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a b s t r a c t

In this article, we focus on the delay-dependent multistability in recurrent neural networks. By
constructing Lyapunov functional and using matrix inequality techniques, a novel delay-dependent
multistability criterion is derived. The obtained results are more flexible and less conservative than
previously known criteria. Two examples are given to show the effectiveness of the obtained criteria.
Furthermore, some interesting delay-dependent dynamic behaviors have been showed in a special case,
for example, we find that there is the coexistence of stable equilibria and stable limit cycles in the single
neuron. Also, when the neurons are coupled, then the stable patterns are more complex.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, neural networks have attracted more and more
attention of researchers. Ranging from signal processing, pattern
recognition, programming problems and static image processing,
neural networks have witnessed a large amount of successful
applications in many fields (see Cichocki, 2002; Cochocki &
Unbehauen, 1993; Forti, Nistri, & Quincampoix, 2004; Forti & Tesi,
1995; Karhunen, Hyvarinen, Vigario, Hurri, & Oja, 1997; Xia, Leung,
& Bosse, 2002). And, these applications depend heavily on the
network’s dynamics. As practical applications of neural networks,
multistability is a necessary feature for associativememory storage
and pattern recognition. Multistability describes the coexistence
of multiple stable patterns (Chua, 1998; Foss, Longtin, Mensour,
& Milton, 1996; Hopfield, 1984; Morita, 1993), including stable
equilibria and stable limit cycles. In Cohen (1992), two distinct
but related constructive methods are provided for constructing
systems of ordinary differential equations with arbitrary numbers
of stable patterns.
Multistability in the delayed neural networks:

ẋi(t) = −µixi(t)+
n∑
j=1

αijgj(xj(t − τij))+ Ji, i = 1, 2, . . . , n (1)
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is discussed by Cheng, Lin, and Shih (2006). It is found that an n-
neuron cellular neural networks can have up to 2n locally stable
equilibria. And, Cheng, Lin, and Shih (2007) has studied a general
delayed neural networks:

ẋi(t) = −µixi(t)+
n∑
j=1

αijgj(xj(t))+
n∑
j=1

βijgj(xj(t − τij))+ Ji,

i = 1, 2, . . . , n. (2)
In addition, the multistability of cellular neural networks with and
without delays is investigated by Zeng, Wang, and Liao (2004)
and Zeng, Huang, and Wang (2005). Furthermore, Zeng and Wang
(2006) and Cheng et al. (2007) investigated the conditions for the
existence of multiple stable periodic orbits evoked by periodic
external inputs, in which all the stable patterns are limit cycles
with the same periodic time. And, if orbits converge to the same
periodic orbits, then they will be synchronized.
Since time delays are often encountered due to measurement

and computational delays, which may result in oscillation and in-
stability, the stability andmultistability analyses of delayed neural
networks have received considerable attention (e.g., see Cao, Ho,
& Huang, 2007; Cao & Li, 2005; He & Wu, 2006; Li & Chen, 2007;
Lou & Cui, 2006; Singh, 2006;Wang, Shu, Liu, Ho, & Liu, 2006; Xu &
Lam, 2006). However, most investigations on multistability have
focused on the delay-independent stability analysis. In general,
the delay-dependent stability criteria are less conservative than
delay-independent ones. Though Cheng et al. (2007) obtained a
delay-dependent multistability criterion using their theory of qua-
siconvergence, there was a strong possibility that their criterion
may be more conservative since they result from the strongly or-
der preserving of the semiflow generated by the solution of neu-
ral networks (2). To overcome this conservatism, we shall derive
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a new delay-dependent multistability criterion for the neural net-
works by utilizing LinearMatrix Inequality (LMI) convex optimiza-
tion approach.
Recently, the LMI-based techniques have been successfully

used to tackle various stability problems for neural networks
with or without delay (see Cao et al., 2007; Cao & Li, 2005;
Lou & Cui, 2006; Wang et al., 2006; Xu & Lam, 2006). The main
advantage of the LMI-based approaches is that the LMI stability
conditions can be solved numerically using the effective interior-
point algorithm. And, the delay-dependent stability is considered
for neural networks based on LMI approach in Xu and Lam (2006)
and Wang et al. (2006). Beside the stability problems, the LMI
approaches (e.g. Lu & Chen, 2004; Yu & Cao, 2007) have also been
used successfully to synchronize and estimate the state of the
respective neural networks (see He,Wang,Wu, & Lin, 2006;Wang,
Ho, & Liu, 2005).
Furthermore, to learn how delay effect on the multistability of

