can be effectively suppressed by the using of some windows,
such as Hamming, Hann and triangle window; (3) By removing the in-
fluence of the leakage from the low frequency component with high pass
filter, the classification results are mainly determined by the width of
the main lobe. The rectangle window would have a better accuracy than
Hamming, Hann and triangle window. Some windows constructed with
a narrower main lobe width have a potential use in SSVEP based BCIs.
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1 Introduction

Brain Computer Interface (BCI), which has been developed fast in recent years,
provides human beings direct ways to communicate with computer by intent
alone. This new communication way is hoped to help the patients with sever
neuromuscular disorders, such as late-stage amyotrophic lateral sclerosis, severe
cerebral palsy, head trauma, and spinal injuries in the daily life. Several elec-
trophysiological sources can be used for BCI control, including Event-Related
Synchronization/Desynchronization (ERS/ERD), Steady-State Visual Evoked
Potentials (SSVEP), Slow Cortical Potentials (SCP), P300 evoked potentials
and μ and β rhythms [1]. Encouraged by the advantage of less training time [2–
4], shorter response time [5] and higher information transfer rates [2, 6], SSVEP
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based BCIs are more suitable to be developed in real time controlling. In recent
years, SSVEP based BCIs used in cursor control [7], prosthetic control [8] and
Functional Electrical Stimulation (FES) [9] have been reported. Some combina-
tion BCIs, based on SSVEP and other sources, have also been developed [10].

SSVEP is a continuous steady brain response for a repetitive stimulus with
a certain frequency. It is mainly observed in visual and parietal cortical area.
Occasionally, a smaller response is also observed in the mid-frontal region [11]. In
SSVEP based BCIs, visual stimulus with different frequencies are simultaneously
presented to the user. Each visual stimulus is associated with a command in
an output (active) device. The user selected command can be detected as a
larger maximum of the same frequency (and its harmonics) is found in the brain
activity. Hence, the high quality power density estimation for certain frequency
components in a short time is of key importance in SSVEP based BCIs.

In most SSVEP based BCIs, Fourier-related transforms are used widely in
power density estimation[3, 5, 6, 8]. To estimate the power density at certain
frequency ω of the signal in the vicinity of time t, Short-Time Fourier Trans-
form (STFT) is used in this work. STFT is a Fourier-related transform used to
determine the amplitude and phase-frequency distributions of local sections of a
signal as it changes over time. In the continuous-time case, the STFT of signal
x(t) is written as

STFTx(t, ω) =
∫ ∞

−∞
x(τ)w(τ, t)e−j2πωτ dτ,

where w(s, t) is the window function which is nonzero for only a short period
of time s ∈ [t − L/2, t + L/2], L is the size of the window. The power density
estimation of frequency ω at time t is

Pω(t) =
1
L
|STFTx(t, ω)|2 =

1
L

∣∣∣∣
∫ ∞

−∞
x(τ)w(τ, t)e−j2πωτ dτ

∣∣∣∣
2

.

Because of the signal truncation in STFT, the spectral leakage problem will
occur. It appears as if some energy has “leaked” out from the true frequency
of the signal into adjacent frequencies. To help reduce the spectral leakage, the
window functions are used. The rectangular window with a narrow main lobe
has excellent resolution characteristics for comparable strength signals with sim-
ilar frequencies, but it is a poor choice for noise suppression. Flat top window
have low side lobe peak, which does not provide well a frequency resolution but
can measure the strength of a signal accurately at any frequency. Between the
extremes, some moderate windows, such as Hamming, Hann and triangle win-
dows, are used commonly as a tradeoff among narrow main lobe (corresponding
to high frequency resolution), low side lobe peak and rapidly fall-off side lobes
(corresponding to noise suppression). In the application of SSVEP based BCI, to
get the transient response of the subjects and also as the simplest window, rect-
angular window have been widely used [3, 5, 6, 8, 9, 12]. Some other windows,
like Hamming [7] and Gaussian windows [13], are also used in their applications.
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In this paper, we study the effect of window function on power density esti-
mation of EEG signals. In the following, the experiment is introduced in Section
2. The characteristic of EEG signals is introduced in Section 3. The spectral
leakage problem and the use of window function are also discussed. In Section
4, we apply these methods in the SSVEP based BCI system to test the use of
window function. Section 5 is the conclusion.

2 Experiment Setting

Fig. 1. (a) A screenshot during the experiment. The rectangles in the left, up and right
of the screen flick with the frequencies 5, 8.33 and 12.5Hz. During the experiment, the
subjects would watch the corresponding flicking bar as the color ball indicated. (b) The
experimental environment. The subjects were seated in a comfortable armchair in an
electrically shielded room with the light on. 6 channel signals from occipital area were
recorded for analysis.

