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Neural mass model developed by Lopes da Silva et al. is able to describe limit cycle behavior in

Electroencephalography (EEG) of alpha rhythm and exhibit complex dynamics between cortical areas. In

this work, we extend Grimbert and Faugeras’s work to study the dynamical behavior caused by

interaction of cortical areas. The model is developed with the coupling of two neural populations. We

attractors, could coexist in different ways with different value of the connectivity parameters. The main

findings are that: (1) The stable equilibrium points only appear with a small value of the parameter.

(2) While the alpha activities always exist for both two populations with proper initial conditions.

Interestingly, the coexistence of the multiple alpha-to-epileptic activities implies the multiple coupling

ways for these activities in phase. Two neuronal populations with epileptic activities could interact with

multiple rhythms depending on their connectivity. (3) For particular interest, chaotic behaviors are

identified in four regions divided by the connectivity parameter with the positive maximal Lyapunov

exponent. The four types of chaotic attractors have their own structures, but all of them are related to the

epileptic activities.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Electroencephalography (EEG) is the recording of electrical
brain activity on the scalp. It reflects correlated synaptic activity
caused by post-synaptic potentials of cortical neurons. The EEG is
typically described as rhythmic activity, which can be decomposed
into distinct bands by frequency (delta: up to 4 Hz, theta: 4–7 Hz,
alpha: 8–12 Hz, Beta: 12–30 Hz, Gamma: 30–100 Hz). In neurology,
the main diagnostic application of EEG is in the case of epilepsy, as
epileptic activity can create clear abnormalities on a standard EEG
study. To simulate the electrical brain activity and its intricate cortical
structures, various mathematical models have been developed [5].
Wilson and Cowan [25] showed that a set of coupled nonlinear differ-
ential equations exhibits hysteresis phenomena and rhythmic activ-
ity. They suggested that the limit cycle oscillations generated by this
model may mimic the EEG rhythm, and a conclusion supported it sub-
sequently by Freeman [7]. In 1970s,Lopes Da Silva et al. developed a
lumped parameter model to simulate the alpha rhythm [16,15,8]. The
lumped parameter model makes it possible to reduce the complex
dynamic system comprising a very large number of neurons into
relatively simple circuits. Jansen’s neural mass model [12], exten-
ded from the lumped parameter models of Lopes Da Silva, generates
EEG signals from inhibitory and excitatory interactions within and
ll rights reserved.

ang).
between populations of neurons. The frequency of oscillations is
determined by the kinetics of the population dynamics.

The neural mass model can also be used to learn the spatial
distribution of the brain activities. Jansen et al. coupled two neural
mass to reproduce the alpha and beta oscillations typically found in
the visual cortex and the prefrontal cortex. The interactions between
two populations are described by linear transformations with proper
delays and interconnected constants. David and Friston found cou-
pling can induce phase-lock activity [4]. They also compared four
linear and nonlinear measures in detecting the functional connectivity
among cortical areas [3]. The epileptic activity is traditionally assumed
to be a collective behavior of neuronal synchronization at the cellular
level. An epileptogenic network composed of three units were deve-
loped by Wendling et al. [23]. They tried to determine the causality
relations among signals from this network.

Chaos and brain are really two giants in terms of complexity [2].
EEG signals have been considered to result either from random
processes or to be generated by non-linear dynamic systems exhi-
biting chaotic behavior. In the past decades, numerous efforts have
been directed towards ascertaining chaos in cortical signals [9,20,
19,17,1]. A review for chaos in brain can be seen in Ref. [13]. In the
neural mass model, the pulse density p(t) represents the excitatory
input from neighboring or more distant areas. Jansen and Rit [12]
chose the input p(t) to be the random white noise ranging from 120
to 320 pulses per second. The increasing parameter C results in an
output evolving from disorder to order and finally becomes disor-
der again (Fig. 2).