the neural network, a special case will be investigated. Associating
with themultistability criteria derived in this article and numerical
simulations, we shall explore an interesting phenomenon that
there coexist two stable equilibrium points and one stable limit
cycle in a single neuron. It is different from the Hopf bifurcation
(see Hassard, Kazarinoff, & Wan, 1981; Song, Han, & Wei, 2005;
Zhu & Huang, 2007) and the other coexisting phenomenon for
stable patterns (e.g. Campbell, Ncube, & Wu, 2006). Consider the
neural network coupled by two neurons with small connection
strength. Besides the compound stable patterns from the existing
stable patterns of the single neuron, some new stable patterns
emerge. There exist several types of stable patterns, which contain
both stable equilibriumpoints and stable limit cycleswith different
periodic times. Different from the stable periodic orbits evoked by
periodic external inputs, the orbits, which converge to the same
stable pattern, can be asynchronous.
The rest of the article is organized as follows. In Section 2,

the existence of multiple equilibria is introduced. In Section 3,
the delay-dependent multistability criteria are derived. And, two
numerical examples are illustrated in Section 4. In Section 5, we
give an example to show the coexistence of different types of stable
patterns. Finally, the conclusions are given in Section 6.

2. Multiple equilibria

Consider the neural network with delay as follows,

ẋi(t) = −cixi(t)+
n∑
j=1

aijg(xj(t))+
n∑
j=1

bijg(xj(t − τ))+ Ii,

i = 1, 2, . . . , n. (3)
And, we assume the activation functions g(x) have the sigmoidal
configuration, which satisfies the following properties:

g ∈ C2,


µ−i < g(ξ) < µ+i , ġ(ξ) > 0,
(ξ − ζi)g̈(ξ) < 0 for all ξ ∈ R,
lim

ξ→+∞
g(ξ) = µ+i , lim

ξ→−∞
g(ξ) = µ−i ,

(4)

where µ−, µ+, ζ are constants with µ− < µ+. Typical
configurations of the activation function g(x) and its derivative are
depicted in Figs. 1 and 2.
Notably, the stationary equation of system (3) is as follows,

Hi(x) := −cixi +
n∑
j=1

(aij + bij)g(xj)+ Ii = 0, i = 1, 2, . . . , n. (5)

Define
h+i (ξ) := −ciξ + (aii + bii)g(ξ)+ k

+

i ,

h−i (ξ) := −ciξ + (aii + bii)g(ξ)+ k
−

i , i = 1, 2, . . . , n. (6)
hi(ξ) := −ciξ + (aii + bii)g(ξ)+ Ii,
Fig. 1. Configuration of gi(ξ).

Fig. 2. Configuration of gi(ξ).

where k+i =
∑n
j=1,j6=i(|aij| + |bij|)µj + Ii, k

−

i = −
∑n
j=1,j6=i(|aij| +

|bij|)µj + Ii and µi := max{|µ+i |, |µ
−

i |}.
The existence of multiple equilibria are guaranteed by condi-

tions (H1), (H2) proposed in Cheng et al. (2007), as follows,

(H1) : 0 <
ci

aii + bii
< ġi(ζi), i = 1, . . . , n;

(H2) : h+i (pi) < 0, h−i (qi) > 0, i = 1, . . . , n.

According to Proposition 2.1 in Cheng et al. (2007), under condition
(H1), there exist two points pi and qi with pi < ζi < qi, such
that ḣi(p) = ḣi(q) = 0, i = 1, . . . , n. And, from the conditions
(H1), (H2), there exist points l+i < m

+

i < r
+

i such that h
+

i (l
+

i ) =

h+i (m
+

i ) = h
+

i (r
+

i ) = 0 as well as points l
−

i < m
−

i < r
−

i such that
h−i (l

−

i ) = h
−

i (m
−

i ) = h
−

i (r
−

i ) = 0. The configuration is depicted
in Figs. 3 and 4. Hence, there exists 3n subset in C([−τ , 0],Rn),
denoted by,

Λα = {φ = (φ1, . . . , φn)|l−i < φi(θ) < l+i if αi = ‘‘l’’;

m+i < φi(θ) < m−i if αi = ‘‘m’’; r
−

i < φi(θ) < r+i if αi = ‘‘r ’’}
(7)

where α = (α1, . . . , αn), αi = ‘‘l’’, ‘‘m’’, ‘‘r ’’. And, we can have the
existence of the equilibria as follows.

Lemma 1 (Theorem 2.2 in Cheng et al. (2007)). Under the condi-
tions (H1), (H2), there exist at least 3n equilibria for (3), and each
of them lies in one of the 3n regionsΛα .

3. Delay-dependent multistability

Assume Λα is a subset of C([−τ , 0],Rn) defined in (7), where
α = (α1, . . . , αn), αi = ‘‘l’’, ‘‘m’’, ‘‘r ’’, and x∗ = (x∗1, . . . , x

∗
n)
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Fig. 3. Configuration of gi .