2.1 Subjects

Six subjects, aged from 22-28 years, participated in the experiment. All partic-
ipants were seated in a comfortable armchair in an electrically shielded room
and viewed a 19 inches LCD display at a distance of 1m (Fig. 1(b)). The light is
always on during the experiment. The subjects were instructed to keep still and
try to avoid blinking during the experiment, but a habitually blinking was still
observed from subject LJW and SXZ.

2.2 EEG Recording

EEG signals were recorded using a SynAmps system (Neuroscan, USA). Signals
from channel P3, Pz, P4, O1, Oz and O2 were recorded for analysis
(Fs=1000samples/s, 0.05-200Hz). The grounding electrode was mounted on the
forehead and reference electrodes between position Cz and CPz according to
the system of electrode placement described in [14]. The electrodes were placed
according to the extended 10/20-system.
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2.3 Experimental Paradigms

As shown in Fig. 1(a), the experiment was set up in a virtual room, and three
flicking bars with their frequencies 5, 8.33 and 12.5Hz was placed in the left, up
and right of the screen. The monitor was with the refresh rate 75Hz. The experi-
ment consisted of 3 sections with 90 seconds per section. In each section, a color
ball appeared in the left, right or front of the screen, which would be changed
randomly every 5 seconds. The subjects were asked to watch the corresponding
flicking bar.

3 EEG Signal and Window Function

The signal displayed in Fig.2 is a typical EEG signal at channel Oz with 6
seconds length without visual stimulus. The spectral characteristics are shown
in the subfigure. The energy of the low frequency components is much higher
than others. It can be treated as a color noise.

Fig. 3(a) shows the power density function Pω(t) of the signal in Fig.2 at
certain frequencies (ω =8Hz, 10Hz, 12Hz, 14Hz and 16Hz), in which the rectangle
window is used with the window size L = 1s for t ∈ [0.5, 5.5]. Due to the high
energy of the low frequency components, the spectral leakage problem in the
power density estimation is serious. Unlike the power density estimation of white
noise, the leakage in the EEG like color noise has some regular patterns. As shown
Fig. 3(a), an obvious oscillation is observed in the power density estimation of
all the frequency compontents. The oscillation of Pω(t) at frequency ω = 16Hz
is faster but smaller than it at frequency ω = 10Hz and ω = 8Hz. Taking FFT
on Pω(t), Fig.3(b) shows the Power Spectrum Density (PSD) of Pω(t), denoted
by PSDPω (Ω). It is clear that the oscillation frequency of Pω(t) is related to its
frequency ω. The amplitude of the oscillation decreases with the growth of ω.
Lower frequencies will make a larger oscillation.

The following analysis will make us understand the oscillation. Let the signal
x(t) = sin(2πω0t) to be used to present the low frequency component with ω0

close to 0. The rectangle windows is represented as

0 1 2 3 4 5 6
t (s)

0 10 20 30(Hz)

Fig. 2. Typical EEG signals with 6 seconds length without visual stimulus. The sub-
figure is the frequency spectrum for 0 to 30 Hz. It can be seened as a color noise with
the high energy of low frequency components.
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Fig. 3. A comparison of the effect of the window function and high pass filter in
the power spectral density estimation of the real EEG signals. The figures in the left
show the time-frequency property Pω(t) of the signal, and the right figures are the
corresponding power spectrum density of Pω(t), PSDPω (Ω). In fig. (a) and (b), the
rectangular window is used without high pass filter. In fig. (c) and (d), the hamming
window is used with no high pass filter. In fig. (e) and (f), the rectangular window is
used with the 4-order butterworth high pass filter with the cutoff frequency 2Hz. In
fig. (g) and (h), the hamming window is used with the 4-order butterworth high pass
filter with the cutoff frequency 2Hz. The window size L = 1.0s.

w(s, t) =
{

1 s ∈ [t − L/2, t + L/2],
0 else.

