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Abstract

In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and
stability analysis of the neural networks with or without delay, it is found that the 2n-dimensional networks can have 3n equilibria and 2n

equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been
extended to (n + m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical
examples are presented to illustrate the validity of our results.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, neural networks have attracted more and more attention of researchers due to their great perspectives of appli-
cation. Ranging from classifications, associative memory, image processing, and pattern recognition to parallel computation and its
ability to solve optimization problems, neural networks work as an intelligent tool in different situations. Neural networks have com-
plex dynamical behaviors, such as stability [1–5], periodic bifurcation and chaos [6–9], which have been extensively investigated.
The theory on the dynamics of the networks have been developed according to the purposes of applications.

In the applications of neural networks for associative memory storage or pattern recognition, the coexistence of multiple equi-
libria is a necessary feature [10–13]. The notion of “multistability” of a neural network is used to describe coexistence of multiple
stable patterns. In [14], the multistability of the delayed neural networks was discussed:

(1)ẋi (t) = −μixi(t) +
n∑

j=1

αijgj

(
xj (t − τij )

) + Ji, i = 1,2, . . . , n.

It is found that an n-neuron cellular neural networks can have up to 2n locally stable equilibria. Ref. [15] studied a general delayed
neural networks:

(2)ẋi (t) = −μixi(t) +
n∑

j=1

αijgj

(
xj (t)

) +
n∑

j=1

βij gj

(
xj (t − τij )

) + Ji, i = 1,2, . . . , n.
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In Refs. [16–18], the multistability of cellular neural networks (CNNs) and delayed cellular neural networks (DCNNs) was in-
vestigated. Furthermore, in [15,17], the authors studied multiperiodicity and exponential attractivity of neural networks evoked by
periodic external inputs. In [25], the multistability and multiperiodicity are discussed for a class of delayed Cohen–Grossberg neural
networks. While many multistability criterions depend deeply on the self-connection weights αii , βii in the neural networks. For
instance in [14–16], the related criterions always require αii or αii + βii to be positive. However, if αii = 0, βii = 0, the criterions
mentioned above are not applicable for checking the multistability of the neural networks.

Bidirectional Associative Memory (BAM) network, introduced by Kosko in [19–21], is a typical neural network model, in which
the self-connections of all neurons are zero. It has been successfully applied to pattern recognition and associative memory. As an
extension of the unidirectional autoassociator of Hopfield neural networks, BAM neural network is formed by neurons arranged in
two layers. The neurons in one layer are fully interconnected to the neurons in the other layer, while there are no interconnections
among neurons in the same layer. In Refs. [6,8,22,23], the authors discussed the problem of stability and periodic for BAM networks
with or without axonal signal transmission delays. However, to the best of our knowledge, few papers (if any) are concerned with
the multistability of BAM neural networks.

Motivated by the above discussions, we shall study the multistability of BAM neural networks in this letter. In Sections 2 and 3,
the 2n-dimensional networks are considered with n-neurons on each layer of the BAM networks. The condition of the existence of
multiple equilibria is obtained, in Section 2. In Section 3, the stability of the equilibria is investigated with delay or without delay.
In Section 4, the neural network model is extended to a more general form, in which there can be different number of neurons on
the two layers. Both the global stability and local metastability conclusions are obtained. In Section 5, two illustrative examples are
provided with simulation results. Finally, conclusions are given in Section 6.