Fig. 4. Configuration of h+i and h
−

i .

is an equilibrium in Λα . In this section, we consider the delay-
dependent stability of x∗ ∈ Λα .
Consider the stability of x∗ in its neighborhood Λ, defined as

follows,

Λ = {φ = (φ1, . . . , φn) | φi ∈ C([−τ , 0],R) and

x−i ≤ φi(θ) ≤ x
+

i ,∀ θ ∈ [−τ , 0]} (8)

where x∗i ∈ [x
−

i , x
+

i ]. Hence, there exist two constants σ
+

i >

σ−i > 0, such that if ξ ∈ [x−i , x
+

i ], then ġi(ξ) ∈ [σ
−

i , σ
+

i ], and
ġi(x∗i ) ∈ [σ

−

i , σ
+

i ].
Let yi(t) = xi(t)− x∗i , then

ẏi(t) = −ciyi(t)+
n∑
j=1

aijfj(yj(t))+
n∑
j=1

bijfj(yj(t − τ)),

i = 1, 2, . . . , n.

which can be rewritten in vector forms as follows:

ẏ(t) = −Cy(t)+ Af (y(t))+ Bf (y(t − τ)), (9)

where y = (y1, . . . , yn)T , f (y(t)) = (f1(y1(t)), . . . , fn(yn(t)))T and
fi(yi(t)) = gi(xi(t))− gi(x∗i ), where

fi(yi)
yi
=
gi(yi + x∗i )− gi(x

∗

i )

yi + x∗i − yi
= ġi(ξ)

and fi(0) = 0. Hence, if xi ∈ [x−i , x
+

i ], then ξ ∈ [x
−

i , x
+

i ] and

σ−i ≤
fi(yi(t))
yi(t)

≤ σ+i . (10)

Denote

Σ1 = diag(σ+1 σ
−

1 , . . . , σ
+

n σ
−

n ),

Σ2 = diag
(
σ+1 + σ

−

1

2
, . . . ,

σ+n + σ
−
n

2

)
.

(11)
To prove ourmain theorem,we also need the following lemmas.

Lemma 2. For any diagonal matrices U = diag(u1, . . . , un) > 0,
V = diag(v1, . . . , vn) > 0, if (10) holds, then[
y(t)
f (y(t))

]T [
−UΣ1 UΣ2
UΣ2 −U

] [
y(t)
f (y(t))

]
+

[
y(t − τ)
f (y(t − τ))

]T [
−VΣ1 VΣ2
VΣ2 −V

] [
y(t − τ)
f (y(t − τ))

]
≥ 0. (12)

The proof can be seen in Liu, Wang, Serrano, and Liu (2007).

Lemma 3. For real symmetric matrices K > 0, Mi(i = 1, 2, 3, 4)
with appropriate dimensions, then

−

∫ t

t−τ
ẏT (s)Kẏ(s)ds ≤ ξ T (t)[−τMTK−1M +MT Ĵ + ĴTM]ξ(t),

(13)

where

ξ(t) = [yT (t), yT (t − τ), f T (y(t)), f T (y(t − τ))]T ,
M = [M1,M2,M3,M4],

Ĵ = [I,−I, 0, 0]T .

Proof. Note the fact that[
I −MTK−1

0 I

] [
MTK−1M MT

M K

] [
I −MTK−1

0 I

]T
=

[
0 0
0 K

]
≥ 0,

then one has[
MTK−1M MT

M K

]
≥ 0.

It follows that

0 ≤
∫ t

t−τ

[
ξ(t)
ẏ(s)

]T [
MTK−1M MT

M K

] [
ξ(t)
ẏ(s)

]
ds

≤ τξ T (t)MTK−1Mξ(t)+ ξ T (t)MT
∫ t

t−τ
ẏ(s)ds

+

∫ t

t−τ
ẏT (s)dsMξ(t)+

∫ t

t−τ
ẏ(s)Kẏ(s)ds

≤ τξ T (t)MTK−1Mξ(t)+ ξ T (t)[ĴM + (ĴM)T ]ξ(t)

+

∫ t

t−τ
ẏ(s)Kẏ(s)ds.

Obviously, (13) holds. This completes the proof.

Lemma 4 (Schur Complement, Boyd (1994)). Given constant sym-
metric matrices Ω1,Ω2,Ω3, where Ω1 = ΩT1 and Ω2 = ΩT2 > 0,
then

Ω1 +Ω
T
3Ω
−1
2 Ω3 < 0

if and only if[
Ω1 ΩT3
Ω3 −Ω2

]
< 0.