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.019
mailto:huanggan1982@gmail.com
dx.doi.org/10.1016/j.neucom.2010.11.019


Fig. 1. Neural mass model with single neural population.
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Mathematically, Grimbert and Faugeras investigated the dyna-
mical behavior of the neural mass model as a function of its input
[11]. In their analysis, the rhythmic activities of alpha rhythm and
epileptic wave are related to the structure of a set of periodic orbits
and their bifurcation. However, the analysis is limited in single
neural population. In this work, we extend Grimbert and Faugeras’s
work to the coupled neural mass model. The excitatory input is kept
constant and two neural populations are connected with the con-
nection strength as a parameter. As Grimbert and Faugeras said, ‘‘this
is a difficult task’’. The emerging properties and the linearly increased
system dimension make it more difficult to do mathematical analysis.
As an alternative, numerical simulation is used to investigate popula-
tion responses with various initial values. Attentions are paid to the
emergence and the possible chaotic behaviors in the interactions. In
Ref. [11], Grimbert and Faugeras treated the single population model
as a deterministic system with p keeping constant. No chaotic attrac-
tor has been reported in the single population.

The remainder of this paper is organized as follows. Section 2
provides a brief description of neural mass model, and the behaviors
of single population are introduced with random and constant inputs.
Section 3 presents the simulation results for the coupled neural mass
model. The results are discussed in Section 4, and the conclusion is
given in Section 5.
2. Model description

2.1. Single population model

In Jansen’s model, each of the neural populations involves two
operators. The first one transforms the average pulse density of
action potentials into an average postsynaptic membrane potential
with the response function given by

heðtÞ ¼
Aate�at if tZ0

0 else

(

for excitatory case and

hiðtÞ ¼
Bbte�bt if tZ0

0 else

(

for inhibitory case, where A and B determines the maximal amplitude
of the excitatory and inhibitory post-synaptic potentials, respectively,
and a and b lumps the characteristic delays of the synaptic transmis-
sion together. This operator can also be described as a set of linear
second-order ordinary differential equations,

€y ¼ Aax�2a _y�a2y

€y ¼ Bbx�2b _y�b2y

where x, y are the input and output signals, which can also be written
as follows:

_y ¼ z

_z ¼ Aax�2az�a2y

(

_y ¼ z

_z ¼ Bbx�2bz�b2y

(

The second operator transforms the average membrane poten-
tial of a population into an average pulsed density of action potentials
fired by the neurons, which is represented by a non-linear sigmoid
function

SigmðvÞ ¼
2e0

1þerðv0�vÞ

where e0, r, and v0 are parameters to determine its shape.
As described in Fig. 1, a single neural population is modelled by
a population of pyramidal cells, receiving inhibitory and excita-
tory feedback from local neurons and excitatory input from far and
near cortex areas with the connectivity constant C1,y,C4. The
following set of six differential equations can be used to describe
the model:

_x1 ¼ x4

_x2 ¼ x5

_x3 ¼ x6

_x4 ¼ Aa Sigmðx2�x3Þ�2ax4�a2x1

_x5 ¼ AaC2 SigmðC1x1Þ�2ax5�a2x2þAap

_x6 ¼ BbC4 SigmðC3x1Þ�2bx6�b2x3

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

where y¼x2�x3 is the output of the system.
The standard value of the parameters is determined anatomi-

cally as

A¼ 3:25 mV, a¼ 100 s�1

B¼ 22 mV, b¼ 50 s�1

e0 ¼ 2:5 s�1, r¼ 0:56 mV�1, v0 ¼ 6 mV

C1 ¼ 1:25C2 ¼ 4C3 ¼ 4C4 ¼ C ¼ 135

The excitatory input is represented by an average pulse density
p(t), which can be random or deterministic. Jansen and Rit chose
p(t) to be a uniformly distributed random noise between 120 and
320 [12]. The alpha-like activity would be achieved for C¼135 as
shown in Fig. 2.

Grimbert and Faugeras [11] treated the input p as a cons-
tant, and analyzed the dynamic behaviors of Jansen’s model as a
function of p. Let X ¼ ðx1,x2,x3,x4,x5,x6Þ

T , and system (1) can be
written as

_X ¼ f ðX,pÞ

The fixed points will be obtained by solving the equations f(X,p)¼0,
which leads to the implicit equation

y¼
A

a
C2Sigm C1

A

a
SigmðyÞ

� �
þp

� �
�

B

b
C4Sigm C3

A

a
SigmðyÞ

� �

where y¼x2�x3 can be thought of as a function of parameter p.
The dynamic behaviors are sketched in Fig. 3, where x1, x2 and x3

are the average post membrane potential of the corresponding
neurons. For p¼50, two equilibrium points coexist for system (1).
As p increases to 110, the equilibrium point on the upper branch
turns to be alpha-like limit cycle. When p grows to 130, the equi-
librium point on the lower branch becomes spike-like epileptic
limit cycle.