2. Existence of multiple equilibria

In this section and Section 3, we consider the BAM neural networks without delay or with delay, respectively as follows:

(3)

{
ẋi (t) = −aixi(t) + ∑

1�j�n bij g(yj (t)) + Ii,

ẏi(t) = −ciyi(t) + ∑
1�j�n dij g(xj (t)) + Ji,

i = 1,2, . . . , n

(4)

{
ẋi (t) = −aixi(t) + ∑

1�j�n bij g(yj (t − τij )) + Ii,

ẏi(t) = −ciyi(t) + ∑
1�j�n dij g(xj (t − σij )) + Ji,

i = 1,2, . . . , n

where ai > 0, ci > 0, xi , yj are the activations of the ith neurons and j th neurons in the two layers, respectively. bij , dij are the
connection weights through the neurons in two layers, and Ii and Ji denote the external inputs. τij > 0, σij > 0 correspond to
finite speed of axonal signal transmission. Denote τ := max1<i,j<n{τij , σij }, where τ > 0. The activation function g(s) = tanh(s),
which holds the sigmoidal configuration and is nondecreasing with saturation. As a functional differential equations described by
system (4), the initial condition is{

xi(θ) = φi(θ),

yi(θ) = ψi(θ),
θ ∈ [−τ,0],

where φi , ψi ∈ C([−τ,0],R).
The stationary equations of systems (3) and (4) are identical as follows,

(5)

{ −aixi + ∑
1�j�n bij g(yj ) + Ii = 0,

−ciyi + ∑
1�j�n dij g(xj ) + Ji = 0,

i = 1,2, . . . , n.

Firstly, consider the BAM neural network with a single couple of neurons,

(6)

{
ẋ(t) = −aix(t) + biig(y(t)) + Ii,

ẏ(t) = −ciy(t) + diig(x(t)) + Ji.

Hence, the stationary equations can be rewritten as

(7)

{
x = bii

ai
g(y) + Ii

ai
:= Gi(y),

y = dii

ci
g(x) + Ji

ci
:= Hi(x).

As is shown in Fig. 1, the equilibria of Eq. (6) are the crossing points of the curves x = Gi(y) and y = Hi(x).
Here, we propose the first condition:

(H1): biidii

aici

> 1, i = 1,2, . . . , n.

It’s worth noting that, as ai, ci > 0, condition (H1) also implies biidii > 0 for all i = 1,2, . . . , n.
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(a) (b)

Fig. 1. The graph of x = Gi(y) and y = Hi(x) with ai = ci = bii = dii = 1 and Ii = Ji = 0. (a) x = Gi(y). (b) y = Hi(x).

Theorem 2.1. For biidii

aici
� 1 and biidii > 0, system (6) has one unique equilibrium.

Proof. (1) If bii > 0, then dii > 0, aici − biidii > 0. Hence G(y), H(x) is monotonous increase, and

lim
y→−∞Gi(y) = −bii + Ii

ai

, lim
x→−∞Hi(x) = −dii + Ji

ci

,

lim
y→+∞Gi(y) = bii + Ii

ai

, lim
x→+∞Hi(x) = dii + Ji

ci

,

dGi

dy
∈

(
0,

bii

ai

]
,

dHi

dx
∈

(
0,

dii

ci

]
.

Therefore the inverse function G−1(x) can be defined on the interval (
−bii+Ii

ai
,

bii+Ii

ai
),

dG−1
i

dx
>

ai

bii
and

lim
x→ −bii+Ii

ai

G−1
i (x) = −∞, lim

x→ bii+Ii
ai

G−1
i (x) = +∞,

lim
x→ −bii+Ii

ai

(
G−1

i (x) − Hi(x)
) = −∞, lim

x→ bii+Ii
ai

(
G−1

i (x) − Hi(x)
) = +∞.

By means of intermediate value theorem, there exists a x0 such that G−1
i (x0) − Hi(x0) = 0. Since

d(G−1
i − Hi)

dx
>

ai

bii

− dii

ci

= aici − biidii

biici

> 0,

the value of G−1
i (x)−Hi(x) monotonously increases on the interval (

−bii+Ii

ai
,

bii+Ii

ai
), the zero point for G−1

i (x)−Hi(x) is unique.
So (x0,Hi(x0)) is the unique equilibrium for system (6).