Theorem 1. For given τ , the equilibrium x∗ in Λ is asymptotically
stable, if Λ is positively invariant for (3) and there exist three
symmetric matrices P > 0,Q > 0, K > 0, two diagonal matrices
U > 0, V > 0, and Mi (i = 1, . . . , 4) with appropriate dimensions
such that the LMI (14) holds
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[
Ω + ĴM + (ĴM)T τMT

τM −τK

]
< 0, (14)

where

Ω =


Ω11 0 PA+ UΣ2 − τCTKA PB− τCTKB
∗ −Q − VΣ1 0 VΣ2
∗ ∗ −U + τATKA τATKB
∗ ∗ ∗ −V + τBTKB

 ,
Ω11 = −(CTP + PC)+ Q − UΣ1 + τCTKC,

M = [M1,M2,M3,M4], Ĵ = [I,−I, 0, 0]T and Σ1, Σ2 are defined
in (11). Here, ∗ denotes the transpose of the corresponding upper
diagonal elements of the matrix.
Proof. Choose a Lyapunov–Krasovskii functional candidate as

V (t) = yT (t)Py(t)+
∫ t

t−τ
yT (s)Qy(s)ds

+

∫ 0

−τ

∫ t

t+θ
ẏT (s)Kẏ(s)dsdθ, (15)

where P = PT > 0,Q = Q T > 0, K = K T > 0. Employing
Lemmas 2 and 3, calculating the time-derivative of V (t) along the
trajectories,

V̇ (t) = 2yT (t)Pẏ(t)+ yT (t)Qy(t)− yT (t − τ)Qy(t − τ)

+

∫ 0

−τ

ẏT (t)Kẏ(t)dθ −
∫ 0

−τ

ẏT (t + θ)Kẏ(t + θ)dθ

= 2yT (t)P[−Cy(t)+ Af (y)+ Bf (y(t − τ))] + yT (t)Qy(t)
− yT (t − τ)Qy(t − τ)+ τ [−Cy(t)+ Af (y)+ Bf (y(t − τ))]T

× K [−Cy(t)+ Af (y)+ Bf (y(t − τ))] −
∫ t

t−τ
ẏT (s)Kẏ(s)ds

≤ 2yT (t)P[−Cy(t)+ Af (y)+ Bf (y(t − τ))] + yT (t)Qy(t)
− yT (t − τ)Qy(t − τ)+ τ [−Cy(t)+ Af (y)+ Bf (y(t − τ))]T

× K [−Cy(t)+ Af (y)+ Bf (y(t − τ))]

+ ξ T (t)[−τMTK−1M + ĴM + (ĴM)T ]ξ(t)

+

[
y(t)
f (y(t))

]T [
−UΣ1 UΣ2
UΣ2 −U

] [
y(t)
f (y(t))

]
+

[
y(t − τ)
f (y(t − τ))

]T [
−VΣ1 VΣ2
VΣ2 −V

] [
y(t − τ)
f (y(t − τ))

]
= ξ T (t)[Ω + ĴM + (ĴM)T − τMTK−1M]ξ(t).

Employing Schur complement in Lemma 4, Ω + ĴM + (ĴM)T −
τMTK−1M < 0 is guaranteed by LMI (14). If Ω + ĴM + (ĴM)T −
τMTK−1M < 0, it yields V̇ (t) < 0 when xt ∈ Λ, which implies x∗
in the positive invariant set Λ is locally asymptotically stable and
thus the proof is completed.

Ifwe choose Lyapunov–Krasovskii functional (15)withK = 0, then
the obtained stability criterion is delay-independent. The proof is
similar to Theorem 1.

Theorem 2. The equilibrium x∗ inΛ is asymptotically stable, if Λ is
positively invariant for (3) and there exist three symmetric matrices
P > 0,Q > 0, two diagonal matrices U > 0, V > 0 with
appropriate dimensions such that the LMI (16) holds

Ω

=

−(C
TP + PC)+ Q − UΣ1 0 PA+ UΣ2 PB

∗ −Q − VΣ1 0 VΣ2
∗ ∗ −U 0
∗ ∗ ∗ −V


< 0 (16)
whereΣ1,Σ2 are defined in (11).

Remark 1. In the multistability criteria of Theorems 1 and 2, the
choice of the positive invariant set Λ is much vital and flexible.
On one hand, it is related to the stability discrimination of the
equilibria. A smaller Λ can make the corresponding matrix Σ1,
Σ2 more precise and the stability of the equilibria x∗ in Λ will be
determinedmore accurately. On the other hand, if the equilibria x∗

is stable for the criterion above, then the the positive invariant set
Λ is the attraction domain of x∗. If the inequality (14) or (16) holds
on a largerΛ, then the attraction domain of x∗ will be larger.

Remark 2. While considering stability for a large number of
equilibria, we can take the different Σ1, Σ2 for each equilibria
and solve every LMI to determine the stability for all equilibria.
The computational complexity would be very high. For instance,
if there exist 2n equilibria, then we need to verify 2n LMIs. In
another way, we can set common Σ1, Σ2 for all equilibria in their
neighborhood and examine just one LMI to verify whether all
equilibria are stable. While the common Σ1, Σ2 would be more
rough in general.
In the following, we will discuss the condition for Λ to be the

positive invariant set.

(H3) :



−cix+i +
n∑
j=1

(a+ij + b
+

ij )gj(x
+

j )

+

n∑
j=1

(a−ij + b
−

ij )gj(x
−

j )+ Ii < 0,

−cix−i +
n∑
j=1

(a+ij + b
+

ij )gj(x
−

j )

+

n∑
j=1

(a−ij + b
−

ij )gj(x
+

j )+ Ii > 0,

i = 1, 2, . . . , n.

