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Abstract—In this paper, an electromyography (EMG)-based
handwriting recognition method was proposed for a latent ten-
dency of natural user interface. The subjects wrote the characters
at a normal speed, and six channels of EMG signals were
recorded from forearm muscles. The dynamic time warping
(DTW) algorithm was used to eliminate the time axis variance
during writing. The process for template making and matching
was illustrated diagrammatically. The results showed that no
more than ten training trials per character could make an accu-
racy of above 90%. The recognition performance was compared
in three character sets: digits, Chinese characters and capital
letters.

I. INTRODUCTION

Electromyography (EMG) signals are used in many clinical

and biomedical applications, such as muscular disease diag-

noses [3] and prosthetic control [2]. Researchers have also

used EMG signals to control computers [13] and other devices,

like robot and wheelchair [1]. Among the various applications,

it is an interesting and promising research topic to recognize

handwriting via EMG signals. However, it has no significant

progress due to the technical limitations.

In Ref. [9], Linderman et al. conducted the study on

handwriting recognition using EMG signals. In his experiment,

the subjects were asked to write the characters from ‘0’ to ‘9’

(50 repetitions per character). The duration of each trial was 7s

with 2-3s of which corresponding to character writing. Eight-

channel EMG signals from hand and forearm muscles were

recorded. As a result, recognition accuracy was 63% for five

training trials per character. If the trials increased to 35 per

character, the accuracy improved to 97%.

In this study, a fast handwriting recognition method based

on EMG was proposed. In the experiment, subjects wrote the

characters at a normal speed. The average time for writing

a character was less than 1s, and fewer trials were used for

training, which is more convenient for users.

This paper was organized as follows: Section II showed the

experimental setup. Section III explained the method for data

processing. The results and discussion were given in Section

IV. Section V was the conclusion.

II. EXPERIMENT

A. Equipment and Setup

The forearm EMG signals were recorded using SynAmps

system (Neuroscan, USA) with six pairs of sensors, and the

Fig. 1. The positions of six pairs of EMG sensors, and the ground and
reference electrodes.

sampling frequency is 1000 Hz with the cut-off frequency

of 0.05-200 Hz. The subjects were asked to clean their

forearms with scrub solution while we prepared the sensors

with conductive gel and adhesive tape. In order to get the

best possible signals, EMG sensing is traditionally conducted

with two sensors spreading an inch apart on a muscle belly

[12]. The positions of these electrodes are shown in Fig. 1.

Six muscles were involved as follows: flexor carpi ulnaris,

flexor digitorum superficial and palmaris longus, extensor

carpi radials, extensor digitorum, extensor carpi ulnaris. The

experimental setup took about 20 minutes.

B. Design and Procedure

During the experiment, the subjects wrote the characters,

while their elbows were fixed and only their hands and wrists

moved. They wrote the characters with a normal speed and

strength as usual.

The experiment was divided into four phases.

1) calibration phase: The subjects wrote every character

twice. This phase aims to help the subjects fit in with the

surrounding. The system would set baseline in writing activity

detection by these data.

2) training phase: In training phase, the subjects wrote

each character several times. The obtained data were used to

make templates.

3) testing phase: In this phase, the subjects also wrote each

character several times. By template matching, the system

recognized which character the subject wrote and displayed

the result on the screen immediately. The recognition rate was

given to evaluate the efficiency of the system.

4) playing phase: Some subjects may feel interested in the

new writing style. The playing phase was set for subjects to
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Fig. 2. An example for DTW algorithm. (a) The two time series are dissimilar
in Euclidean distance. (b) They have the same overall waveforms but they are
not aligned well in the time axis. (c) A more sophisticated distance measure is
calculated after DTW algorithm. (d) The DTW algorithm provides a nonlinear
alignment in the two time series.

experience this novel input way and test its general recognition

efficiency. The subjects could write freely as they wanted.

The experiment took about 1.5 hours.