The Fourier transformation for x(t) and w(s, t) is

Fx(t, ω) = X(ω) = 1
2j[δ(ω + ω0) − δ(ω − ω0)],

Fw(t, ω) = W (t, ω) = 1
2jπω e−j2πωt[ejπωl − e−jπωl] = 1

πω e−j2πωt sin(πωl),

where Fx(t, ω) keeps unchanged with time t, and the amplitude of Fx(t, ω) is a
periodic function of t with the frequency ω. The STFT of the signal x(t) can be
expressed as

STFTx(t, ω)
= Fx·w(t, ω)
= X(t, ω) ∗ W (t, ω)
=

∫ +∞
−∞ X(τ)W (t, ω − τ)dτ

= 1
2j

∫ +∞
−∞ [δ(τ + ω0) − δ(τ − ω0)]W (t, ω − τ)dτ

= 1
2j[W (t, ω + ω0) − W (t, ω − ω0)]

Considering the expression of W (t, ω + ω0) and W (t, ω − ω0), the leakage from
the low frequency component x(t) at frequency ω behaves as an oscillation at the
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frequencies ω + ω0 and ω −ω0. If ω0 is close to 0, the oscillation frequencies will
be close to the frequency ω. The oscillation amplitude is larger as ω near ±ω0,
and decreases with ω getting away from ±ω0. If the energy of frequency ω0 is
much larger than the other frequencies’ energy, the oscillation will be observed.
This coincides with the power density estimation result in Fig. 3(a).

In STFT, all the data points outside the window are truncated and therefore
assumed to be zero, which leads to the spectral leakage problem in the power
density estimation. The leakage is unavoidable with the use of window function.
But some window functions with low level of the side lobes can reduce the
leakage. As shown in Fig. 3(c) and (d), the use of hamming window can make
the oscillation weaken but never fade away.

Due to the oscillation caused by the high energy of the low frequency compo-
nent, high pass filters provide a directly way to solve this problem. In Fig. 3(e)
and (f), a 4-order butterworth high pass filter with the cutoff frequency 2Hz is
applied before the power density estimation. The curves Pω(t) in Fig. 3(e) are
not smoother than those in Fig. 3(c). But the oscillation related to the frequency
ω is suppressed effectively, while the oscillation in other frequencies still exists.

The combination of high pass filter and hamming window can make the
estimation curves even more smooth in Fig. 3(g). Its power spectral density
PSDPω (Ω) in Fig. 3(h) shows that the oscillation with both frequency ω and the
other frequencies are effectively suppressed.

4 Application in SSVEP

Table 1. The classification accuracies with different window functions before and after
high pass filter in six subjects. Four type of window functions are compared, which is
rectangle, Hamming, Hann and triangle window. The high pass filter here is the 4-order
butterworth high pass filter with the cutoff frequency 2Hz. The maximum value of the
accuracy among the four windows is marked in bold.

subject
no filter high pass filter

rectangle hamming hann triangle rectangle hamming hann triangle

HPH 71.78 80.00 80.00 80.00 80.37 79.70 80.00 79.70
HG 86.59 88.74 88.37 89.11 92.44 88.89 88.22 89.11
LJW 77.19 88.52 87.70 89.56 90.89 88.81 87.70 89.41
PLZ 99.56 99.19 99.19 99.19 99.33 99.19 99.19 99.19
SXZ 48.15 69.48 69.26 69.33 77.04 71.93 69.33 71.56
YL 91.93 92.89 91.93 93.19 93.85 92.74 91.93 93.11

mean 78.98 86.47 86.07 86.73 88.99 86.88 86.06 87.01
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4.1 Method

In this section, the effects of several window functions the power spectral density
estimation are compared before and after and high pass filters in the application
of SSVEP. As mentioned in Section 2.3, subjects are asked to focus on the
targeted flicking bars, which will change every 5 seconds. From t ∈ [1.5, 4], the
power spectral density has been estimated in steps of 0.1 second (25 samples
per 5 seconds). Hence there are 1350 samples in three classes for each subject.
For each sample, the value of |STFTx(t, ω)| is calculated with 6 electrodes (P3,
Pz, P4, O1, Oz and O2) at the characteristic frequencies and their harmonics
(ω = 5, 8.33, 12.5 and 10, 16.67, 25Hz). Linear Discriminant Analysis (LDA)
is used for classification [15, 16]. The accuracy rates are given by 3 fold cross
validation (two sections are used to train, the remained section is retained as
the validation data for testing).

4.2 Result

In Tab.1, the accuracy rates are compared with the four window functions (rect-
angle, Hamming, Hann and triangle windows) before and after the high pass
filter. The window size L = 1.0s. The best classification result among the four
windows is marked in bold. The high pass filter used is the 4-order butterworth
high pass filter with the cutoff frequency 2Hz. Without high pass filter, the re-
sults with Hamming, Hann and triangle window are similar and better than those
with rectangle window. After high pass filter, a 10% improvement is achieved
for rectangle window in average. An extreme growth happens on subject SXZ,
in which the high pass filter makes an approximate 30% increasement with rect-
angle window. In contrast, the results for other windows hold on or increase a
little. Hence, the best accuracies for all subjects come from rectangle window.
Some windows provide smoother power density estimations, such as hamming
window shown in Fig. 3(g), fail to get a better accuracy after high pass filter,
which does not meet our expectations.