Here, a+ij = max{0, aij}, a
−

ij = min{0, aij}, b
+

ij = max{0, bij}, b
−

ij =

min{0, bij}.

Lemma 5. Under the condition H3,Λ is positively invariant for (3)

Proof. If Λ is not positively invariant, then there must exist a
solution x(t) with its initial value φ = (φ1, . . . , φn) ∈ Λ, which
leaves the regionΛ first at time t0 > 0. Without losing generality,
assume xi leaves [x−i , x

+

i ] first. Then xi(t0) = x
+

i , ẋi(t0) > 0, or
xi(t0) = x−i , ẋi(t0) < 0.
Considering xi(t0) = x+i , from condition (H3)we have

ẋi(t0) = −cixi(t0)+
n∑
j=1

aijgj(xj(t0))+
n∑
j=1

bijgj(xj(t0 − τ))+ Ii

= −cix+i +
n∑
j=1

(a+ij + a
−

ij )gj(xj(t0))

+

n∑
j=1

(b+ij + b
−

ij )gj(xj(t0 − τ))+ Ii

≤ −cix+i +
n∑
j=1

(a+ij + b
+

ij )gj(x
+

j )+

n∑
j=1

(a−ij + b
−

ij )gj(x
−

j )+ Ii

< 0,

It is inconsistent with ẋi(t0) > 0. We can also have the same
conclusion for the condition xi(t0) = x−i . Hence, x(t) cannot leave
Λ, andΛ is positively invariant for (3). This completes the proof.
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Corollary 1. For given τ , the equilibrium x∗ in Λ is asymptotically
stable, if condition ( H3) holds and there exist three symmetric
matrices P > 0,Q > 0, K > 0, two diagonal matrices U > 0, V >
0, and Mi (i = 1, . . . , 4) with appropriate dimensions such that the
LMI (14) holds.

Corollary 2. The equilibrium x∗ in Λ is asymptotically stable, if
condition ( H3) holds and there exist three symmetric matrices P >
0,Q > 0, two diagonal matrices U > 0, V > 0 with appropriate
dimensions such that the LMI (16) holds.

Furthermore, under the conditions (H1), (H2), the regions Λα
can be divided into two classes.

Λ1 = {Λ
α
| ∃ i ≤ n, s.t. αi = ‘‘m’’},

Λ2 = {Λ
α
| αi = ‘‘l’’ or ‘‘r ’’ ∀ i ≤ n}.

Λ2 is composed of 2n regions andΛ1 is composed of 3n−2n regions.
If the equilibrium point x∗ ∈ Λα and Λα ∈ Λ1, then x∗ is usually
unstable under the conditions (H1), (H2). Hence, we only consider
the equilibrium points inΛα , whereΛα ∈ Λ2.

Lemma 6. Under the conditions (H1), (H2), if bii > 0 for any i =
. . . n, then everyΛα ∈ Λ2 is positively invariant for (3).

Proof. If Λα is not positively invariant, then there must exist a
solution x(t) with its initial value φ = (φ1, . . . , φn) ∈ Λα , which
leaves the regionΛα first at time t0 > 0.Without losing generality,
assume xi leaves [x−i , x

+

i ] first and αi = ‘‘l’’. Then xi(t0) = l+i ,
ẋi(t0) > 0, or xi(t0) = l−i , ẋi(t0) < 0.
Considering xi(t0) = l+i , from condition (H2)we have

ẋi(t0) = −cixi(t0)+
n∑
j=1

aijgj(xj(t0))+
n∑
j=1

bijgj(xj(t0 − τ))+ Ii

≤ −cil+i + (aii + bii)gi(l
+

i )+

n∑
j=1,j6=i

(|aij| + |bij|)µj + Ii

= h+i (l
+

i )

= 0.

It is inconsistent with ẋi(t0) > 0. We can also have the same
conclusion for the condition xi(t0) = l−i . Hence, x(t) cannot leave
Λα , andΛα is positively invariant for (3). This completes the proof.

Corollary 3. Under the conditions (H1), (H2), takeσ−i = min{ġ(l
−

i ),

ġ(r+i )}, σ
+

i = max{ġ(l
+

i ), ġ(r
−

i )}. For given τ ≥ 0, there are 2
n local

asymptotically stable equilibria, if bii > 0 for any i = . . . n and there
exist three symmetric matrices P > 0,Q > 0, K > 0, two diagonal
matrices U > 0, V > 0, and Mi (i = 1, . . . , 4) with appropriate
dimensions such that the LMI (14) holds.

Proof. For any φ ∈ Λα , whereΛα ∈ Λ2, we have

min{ġ(l−i ), ġ(r
+

i )} < φi(θ) < max{ġ(l+i ), ġ(r
−

i )}, ∀ θ ∈ [−τ , 0].