III. DATA PROCESSING

A. Basic Signal Processing

The raw EMG signals are firstly bandpass filtered between

10 and 200 Hz. The notch filter at 50 Hz is enabled. Then

muscle activation interval is determined when the sum of

squares of the EMG signals crosses the baseline of 300 ms.

The baseline is set to be 0.2 mean values of the sum of

squares of the EMG signals in the calibration phase. For

feature extraction, the absolute value of the segmented signals

is smoothed with the 50 ms wide windows, and down-sampled

to 66 Hz. A time series feature of six channels is generated.

B. Dynamic Time Warping

To compute the similarity between time series, Euclidean

distance or some extension may be typically used. However, a

small distortion in the time axis could make Euclidean distance

much brittle. Hence, dynamic time warping (DTW) algorithm

is introduced to align them in the time axis. Fig.2 provides

an example to illustrate the condition. Two time series, which

have approximately the same overall waveforms, are not close

to each other in Euclidean distance. DTW algorithm can warp

one time series nonlinearity to calculate the distance with the

other time series more intelligently.

By means of dynamic programming, DTW algorithm can

find an optimal alignment between two time series. This so-

called trajectory-matching technique, originally designed by

Kruskal and Liberman [8] for speech recognition purposes,

is used successfully in gesture recognition [5], robotics [11],

speech processing [10], manufacturing [6] and medicine [4]. A

detailed explanation of DTW algorithm can be found in Ref.

[7].

(a) (b) (c)

Fig. 3. Template making. (a) Five samples for writing character ‘2’. (b) The
initial template. (c) The final template generated by iteration.

When the users write the same characters, they can’t keep

their rhythm constant. Some kind of distortion is unavoidable.

Hence, DTW method can be used to eliminate the distortion

and improve the correct recognition rate.

C. Template Making and Matching

For each character, the length of the template is determined

by the average length of training trials, and the final template

is achieved by iteration. The initial template is the average

of the trials, where the trials are extend or stretch linearly to

the length of the template. Then DTW algorithm is applied

on every trials to find the corresponding time points in the

template. The new template is made by averaging these

time points. Empirically, one iteration is enough for template

making. More iterations couldn’t help improving the correct

rate, but increase the computing complexity.

Fig.3 illustrates the operation of template making. Five

samples have an overall similar waveform for writing character

‘2’, but small variations exist in both rhythm and strength

as shown in Fig.3(a). The initial template is made by the

average of these samples. Using DTW algorithm, the template

generated is sharper in Fig.3(c). Comparatively, the initial

template in Fig.3(b) is smoother and some details in waveform

are neglected.

For template matching, the distances between such a six-

dimensional time series and the templates of each characters

are calculated after nonlinear time warping. The character is

determined by the template with the smallest distance.

An example of character recognition is shown in Fig.4. The

forearm EMG signals for the subject writing the character ‘0’

are plotted in the left. The time sequences of six channels

correspond to the six forearm muscles. The segment, which is

detected for writing, is highlighted by blue bar. It is smoothed

and down-sampled for feature extraction, which is shown in

red in the middle. Compared with the ten templates after
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Fig. 4. An example for character recognition. (a) After band-pass filtering, the signal for the subject writing character ‘0’ is segmented with blue bar. (b)
Feature extraction is done by smoothing and down-sampling. (c) Compared with all the templates, the system recognizes the character corresponding to the
smallest distance.

dynamic time warping, the character is determined by the

template with the smallest distance. The comparison is given

in detail in the right. The template for character ‘0’-‘9’ is

plotted in bold blue line. It could be seen that the average

time for the subject to write these characters is not the same.

The subject writes ‘1’ with about 0.7 second, but writes ‘4’

and ‘5’ much slower. Using DTW algorithm, the 0.8 second

time series feature is warped nonlinearly into the length of

the template, plotted in thin red line. The distance between

the template and the feature is labeled above the template.