(2) If bii < 0, then dii < 0, aici − biidii > 0. With the similar analysis, we have

lim
x→ bii+Ii

ai

(
G−1

i (x) − Hi(x)
) = +∞, lim

x→ −bii+Ii
ai

(
G−1

i (x) − Hi(x)
) = −∞;

and

d(G−1
i − Hi)

dx
<

ai

bii

− dii

ci

= aici − biidii

biici

< 0,

G−1
i (x) − Hi(x) monotonously decreases on the interval (

bii+Ii

ai
,

−bii+Ii

ai
). So (x0,Hi(x0)) is also the unique equilibrium for sys-

tem (6). This completes the proof. �
Remark 1. If biidii < 0, the monotonicity of G−1

i (x) − Hi(x) is obviously. Hence it is easy to prove that the equilibrium for
system (6) is unique. From Theorem 2.1, we can see that condition (H1) is a necessary condition for system (6) to have multiple
equilibrium.
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(a) (b)

Fig. 2. The configurations of G+
i

(y), G−
i

(y) and H+
i

(x), H−
i

(x). (a) bii , dii > 0. (b) bii , dii < 0.

Next, some notations are employed for the convenience of proof.

G+
i (yi) = 1

ai

(
biig(yi) + Ii +

n∑

j=1,j �=i

|bij |
)

, G−
i (yi) = 1

ai

(
biig(yi) + Ii −

n∑

j=1,j �=i

|bij |
)

,

H+
i (xi) = 1

ci

(
diig(xi) + Ji +

n∑

j=1,j �=i

|dij |
)

, H−
i (xi) = 1

ci

(
diig(xi) + Ji −

n∑

j=1,j �=i

|dij |
)

,

for i = 1,2, . . . , n. It is easy to verify that

G−
i (yi) � 1

ai

( ∑

1�j�n

bij g(yj ) + Ii

)
� G+

i (yi);

(8)H−
i (xi) � 1

ci

( ∑

1�j�n

dij g(xj ) + Ji

)
� H+

i (xi).

We make the second assumption which is concerned with the existence of multiple equilibria for systems (3) and (4):
(H2): for i = 1,2, . . . , n, there exist two points (ui1, vi1) and (ui2, vi2), where ui1 < ui2 , such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if bii , dii > 0, H+
i (ui1) < vi1,G

+
i (vi1) < ui1,

H−
i (ui2) > vi2,G

−
i (vi2) > ui2;

if bii , dii < 0, H−
i (ui1) > vi1,G

+
i (vi1) < ui1,

H+
i (ui2) < vi2,G

−
i (vi2) > ui2.

The configuration that motivates (H2) is depicted in Fig. 2. Under assumptions (H1) and (H2), if bii , dii > 0 in Fig. 2(a),
then there exist three couples of points (x+

i1, y
+
i1), (x−

i1, y
−
i1), (x+

i2, y
+
i2), (x−

i2, y
−
i2), (x+

i3, y
+
i3), (x−

i3, y
−
i3), where (x+

i1, y
+
i1), (x−

i2, y
−
i2),

(x+
i3, y

+
i3) are the crossing points of the curves yi = H+

i (xi), xi = G+
i (yi), (x−

i1, y
−
i1), (x+

i2, y
+
i2), (x−

i3, y
−
i3) are the crossing points of

the curves yi = H−
i (xi), xi = G−

i (yi). x−
i1 < x+

i1 < x−
i2 < x+

i2 < x−
i3 < x+

i3, y−
i1 < y+

i1 < y−
i2 < y+

i2 < y−
i3 < y+

i3.
For bii , dii < 0 in Fig. 2(b), there exist three couples of points (x−

i1, y
+
i1), (x+

i1, y
−
i1), (x−

i2, y
+
i2), (x+

i2, y
−
i2), (x−

i3, y
+
i3), (x+

i3, y
−
i3),

where (x−
i1, y

+
i1), (x

+
i2, y

−
i2), (x

−
i3, y

+
i3) are the crossing points of the curves yi = H+

i (xi), xi = G−
i (yi), (x

+
i1, y

−
i1), (x

−
i2, y

+
i2), (x

+
i3, y

−
i3)

are the crossing points of the curves yi = H−
i (xi), xi = G+

i (yi). x−
i1 < x+

i1 < x−
i2 < x+

i2 < x−
i3 < x+

i3, y−
i3 < y+

i3 < y−
i2 < y+

i2 < y−
i1 <

y+
i1.