Hence, Corollary 3 can be derived directly from Theorem 1 and
Lemma 6.

Corollary 4. Under the conditions (H1), (H2), takeσ−i = min{ġ(l
−

i ),

ġ(r+i )}, σ
+

i = max{ġ(l
+

i ), ġ(r
−

i )}. For given τ ≥ 0, there are 2
n local

asymptotically stable equilibria, if bii > 0 for any i = . . . n and there
exist three symmetric matrices P > 0,Q > 0, K > 0 , two diagonal
matrices U > 0, V > 0 with appropriate dimensions such that the
LMI (16) holds.

Remark 3. In Theorem 3.2 (Cheng et al., 2007), the delay-
independent multistability condition is obtained under the as-
sumptions (H1), (H2), bii > 0 and
ci >
n∑
j=1

ηj(|aij| + |bij|), for i = 1, 2, . . . , n, (17)

where max{g ′j (l
+

j ), g
′

j (r
−

j )} < ηj < min{g ′j (pj), g
′

j (qj)}, j =
1, . . . , n. It is obvious that the signs of the weight connections and
the delayed weight connections are neglected in the conditions
above, that is to say, the differences between the neuronal
excitatory and the inhibitory effects have been neglected. While,
by using Lyapuonov–Krasovskii stability theorem and LMImethod,
our criteria avoid this problem.

4. Two examples

In this section, two examples are presented to illustrate both
delay-independent and delay-dependent multistability results.

Example 1. Consider Example 6.4 in Cheng et al. (2007) as follows
ẋ1(t) = −x1(t)+ 7g1(x1(t))+ 0.5g2(x2(t))
− 4g1(x1(t − τ11))+ 0.5g2(x2(t − τ12)),

ẋ2(t) = −x2(t)+ 0.5g1(x1(t))+ 7g2(x2(t))
+ 0.5g1(x1(t − τ21))− 4g2(x2(t − τ22)),

(18)

where g1(x) = g2(x) = tanh(x). Here, we assume τ11 = τ12 =
τ21 = τ22 = τ . With the same computation in Cheng et al. (2007),
conditions (H1), (H2) are satisfied, and l+1 = l

+

2 = −1.8573, m
+

1 =

m+2 = −0.5903, r
+

1 = r
+

2 = 3.9980; l
−

1 = l
−

2 = −3.9980, m
−

1 =

m−2 = 0.5903, r
−

1 = r
−

2 = 1.8573.
As the analysis and simulations in Example 6.4 Cheng et al.

(2007), the equilibrium in Ω(l,l),Ω(r,l),Ω(l,r),Ω(r,r) is stable with
τ11 < 0.08475, τ22 < 0.08475.
In fact, for each equilibria, we can make the matrix Σ1, Σ2

more precise. For the equilibrium (3.9973, 3.9973), choose the
[x−1 , x

+

1 ]×[x
−

2 , x
+

2 ] in (8) as [3.9, 4.1]×[3.9, 4.1] and σ
+

1 = σ
+

2 =

1.6376× 10−3, σ−1 = σ
−

2 = 1.0980× 10
−3,

Σ1 =

(
1.798× 10−4 0

0 1.798× 10−4

)
,

Σ2 =

(
1.367× 10−3 0

0 1.367× 10−3

)
.

For the equilibrium (1.9150,−1.9150), choose the [x−1 , x
+

1 ] ×

[x−2 , x
+

2 ] in (8) as [1.91, 1.92] × [1.91, 1.92] and σ
+

1 = σ+2 =

8.2394× 10−2, σ−1 = σ
−

2 = 8.3987× 10
−2,

Σ1 =

(
6.920× 10−3 0

0 6.920× 10−3

)
,

Σ2 =

(
8.319× 10−2 0

0 8.319× 10−2

)
.

And, it can be verified that condition (H3) holds for the two
equilibria. From Corollary 2, they are all asymptotically stable for
any τ ≥ 0. To the other two equilibria, we can have the same
conclusion. Different from the simulation in Cheng et al. (2007),
Figs. 5 and 6 depict the dynamics with τ = 10, and the attraction
basins for (1.9150,−1.9150) and (−1.9150, 1.9150) are really
small.

Example 2. Consider the neural network as follows
ẋ1(t) = −x1(t)+ 4g1(x1(t))− 2g2(x2(t))
+ 3g1(x1(t − τ))+ 2.8g2(x2(t − τ)),

ẋ2(t) = −x2(t)− 2g1(x1(t))+ 4g2(x2(t))
+ 2.8g1(x1(t − τ))+ 3g2(x2(t − τ)),

(19)



206 G. Huang, J. Cao / Neural Networks 23 (2010) 201–209
Fig. 5. Phase plot of (x1, x2) in Example 1 with τ = 10. The subfigures plot the
dynamic behaviors near the equilibria (1.9150,−1.9150) and (−1.9150, 1.9150).
The trajectories in the same color converge to the same stable equilibrium point.