In the following, we extend our test on more window functions and different
window sizes. 17 window functions with their main lobe width and side lobe
peaks are listed in Tab. 2 in descending order of the main lobe width. The
first 16 window function are natively implemented in matlab. The last window
“anti-flattopwin” is constructed by 1 − 0.7 × window(@flattopwin, N), which has
narrower main lobe but higher side lobe than rectangle window. N is the number
of sampling points, which is related with the window size L and sampling rate
Fs. Fig. 4 shows the average accuracies of six subjects with different main lobe
width of the 17 windows for different window sizes (L=0.5, 1.0, 1.5 and 2.0s).
The accuracies before and after high pass filter are correspondingly marked by
blue star and red circle. The recognition rates increase for all windows with the
growth of window size. For the windows with the -3dB main lobe width(×2π/N)
greater than 1, the accuracies before and after high pass filter are similar and
decrease as the growth of the main lobe width. It indicates that if the side lobe
below certain level, the spectral leakage from low frequency component have
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Table 2. The 17 window function used in Fig. 4 with their -3dB main lobe width and
side lobe peak. The “anti-flattopwin” is constructed by us with narrower main lobe
width than rectangle windows.

window
-3dB main lobe side lobe
width (×2π/N) peak (dB)

flattopwin 3.72 -96.00
blackmanharris 1.90 -98.97
nuttallwin 1.87 -98.86
chebwin 1.84 -100.00
parzenwin 1.82 -53.05
bohmanwin 1.70 -46.00
blackman 1.64 -96.31
hann 1.44 -31.47
barthannwin 1.40 -35.88
gausswin 1.37 -43.30
hamming 1.30 -44.20
bartlett 1.27 -26.52
triang 1.27 -26.52
tukeywin 1.15 -15.12
kaiser (β = 2) 0.99 -18.45
rectwin 0.88 -13.26
anti-flattopwin 0.81 -7.72
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Fig. 4. The average classify results of the six subjects by using 17 window functions
of different main lobe width. The results before and after high pass filters are marked
by blue stars and red circles. The window size L = 0.5, 1.0, 1.5, 2.0s in the subfigures
from (a) to (d).
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been suppressed effectively and a smaller side lobe would not help to improve
the classication results any more. However the increasing of the main lobe width
makes the windows’ frequency domain resolution weaken, which leads to the
decreasing of the accuracies. For the last three windows (kaiser, rectwin, anti-
flattopwin) in Tab. 2, all of them have narrower main lobe width with larger side
lobe. The spectral leakage from low frequency component is large enough for
these windows to influence the classication results. The accuracies are improved
greatly after high pass filter. The better accuracy is achieved by is a tradeoff
with frequency domain resolution and spectral leakage. For shorter window size,
such as L = 0.5s in Fig. 4(a), a window with smaller side lobe is preferred. While
a longer window size (L = 1.5, 2.0s in Fig. 4(c) and (d)) could make the window
with narrower main lobe improve their classication results. Some windows with
narrower main lobes, like “anti-flattopwin”, have their uses.

Remark1: In the comparison above, the “anti-flattopwin” has been constructed
with a narrower main lobe than rectangle window. In fact, we can construct a
series of windows in the following forms 1 − α × w(s, t) where α ∈ (0, 1], w can
be chosen from the first 15 windows listed in Tab. 2. As α grows from 0 to
1, these “anti” type windows have narrower main lobe but a higher side lobe.
Take “anti-tukeywin” window with α = 1 for example, -3dB main lobe width is
0.58(×2π/N), however the peak of the side lobe -0.62dB is real large, which is
close to the main lobe.

Remark2: It’s worth noting that although the side lobe peak of tukey window
is larger than kaiser window, it is decayed much faster. Hence tukey window has
less been influenced by high pass filter than kaiser window. The speed for the side
lobes fall-off is not listed in Tab. 2, because for some windows, like “nuttallwin”,
“blackmanharris”, “flattopwin” the peaks of the side lobes is not monotonically
decreasing.

5 Conclusion

In this paper, we discussed the use of the window function in the application of
SSVEP based BCIs. An ideal window function should have a narrow main lobe
and low side lobes. In the noisy circumstances, the lower side lobes could reduce
the impact of spectral leakage to the accuracy. And the narrower main lobe could
provide a higher frequency domain solution, which leads to a better transient
response. However, it is impossible for a window to satisfy both parties. The
choice of the windows is to determine the quality of the signals. The windows
with high frequency domain solution could be used to improve the classification
results if the Signal to Noise Ratio (SNR) has been improved by some methods,
such as high pass filter used here.
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