Remark 2. Condition (H2) can be simplified as follows:
(H′ ): for i = 1,2, . . . , n, there exist ui1, ui2, where ui1 < ui2, such that
2
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{
if bii , dii > 0, G+

i (H+
i (ui1)) < ui1, G−

i (H−
i (ui2)) > ui2,

if bii , dii < 0, G+
i (H−

i (ui1)) < ui1, G−
i (H+

i (ui2)) > ui2.

For bii , dii > 0, G+
i (y), G−

i (y) and H+
i (x), H−

i (x) are monotone increasing functions. Due to H+
i (ui1) < vi1, G+

i (vi1) < ui1,
we have G+

i (H+
i (ui1)) < ui1, and H+

i (G+
i (vi1)) < vi1. On the other hand, suppose bii , dii > 0, and G+

i (H+
i (ui1)) < ui1. Let

vi1 = (H+
i (ui1) + [G+

i ]−1(ui1))/2, then (ui1, vi1) satisfies the inequality H+
i (ui1) < vi1, G+

i (vi1) < ui1. Similarly, if bii, dii > 0,
then H−

i (ui2) > vi2, G−
i (vi2) > ui2 are equivalent to G−

i (H−
i (ui2)) > ui2. Furthermore, the analysis for bii , dii < 0 is similar.

Hence, (H′
2) is equivalent to (H2).

In the following, the existence of equilibria will be proved.

Theorem 2.2. Under assumptions (H1) and (H2), both systems (3) and (4) have 3n equilibria.

Proof. The equilibria of systems (3) and (4) are the roots of Eqs. (5). Under conditions (H1) and (H2), the graphs of xi = G+
i (yi),

xi = G−
i (yi), yi = H+

i (xi), yi = H−
i (xi) defined above are depicted in Fig. 2. According to the configurations, there are 3n disjoint

closed regions in R
2n. Set Ωα = {(x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R

2n | (xi, yi) ∈ Ω
αi

i } with α = (α1, α2, . . . , αn), and αi = 1,2,3,
where

Ω1
i := {

(x, y) ∈ R
2
∣∣ (x, y) ∈ [

x−
i1, x

+
i1

] × [
y−
i1, y

+
i1

]}
,

Ω2
i := {

(x, y) ∈ R
2
∣∣ (x, y) ∈ [

x−
i2, x

+
i2

] × [
y−
i2, y

+
i2

]}
,

(9)Ω3
i := {

(x, y) ∈ R
2
∣∣ (x, y) ∈ [

x−
i3, x

+
i3

] × [
y−
i3, y

+
i3

]}
.

Consider any fixed one of these regions Ωα . For a given (x̃, ỹ) = (x̃1, x̃2, . . . , x̃n, ỹ1, ỹ2, . . . , ỹn) ∈ Ωα , we solve

(10)−aixi(t) + biig
(
yi(t)

) +
n∑

j=1,j �=i

bij g
(
ỹj (t)

) + Ii = 0,

(11)−ciyi(t) + diig
(
xi(t)

) +
n∑

j=1,j �=i

dij g
(
x̃j (t)

) + Ji = 0,

for xi , yi , i = 1,2, . . . , n. According to an estimate similar to (8), the graph of Eq. (10) lies in the regions between xi = G+
i (yi) and

xi = G−
i (yi), while Eq. (11) lies in the regions between yi = H+

i (xi) and yi = H−
i (xi). Thus, there exist at least three solutions,

and each of them lies in one of regions in (9) for each i. Consider the one lying in Ω
αi

i and set it as (x̄i , ȳi ) for each i, and define a
mapping Fα : Ωα → Ωα by Fα(x̃, ỹ) = (x̄, ȳ) = (x̄1, x̄2, . . . , x̄n, ȳ1, ȳ2, . . . , ȳn). Since g is continuous, the map Fα is continuous.
From Brouwer’s fixed point theorem, there exists one fixed point (x,y) of Fα , which is also a zero of Eq. (5). Hence, there exist 3n

equilibria for system Eqs. (3) and (4), and each of them lies in one of the 3n regions Ωα . The proof is completed. �
3. Stability analysis