2.2. Coupled populations model

The single population model focus on the brain’s dynamic
behaviors of a separate area. While the spatial characters of the
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Fig. 2. The model’s output y¼x2�x3 with the lumped connectivity constant C equals (from top to bottom) 68, 128, 135, 270, 675, and 1350, respectively. The input is uniformly

distributed random noise. The alpha-like activity has been obtained with C¼135.

G. Huang et al. / Neurocomputing 74 (2011) 1026–10341028
EEG signals cannot be simulated by the signal model. Jansen et al.
used coupled model with two populations to explore the hypoth-
esis that certain VEP components are due to the interaction between
two or more cortical areas. Fig. 4 describes the schematic diagram of
the coupled neural mass model. In their model, the two areas, which
represented the visual cortex and the prefrontal cortex, were assumed
to have the similar neuronal architecture. They share the same
parameters (e.g. A, B and n0). The input for each population comes
from the external is represented by p1 and p2. Two connectivity
constants, k1 and k2, attenuate the output of one area before it is fed to
the other, and ad is the delays. The two cortical areas are linked to each
other via two other cortical areas: the extrastriate cortex and the
inferotemporal cortex. Hence at least three neurons are necessary to
account for the pathways of the processing of a visual stimulus by the
prefrontal cortex and three more for feedback to the occipital visual
cortex. The impulse response hd(t), similar to he(t), can be used as

hdðtÞ ¼
Aadte�adt if tZ0

0 else

(

where ad¼a/3 means a latency 3 times longer than the excitatory
impulse response from local neurons. In Ref. [12], the authors set this
parameters to simulate the connection between the prefrontal cortex
and the occipital visual cortex. Hence, the two-neuron population
model can be described as Eq. (2):

_x1 ¼ x4

_x2 ¼ x5

_x3 ¼ x6

_x4 ¼ Aa Sigmðx2�x3Þ�2ax4�a2x1

_x5 ¼ AaC2 SigmðC1x1Þ�2ax5�a2x2

þAaðp1þk1x14Þ

_x6 ¼ BbC4 SigmðC3x1Þ�2bx6�b2x3

_x7 ¼ x10

_x8 ¼ x11

_x9 ¼ x12

_x10 ¼ Aa Sigmðx8�x9Þ�2ax10�a2x7

_x11 ¼ AaC2 SigmðC1x7Þ�2ax11�a2x8

þAaðp2þk2x13Þ

_x12 ¼ BbC4 SigmðC3x7Þ�2bx12�b2x9

_x13 ¼ x15

_x14 ¼ x16

_x15 ¼ Aad Sigmðx2�x3Þ�2adx15�a2
dx13

_x16 ¼ Aad Sigmðx8�x9Þ�2adx16�a2
dx14

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ
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Fig. 3. (a) Two equilibrium points coexist for p¼50 which is labelled by blue and red star respectively. (b) The alpha-like activity (blue cycle) and the equilibrium point (red star) coexist

with the parameter p¼110. (c) The alpha-like activity (blue cycle) and the spike-like epileptic activity (red cycle) coexist with the parameter p¼130. (d) The bifurcation diagram for

system (1). The stable fixed points (solid line) and the unstable fixed points (dashed line) are depicted with the critical points marked by pentagrams. The alpha-like limit cycles appear

for each pA ½89:83,315:70�, and the spike-like epileptic limit cycles appear for each pA ½113:58,137:38�. The values of the parameter p, corresponding to subfigures (a)–(c), are

represented with dashed-dotted lines on the diagram. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Neural mass model with two neural populations connected.

G. Huang et al. / Neurocomputing 74 (2011) 1026–1034 1029
Coupling two neural populations with the uncorrelated random
input of p1, p2, Jansen et al. [12] studied the spatial distribution of
alpha and beta activities, where k1, k2 vary between 0 and 120.
Furthermore some evoked potentials were simulated by adding a
transient component to the input of the coupled models.