The smallest distance 189.1 with respect to the character ‘0’

determines what the subject writes.

IV. RESULTS AND DISCUSSION

Three individuals volunteered to participate in the exper-

iment, ranged from 25 to 28 years of age. All the subjects

are right-handed, and no pathological muscular conditions

or skin allergies are reported. The three subjects took the

experiments two to four times. Eight datasets were collected

for the character set ‘0’ to ‘9’, and each dataset contained

60−100 repetitions per character. One of them took part in the

experiment on other two character sets, the Chinese characters

from one to ten and the capital letters from ‘A’ to ‘Z’ with

sixty repetitions per character.

As shown in Fig.5, the accuracy increases along with the

size of the training set. The accuracy grows rapidly as the size

increasing from 1 to 5. Even if only one trial per character is

conducted for training, an accuracy of about 70% could be

obtained. The accuracy is improved to 93% as the training
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Fig. 5. The accuracy increases along with the size of the training set.

size increases to 20 per character. Compared with the 63% for

5 trials per character in Ref. [9], our method can use small

sample size to get a higher accuracy, which is convenient for

users.

The performance of three different character sets is shown

in Table I. These characters are listed in Fig.6. The accuracies

on digits and Chinese characters have the higher accuracy than

letters. It is mainly because of the large character set of letters.

In fact, the three sets have their own characteristics. For

digits, most of them can be simply written by one stroke,

except for ‘4’ and ‘5’ with two strokes. It is easy for segment-

ing in this case. However, considering the font style, digits
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Fig. 6. Three character sets: digit characters from ‘0’ to ‘9’ , the Chinese
characters from ‘B’(‘one’) to ‘E’(‘ten’), and the capital letters from ‘A’ to
‘Z’.

would be written more “softly” than Chinese characters and

capital letters, which is unfavorable for recognition. Chinese

characters have a totally contrary condition, and each of them

consists of several strokes from one to five correspondingly,

which is unfavorable for segmenting. For example, it is apt

to wrongly segment the character ‘=’(‘two’) or ‘Ø’(‘three’)

into two or three separate characters ‘B’(‘one’). The “harder”

writing way can guarantee the accuracy after the proper

segmenting. Capital letters have the merits of both digits and

Chinese characters: no more than three strokes per character

and writing in a “hard” way. However, they have some other

problems. Although ‘D’ and ‘P’ have different character forms,

they are written in a similar way, and the system is scarcely

able to recognize one from the other. Other characters like ‘A’

and ‘H’, or ‘B’ and ‘K’ are also confused on some subjects.

Writing these characters deliberately in an altering way can

solve these problems effectively.

TABLE I
ACCURACY ON THREE CHARACTER SETS.

No. character set size accuracy(%)

1 digits 10 98.25
2 Chinese 10 97.89
3 letters 26 84.29

V. CONCLUSION AND FUTURE WORK

A novel handwriting recognition method based on the fore-

arm EMG signals has proposed in this paper. Using the DTW

algorithm, the distortions in the time axis was eliminated. An

accuracy of greater than 90% was achieved with no more than

ten training trials per character, and it also demonstrated the

effectiveness with small sample size.

The biggest challenge for handwriting recognition using

EMG is the activity onset detection. It is hard for system to set

a time interval (300ms in our method) to determine whether

the subject writes several characters with one stroke continu-

ously or one character with several strokes intermittently. The

typical example shows the confusion between two Chinese

characters ‘B’(‘one’) and one Chinese character ‘=’(‘two’),

as discussed above. A corrected detection may improve the

accuracy. In future, we will investigate this issue.

The technique mentioned in this work potentially can sub-

stitute for current computer input devices or touch screens for

text transmission. It can bring significant change for conven-

tional human-machine interface, and make great convenience

for the normal persons. In addition, the disabled with hand

deficiency will particularly benefit more. Actually, we have

recruited some amputees for this project, and the EMG from

residual muscles of forearm will further evaluate the method.
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