In this section, the stability of the equilibria is considered. The third criterion is proposed concerning stability:

(H3):
{ −ai + ∑n

j=1 |bij |g′(ηj ) < 0, g′(ηj ) := max{g′(yj ) | yj ∈ [y−
j1, y

+
j1] ∪ [y−

j3, y
+
j3]},

−ci + ∑n
j=1 |dij |g′(ξj ) < 0, g′(ξj ) := max{g′(xj ) | xj ∈ [x−

j1, x
+
j1] ∪ [x−

j3, x
+
j3]}.

From condition (H2), if bii , dii > 0, then there exist (ui1, vi1) and (ui2, vi2), where ui1 < ui2, that H+
i (ui1) < vi1, G+

i (vi1) <

ui1. There exists two open region

D+
i1 := {

(x, y)
∣∣ H+

i (x) < y,G+
i (y) < x,x+

i1 < x < x−
i2

}
,

D−
i1 := {

(x, y)
∣∣ H−

i (x) > y,G−
i (y) > x,x < x−

i1

}
.

Hence, as is shown in Fig. 3(a), (ui1, vi1) ∈ D+
i1 and (x+

i1, y
+
i1) on the edge of D+

i1, (x−
i1, y

−
i1) on the edge of D−

i1.
As illustrated in Fig. 3(b), the similar region D−

i3, D+
i3 can be defined as follows

D−
i3 := {

(x, y)
∣∣ H−

i (x) > y,G−
i (y) > x,x+

i2 < x < x−
i3

}
,

D+
i3 := {

(x, y)
∣∣ H+

i (x) < y,G+
i (y) < x,x > x+

i3

}
,

which are open and (ui2, vi2) ∈ D− .
i3
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(a) (b)

(c) (d)

Fig. 3. The regions of D−
i1, D+

i1, D−
i3, D+

i3 and Λ1
i

, Λ3
i

for bii , dii > 0 in (a), (b), and bii , dii < 0 in (c), (d). (a) The regions of D−
i1, D+

i1 and Λ1
i

for bii , dii > 0.

(b) The regions of D−
i3, D+

i3 and Λ3
i

for bii , dii > 0. (c) The regions of D−
i1, D+

i1 and Λ1
i

for bii , dii < 0. (d) The regions of D−
i3, D+

i3 and Λ3
i

for bii , dii < 0.

According to condition (H3) and the continuity of the activation function g, there exists a positive constant ε0 and four points
(x̃−

i1, ỹ
−
i1), (x̃+

i1, ỹ
+
i1), (x̃−

i3, ỹ
−
i3), (x̃+

i3, ỹ
+
i3), where(

x̃−
i1, ỹ

−
i1

) ∈ B
((

x−
i1, y

−
i1

)
, ε0

) ∩ D−
i1, H−

i

(
x̃−
i1

)
> ỹ−

i1,G
−
i

(
ỹ−
i1

)
> x̃−

i1,(
x̃+
i1, ỹ

+
i1

) ∈ B
((

x+
i1, y

+
i1

)
, ε0

) ∩ D+
i1, H+

i

(
x̃+
i1

)
< ỹ+

i1,G
+
i

(
ỹ+
i1

)
< x̃+

i1,(
x̃−
i3, ỹ

−
i3

) ∈ B
((

x−
i3, y

−
i3

)
, ε0

) ∩ D−
i3, H−

i

(
x̃−
i3

)
> ỹ−

i3,G
−
i

(
ỹ−
i3

)
> x̃−

i3,(
x̃+
i3, ỹ

+
i3

) ∈ B
((

x+
i3, y

+
i3

)
, ε0

) ∩ D+
i3, H+

i

(
x̃+
i3

)
< ỹ+

i3,G
+
i

(
ỹ+
i3

)
< x̃+

i3,

such that

(12)