Considering the inputs p1 and p2 as constants, the equilibrium
points of system (2) can be obtained from the equations

y1 ¼
A

a
C2 Sigm C1

A

a
Sigmðy1Þ

� �
þp1þk1

A

ad
Sigmðy2Þ

� �

�
B

b
C4 Sigm C3

A

a
Sigmðy1Þ

� �

y2 ¼
A

a
C2 Sigm C1

A

a
Sigmðy2Þ

� �
þp2þk2

A

ad
Sigmðy1Þ

� �

�
B

b
C4 Sigm C3

A

a
Sigmðy2Þ

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ
with the parameters p1, p2, k1 and k2. The singular point (y1,y2) of
Eq. (3) leads to the corresponding singular point of system (2)

Sðy1,y2Þ ¼ ½ðA=aÞ Sigmðy1Þ,ðA=aÞðC2 SigmðC1ðA=aÞ Sigmðy1ÞÞþp1þk1

ðA=adÞ Sigmðy2ÞÞ,ðB=bÞC4 SigmðC3ðA=aÞ Sigmðy1ÞÞ,0,0,0,ðA=aÞ Sigmðy2Þ,

ðA=aÞðC2 SigmðC1ðA=aÞSigmðy2ÞÞþp2þk2ðA=adÞ Sigmðy1ÞÞ,ðB=bÞ

C4SigmðC3ðA=aÞ Sigmðy2ÞÞ, 0, 0, 0, ðA=adÞ Sigmðy1Þ,ðA=adÞ Sigmðy2Þ,0,0�

The stability of the equilibrium point is determined by the Jacobian
matrix of system (2). The Jacobian matrix with all eigenvalues nega-
tive indicates the equilibrium point S(y1,y2) is stable.

3. Simulations and results

In this model, the inputs of the populations are configured with
four parameters p1, p2, k1 and k2. The dynamics of single population
with the input p is studied in Ref. [11]. Fig. 3 shows the condition
especially for p¼50, 110, and 130. In this simulation, in order to
exhibit the rich dynamical behavior of the coupled system (2) in a
simple way, the parameters are set as p1¼110, p2¼50, k1¼K and
k2¼650�K, where each K varies from 0 to 650. A one-dimensional
study of the model parameter-space is conducted. The system is
integrated for 40 s with 100 random initial conditions of K varied
between 0 and 650 in step of 0.1. The fourth order Runge–Kutta
method is used to solve the system of ordinary differential equation
(2) with its maximal Lyapunov exponent (MLE) in Matlab.

The Lyapunov exponent describes the time asymptotic rate of
separation of infinitesimally close trajectories. A positive MLE is
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usually taken as an indication that the system is chaotic. MLE of
zero indicates that a limit cycle exists in the system, and a stable
fixed point has all Lyapunov exponents negative. More detailed
discussions about the Lyapunov exponent and their relation to
chaos can be seen from Refs. [6,18,24]. For system (2), the maximal
Lyapunov exponent is calculated by taking three typical initial
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values

X1 ¼

0:0400 14:1098 11:0059 �0:4585

�216:0680 �189:0192 0:1104 23:8555

16:2095 0:1089 �36:0743 36:5895
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2
6664

3
7775,
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. For the initial value of X1 (red), the MLE is negative for KA ½0,12:2�, and the negative
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X2 ¼

0:1477 21:6848 12:0221 0:4096

62:1496 349:1564 0:0300 11:4769

8:5745 �0:3617 �131:9716 �133:8066

0:2590 0:1762 4:1132 �2:0146

2
6664

3
7775,

X3 ¼

0:1011 20:5966 12:8552 0:8736

11:0675 �12:2445 0:0828 25:1161

19:0421 �0:7560 �31:1860 �146:1025

0:2891 0:3340 0:4683 �1:8299

2
6664

3
7775,

with red, blue and green in Fig. 5 respectively. Numerical experi-
ments showed that this period of time 500 s was sufficiently long
for the system to converge to a stable estimate of MLE.

Some dynamical behaviors are shown in Fig. 6 with the parameters
K¼0,12.7,16,62,257,337,433,470. All attractors are from time series of
5 s long, following the removal of an initial transient of 15 s.