Fig. 6. Response of x1 , x2 in Example 1 with τ = 10.

where g1(x) = g2(x) = tanh(x) and τ = 10. Direct computation
gives

h+1 (ξ) = h
+

2 (ξ) = −ξ + 7 tanh(ξ)+ 4.8,

h−1 (ξ) = h
−

2 (ξ) = −ξ + 7 tanh(ξ)− 4.8.

The parameters satisfy the criterion in Corollary 3:

Condition(H1) : 0 <
c1

a11 + b11
=
1
7
< 1,

0 <
c2

a22 + b22
=
1
7
< 1;

Condition(H2) : p1 = p2 = −1.6283, q1 = q2 = 1.6283,
h+1 (p1) = h

+

2 (p2) = −0.0524 < 0,
h−1 (q1) = h

−

2 (q2) = 0.0524 > 0.

And, l+1 = l
+

2 = −1.8838, m
+

1 = m
+

2 = −1.4050, r
+

1 = r
+

2 =

11.8000; l−1 = l
−

2 = −11.8000, m
−

1 = m
−

2 = 1.4050, r
−

1 = r
−

2 =

1.8838. Set

Σ1 =

(
1.989× 10−9 0

0 1.989× 10−9

)
,

Σ2 =

(
0.0442 0
0 0.0442

)
,

Fig. 7. Phase plot of (x1, x2) in Example 2 with τ = 10.

Fig. 8. Time response of x1 , x2 in Example 2 with τ = 10.

thus we can easily verify that the LMI (14) is satisfied. From
Corollary 3, there exists 2n stable equilibria. The parameters herein
do not satisfy the criterion (17) for theory in Cheng et al. (2007):

η1(|a11| + |b11|)+ η2(|a12| + |b12|)
> max{g ′1(l

+

1 ), g
′

1(r
−

1 )}(|a11| + |b11|)

+ max{g ′2(l
+

2 ), g
′

2(r
−

2 )}(|a12| + |b12|)
= 1.0420 > 1
= c1,

η1(|a21| + |b21|)+ η2(|a22| + |b22|)
> max{g ′1(l

+

1 ), g
′

1(r
−

1 )}(|a21| + |b21|)

+ max{g ′2(l
+

2 ), g
′

2(r
−

2 )}(|a22| + |b22|)
= 1.0420 > 1
= c2,

whichdemonstrate the assertion in Remark 3. Thedynamics of (19)
are illustrated in Figs. 7 and 8.

5. Coexistence of equilibria and limited cycles

In this section, we consider a special case to show the
coexistence of equilibria and limited cycles.
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Fig. 9. Dynamic behaviors for Eq. (20) with τ = 0.

Fig. 10. Dynamic behaviors for Eq. (20) with τ = 6.

5.1. A single neuron

Consider a single neuron as follows,

ẋ(t) = −x(t)+ ag(x(t))+ bg(x(t − τ)), (20)

where a = 1.3, b = −0.2, and g(x) = tanh(x) and conditions
(H1), (H2) are satisfied. Hence, there exist 3 equilibria for Eq. (20).
Solve the stationary equations of Eq. (20), as follows,

−x+ 1.1 tanh(x) = 0,

we can find the 3 equilibria as x0 = 0, x1 = 0.5532,
x2 = −0.5532.
Consider the linear system for Eq. (20) at x0

ẋ(t) = 0.3x(t)− 0.2x(t − τ),

where the characteristic equation is

h0(λ) = λ− 0.3+ 0.2e−τλ = 0.

If λ = 0, then h0(λ) < 0; if λ = 0.3, then h0(λ) > 0. Hence, there
exists a real root λ ∈ [0, 0.3] for characteristic equation h0(λ) = 0.
The origin is unstable for any τ > 0.
Consider the linear system for Eq. (20) at x1

ẋ(t) = −x(t)+ a tanh′(x1)x(t)+ b tanh′(x1)x(t − τ)
= −x(t)+ 0.9711x(t)− 0.1494x(t − τ),
Fig. 11. Dynamic behaviors for Eq. (20) with τ = 8.

where the characteristic equation is

h1(λ) = λ+ 0.0289+ 0.1494e−τλ = 0.

If τ < 12.0445, there is no root for h1(λ) = 0 with positive real
part. Hence, x1 is stable for τ < 12.0445. For symmetry, we can
gain the same conclusion for x2. Note that, applying Theorem 1, we
can get that x1, x2 are asymptotically stable for τ < 10.5341. The
dynamic behaviors for Eq. (20) are illustrated in Figs. 9–14 with
different τ .
From the simulations in Figs. 9–14, if τ ≤ 8, there exists two

stable equilibria for Eq. (20). As τ = 9, the two stable equilibria
are preserved and a stable limit cycle appears. As τ increasing, the
stable limit cycle holds, but the two equilibria become unstable for
τ > 12.0445. And, Fig. 14 shows the dynamics for τ = 13.