{
ai >

∑n
j=1 |bij |g′(ηj ),

ci >
∑n

j=1 |dij |g′(ξj ),
i = 1,2, . . . , n,

where

g′(ηj ) := max
{
g′(yj )

∣∣ yj ∈ [
ỹ−
j1, ỹ

+
j1

] ∪ [
ỹ−
j3, ỹ

+
j3

]}
,

g′(ξj ) := max
{
g′(xj )

∣∣ xj ∈ [
x̃− , x̃+ ] ∪ [

x̃− , x̃+ ]}
.
j1 j1 j3 j3
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For bii , dii < 0, we can define the similar region D−
i1, D+

i1, D−
i3, D+

i3 (see Fig. 3(c), (d)) and there exist a positive constant ε0 and
four points (x̃−

i1, ỹ
+
i1), (x̃+

i1, ỹ
−
i1), (x̃−

i3, ỹ
+
i3), (x̃+

i3, ỹ
−
i3), satisfying Eq. (12) and(

x̃−
i1, ỹ

+
i1

) ∈ B
((

x−
i1, y

+
i1

)
, ε0

) ∩ D−
i1, H+

i

(
x̃−
i1

)
< ỹ+

i1,G
−
i

(
ỹ+
i1

)
> x̃−

i1,(
x̃+
i1, ỹ

−
i1

) ∈ B
((

x+
i1, y

−
i1

)
, ε0

) ∩ D+
i1, H−

i

(
x̃+
i1

)
> ỹ−

i1,G
+
i

(
ỹ−
i1

)
< x̃+

i1,(
x̃−
i3, ỹ

+
i3

) ∈ B
((

x−
i3, y

+
i3

)
, ε0

) ∩ D−
i3, H+

i

(
x̃−
i3

)
< ỹ+

i3,G
−
i

(
ỹ+
i3

)
> x̃−

i3,(
x̃+
i3, ỹ

−
i3

) ∈ B
((

x+
i3, y

−
i3

)
, ε0

) ∩ D+
i3, H−

i

(
x̃+
i3

)
> ỹ−

i3,G
+
i

(
ỹ−
i3

)
< x̃+

i3.

For system (4), consider the following 2n subset of C([−τ,0],R
2n). Let α = (α1, α2, . . . , αn) with αi = 1 or 3. Set

Λα = {
(φ,ψ) = (φ1, φ2, . . . , φn,ψ1,ψ2, . . . ,ψn)

∣∣ (φi,ψi) ∈ Λ
αi

i

}
,

where

Λ1
i = {

(φi,ψi) ∈ C
([−τ,0],R

2) ∣∣ φi(θ) ∈ [
x̃−
i1, x̃

+
i1

]
, ψi(θ) ∈ [

ỹ−
i1, ỹ

+
i1

]
, for all θ ∈ [−τ,0]},

Λ3
i = {

(φi,ψi) ∈ C
([−τ,0],R

2) ∣∣ φi(θ) ∈ [
x̃−
i3, x̃

+
i3

]
, ψi(θ) ∈ [

ỹ−
i3, ỹ

+
i3

]
, for all θ ∈ [−τ,0]}.

Theorem 3.1. Under assumptions (H1) and (H2), each Λα is positive invariant with respect to the solution flow generated by
system (4).

Proof. Consider any one of the 2n subsets of Λα . For any initial condition (φ,ψ) ∈ Λα , we claim that the solution
(x(t, φ,ψ),y(t, φ,ψ)) remains in Λα for all t > 0. If it is not true, then there exists a component (xi(t), yi(t)), which is firstly (or
one of the first) escaping from Λ1

i or Λ3
i .