3.1. Equilibrium points

Two stable equilibrium points exist in system (2). As shown
in Fig. 6, one equilibrium point, marked by diamond, exists for
KA ½0, 12:2�, and the other one, marked by star, exists for
KA ½0,140:2�. In Fig. 5, we see that the MLE in red with the initial
value X1 for KA ½0,12:2� is negative but close to zero. The more
negative MLE in blue for KA ½0,90� indicates the more stable
equilibrium point with the initial value X2. For KA ½140:2,650�,
no equilibrium point exists any more.
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3.2. Limit cycles

For the single population (1), the limit cycles corresponding to
the alpha-like and spike-like epileptic activities are displayed in
Fig. 3. Coupling two identical populations, the combinations of these
activities are found in system (2), such as alpha-to-alpha, alpha-
to-epileptic and epileptic-to-epileptic activities.

As plotted in green in Fig. 5, the solution with the initial value X3

converges to the alpha-to-alpha cycle for all value of K in [0,650]
with the corresponding MLE remaining 0. Since there is no feedback
or weak feedback from populations 2 to 1, the quasi-periodic alpha-
to-alpha cycle often occurs with zero or small value of K. Figs. 6(a) and
(c) illustrate quasi-periodic orbits in cyan with K¼0 and 16. As the
value of K increases, the alpha-to-alpha cycle would be periodic.
Figs. 6(b)–(h) show such cases in green. Especially, the coexistence of
periodic and quasi-periodic alpha-to-alpha cycles can be observed for
K¼16 in Fig. 6(c). If KA ½346,352�, the alpha-to-alpha cycles would be
globally attracted, and no other attractors have been found in the
simulation.

The interaction of alpha and epileptic activities is more complex.
In most instances, there is only one mode for the combination of
alpha and epileptic activities, as shown in Fig. 6(c) with the red tra-
jectory. However, it is not always the case. Fig. 7 depicts an interest-
ing phenomenon of the coexistence of three alpha-to-epileptic
cycles when K¼36. Besides the black equilibrium point and the
green alpha-to-alpha cycle, three types of alpha-to-epileptic cycles
in red, pink, and yellow, respectively, are observed. They share the
similar spike-like epileptic activities in population 1, but the different
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coupling modes in phase make the waveform of the alpha activities in
population 2 differ greatly from each other.

Unlike multiple coupled modes of alpha-to-epileptic activities
in different phases, the epileptic-to-epileptic activities can be coupled
with different rhythms (Fig. 8). For K¼100, two spikes of each popula-
tion appear in one period. A spike for one period occurs with K¼170.
Further more, the coupled modes of two spikes vs. one spike, and
three spikes vs. two spikes are shown in Fig. 8 with K¼300 and 337,
respectively. Fig. 6(f) depicts the phase diagram for the coupled mode
of three spikes vs. two spikes in red.

The combination of equilibrium point and limit cycles is displayed
in Fig. 6(h) for K¼470. The combination of equilibrium point and
alpha cycle is depicted in blue, and the coupling of equilibrium point
and epileptic cycle is depicted in red.

3.3. Chaos

Besides limit cycles, the interaction of alpha and epileptic activities
could also lead to chaotic behaviors for the coupled model (2). Four
regions with the positive MLE are observed in Fig. 5, which indicates
chaos in these regions. The alpha-to-epileptic chaotic attractors in
regions KA ½12:3,13:5�, KA ½62:5,63:5� and KA ½431,444� are shown
in Fig. 6 (b), (d) and (g), respectively. In region KA ½252,261�, a kind of
epileptic-to-epileptic chaotic attractor is plotted in Fig. 6(e). As
parameter K varies from 248 to 252, the system becomes chaotic
undergoing a period-doubling process.

Remark. The positive MLE in the four regions, as shown in Fig. 5,
does not mean the chaotic attractors only exist in these regions. The
positive MLE in these regions indicates that the solutions with the
corresponding initial values among x1, x2 and x3 converge to chaotic
attractors with the parameters K in these regions. The solutions with
other initial values may converge to the chaotic attractors outside
these regions. But no other special chaotic attractors are found in our
simulations. Similarly, the MLE with the initial value x2 is negative for
KA ½0,90�, the blue line in Fig. 5. However, the corresponding equi-
librium point, marked in black star in Figs. 6(a)–(d), exists in the
region KA ½0,142:2�, which is determined by Eq. (3).