Remark 4. Different from Hopf bifurcation (see Hassard et al.,
1981; Song et al., 2005; Zhu & Huang, 2007), the stable limit
cycle emerges before the stability of all equilibrium points
changed. Comparedwith other coexistence phenomenon for stable
patterns, such as Campbell et al. (2006), the coexistence of stable
asynchronous limit cycles and stable synchronous equilibria has
been found in the single neuron model in this article.

5.2. Two coupled neurons

As illustrated above, we found the coexistence of stable equi-
libria and a stable limit cycle for a single neuron. Consider neural
network, which is weakly coupled by two neurons, as follows{
ẋ1(t) = −x1(t)+ ag(x1(t))+ bg(x1(t − τ))+ cg(x2(t)),
ẋ2(t) = −x2(t)+ ag(x2(t))+ bg(x2(t − τ))+ cg(x1(t)),

(21)

where a = 1.3, b = −0.2, g(x) = tanh(x), which is the same with
Eq. (20), and c = 0.016. From the stationary equations,{
−x1 + 1.1 tanh(x1)+ 0.016 tanh(x2) = 0,
−x2 + 1.1 tanh(x2)+ 0.016 tanh(x1) = 0,

Eq. (21) has 9 equilibrium points as:

x(r,l) = (0.5062,−0.5062), x(r,m) = (0.5458,−0.0816),
x(r,r) = (0.5968, 0.5968),

x(m,l) = (0.0816,−0.5458), x(m,m) = (0, 0),
x(m,r) = (−0.0816, 0.5458),

x(l,l) = (−0.5968,−0.5968), x(l,m) = (−0.5458, 0.0816),
x(l,r) = (−0.5062, 0.5062).



208 G. Huang, J. Cao / Neural Networks 23 (2010) 201–209
Fig. 12. Dynamic behaviors for Eq. (20) with τ = 9.

Fig. 13. Dynamic behaviors for Eq. (20) with τ = 9.6.

Fig. 14. Dynamic behaviors for Eq. (20) with τ = 13.

By applying Theorem 1, we can get that, x(r,l) and x(l,r) are stable
for τ < 8.8305; x(r,r) and x(l,l) are stable for τ < 11.7244.
x
1

x 2

–1.5
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–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0 0.5 1 1.5

Fig. 15. Stable patterns of Eq. (21) with τ = 9.6.

Consider τ = 9.6, for a single neuron, there exist threepatterns,
as two stable equilibria and a stable limit cycle. If the coupling
strength between the two neurons is small enough, there should
be 32 stable patterns, which are compound of the different stable
patterns of the single neuron.
As the simulations in Fig. 15, the stable patterns are depicted

by different colors. From the computation above, the equilibria
x(r,r) and x(l,l) are stable, which are drawn in black. It appears that
the equilibria x(r,l) and x(l,r) are unstable. Since the connection
from the two neurons c = 0.016 is so weak, the limit cycle,
compounded of the limit cycle for the single neuron, is still stable
as depicted in blue in Fig. 15. And, the stability of the four limit
cycles, compound with the limit cycle and the stable equilibria,
are also preserved, which are depicted in magenta. Besides the
compound stable patterns, four other stable limit cycles emerge in
the neural network, which are depicted in cyan, yellow, green, and
red correspondingly in Fig. 15. Hence, it could be found that two
stable equilibriumpoints and nine limit cycles coexist in the neural
network (21). There are 11 stable patterns in all, which is larger
than 32 = 9. If this type of delay-dependent neural networks are
applied in associativememory storage or pattern recognition, then
the memory capability and the memory mode will be improved,
and they can be adjusted by delay.
Note that, different from the stable periodic orbits evoked by

periodic external inputs, they are constants for all the external
inputs in Eq. (21). In Cheng et al. (2007) and Zeng andWang (2006),
under the periodic external inputs, all the stable patterns are limit
cycles, and there is no stable equilibrium in the neural networks.
However, in Eq. (21), there is a coexistence of both limit cycles and
equilibria.

6. Conclusion

In this article, the delay-dependent multistability of neural
networks is studied. By utilizing LMI approach, both delay-
dependent and delay-independent criteria for multistability are
obtained. And, the stability of the equilibria can be verified
more flexibly by the given criteria. Compared with the existing
multistability results, the criteria obtained in this article are less
conservative. The simulation results show the validity of our
criteria.
Furthermore, by using the obtained criteria and simulations,

a special example is investigated. It is found that there could be
three stable patterns for a single neuron. If the neurons are coupled
into a neural network,then besides the compound of the stable
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patterns form the single neurons, some new stable patterns would
emerge, in which delay really enrich the dynamic behaviors of
the neural networks. However, we could only prove the stability
of the equilibria in this article. The existence and stability of the
limit cycles are still open problems. Also, the mechanisms for the
emergence of the new type of stable patterns are really unclear.
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