4. Discussion

In study of EEG activity, nonlinear measures such as correlation
dimension, Lyapunov exponents, and nonlinear prediction error
are often applied to time series with the intention of identifying the
presence of nonlinearity, possibly chaotic behavior [19,17,1]. How-
ever, the presence of noise of unknown origin makes it hopeless
to reinterpret the data within the frame of chaos theory. Theiler [20]
reconsidered the epileptic EEG time series, which was previously
reported to be chaotic, with the method of surrogate data. As a result,
the correlation dimension, Lyapunov exponent estimator was essen-
tially the same for the original and surrogate data sets. Freeman sugg-
ested the name of ‘‘stochastic chaos’’ to describe the unpredictability
of brain oscillations, which manifests either limit cycle attractors, or
chaotic attractors, or colored noise, or all of the above [10]. In study of
neural mass model, the stochastic character is always considered with
the excitatory input chosen to be a uniformly or Gaussian distributed
noise [12,23,4,3]. The existence of noise makes the dynamic analysis
of this model more difficult. Jansen et al. [12] roughly classified the
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oscillatory behavior into several types with variations of the con-
nectivity constants. The coexistence of multiple states could be
observed in the noisy circumstance. In [11], Grimbert and Faugeras
treated the model as a deterministic system with the input kept
constant to study the underlying dynamics. A detailed stability and
bifurcation analysis of the single neural mass model has been made as
a function of its input.

In this work, the simulation study of the coupled neural mass
model is an extension of dynamic analysis on single neuron population
of Grimberty and Faugeras. The interaction of epileptic-to-epileptic
and epileptic-to-alpha activities would also lead to some chaotic beha-
viors. No alpha-to-alpha activity is identified to be chaotic. It indica-
tes that the chaotic behaviors in the EEG signals are correlated with
epileptic behaviors, which is in accordance with Freeman’s experi-
ment [9]. In 1987, Freeman and his collaborators developed mathe-
matical models for EEG signals generated by the olfactory system in
rabbits. They suggested that epileptiform patterns extracted from EEG
seizure signals can be explained through the chaotic dynamics of these
models. In their model, the central olfactory system is made of three
parts, the bulb, anterior nucleus, and prepyriform cortex. Each part can
be seen as a mass of neurons. Here, chaotic behavior is generated with
the interaction of two neuronal populations. By contrast, no chaotic
behavior has been discovered in the single neuronal population or
the direct coupled network, as K¼0 or 650. Our study also shows the
coexistence of chaotic behaviors and other stable attractors. Chaotic
behavior in the four regions is accompanied by other activities, which
means the system would also be non-chaotic with certain initial values.

5. Conclusions

The present study is performed on the coupled neural mass
model with two neural populations. As the inputs p1 and p2 are kept
constant, the noise-free system can help us to understand the det-
erministic nature of brain activity. For single population, the equi-
librium points, alpha and epileptic periodic orbits can be observed
with the varying of the excitatory input. In the interaction of two
populations, the varying of parameter K leads to rich and varied
dynamical behaviors of the system. Stable equilibrium points,
periodic orbits, quasi-periodic orbits and chaos could be observed
in the system. With the weak connection from populations 1 to 2,
an alpha-to-alpha quasi-periodic orbit and two equilibrium points
coexist in the system. As the parameter K increases, the equilibrium
points disappear one by one, and the alpha-to-alpha activities turns
to be periodic. The combination of the alpha activities is simple and
ubiquitous. In contrast, the epilepsy is more complex in the
interaction, and its activities do not exist in the entire region of
KA ½0, 650�. There exist multiple ways for epileptic activities in the
interaction with other activities. The epileptic activities can interact
with alpha activities in different phases. Two epileptic activities
could be coupled in different rhythms. Furthermore, chaotic beha-
vior was identified with the measure of MLE in four regions of
parameter space of K. All of them are related to epileptic activities.
The coexistence of various attractors is a key feature of the system.
The number of stable attractors could be only 1 for KA ½346,352�
where the alpha-to-alpha activity is the global attractor, or up to
5 as illustrated in Fig. 7 with K¼36. Here, we limited the number of
neuron populations to 2, complex dynamics under the changes of
network structures deserve further investigation. Some stochastic
differential methods [21,14,22] may help us to analysis the network
with multiple neuron populations.
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