Suppose bii , dii > 0. If (xi(t), yi(t)) firstly escapes from Λ1
i , then there exists a t0 > 0, such that (xi(t0), yi(t0)) is on the edge

of Λ1
i and for any t < t0, (xi(t), yi(t)) ∈ Λ1

i . There are four edges of Λ1
i . If xi(t0) = x̃−

i1, yi(t0) ∈ [ỹ−
i1, ỹ

+
i1], then

ẋi (t0) = −aixi(t0) + biig
(
yi(t0 − τii)

) +
n∑

j=1,j �=i

bij g
(
yj (t0 − τij )

) + Ii

� ai

[
−x̃−

i1 + bii

ai

g
(
ỹ−
i1

) − 1

ai

n∑

j=1,j �=i

|bij | + 1

ai

Ii

]

= ai

[−x̃−
i1 + G−

i1

(
ỹ−
i1

)]
> 0.

Therefore, (xi(t), yi(t)) cannot escape from Λ1
i through the edge between the points (x̃−

i1, ỹ
−
i1) and (x̃−

i1, ỹ
+
i1). With the similar proof,

we can get that (xi(t), yi(t)) cannot escape from Λ1
i through the other three edges. Hence, (xi(t), yi(t)) cannot escape from Λ1

i . It
can be also proved that (xi(t), yi(t)) cannot escape from Λ3

i . So if bii, dii > 0, each Λα are positively invariant of system (4).
For bii , dii < 0, the proof is similar, and here omit it. From the analysis above, we have the conclusion that under the condition

(H1) and (H2), each Λα are positively invariant of system (3) and (4). The proof is completed. �
Theorem 3.2. If assumptions (H1), (H2) and (H3) hold, then there exist 2n exponentially stable equilibria for system (4).

Proof. Assume (x̄, ȳ) is the equilibrium in Ωα for some α = (α1, α2, . . . , αn), with αi = 1 or 3. Consider the single-variable
functions Fi(·), F ∗

i (·), defined by

Fi(s) = ai − s −
n∑

j=1

|bij |g′(ηj )e
sτij , F ∗

i (s) = ci − s −
n∑

j=1

|dij |g′(ξj )e
sσij ,

where g′(ηj ) := max{g′(yj )| yj ∈ [ỹ−
j1, ỹ

+
j1] ∪ [ỹ−

j3, ỹ
+
j3]} and g′(ξj ) := max{g′(xj )| xj ∈ [x̃−

j1, x̃
+
j1] ∪ [x̃−

j3, x̃
+
j3]}. Then, Fi(0) > 0,

F ∗
i (0) > 0 from inequality (12). Moreover, from the continuity of Fi and F ∗

i , there exists a constant μ > 0 such that Fi(μ) > 0
and F ∗

i (μ) > 0 for i = 1,2, . . . , n. Let (x(t),y(t)) = (x(t;φ,ψ),y(t;φ,ψ)) be the solution to Eq. (4), with the initial condition
(φ,ψ) ∈ Λα . Under the transformation u(t) = x(t) − x̄, v(t) = y(t) − ȳ, system (4) becomes

(13)

{
u̇i (t) = −aiui(t) + ∑n

j=1 bij [g(vj (t − τij ) + ȳj ) − g(ȳj )],
v̇i(t) = −civi(t) + ∑n

j=1 dij [g(xj (t − σij ) + x̄j ) − g(x̄j )], i = 1,2, . . . , n,
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where u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). Now, consider function zj (·) (j = 1, . . . ,2n) defined by

(14)zi(t) = eμt
∣∣ui(t)

∣∣, zn+i (t) = eμt
∣∣vi(t)

∣∣, i = 1,2, . . . , n.

Let δ > 1 be an arbitrary real number and denote

(15)K := max
1�i�n

{
sup

θ∈[−τ,0]

∣∣xi(θ) − x̄i

∣∣, sup
θ∈[−τ,0]

∣∣yi(θ) − ȳi

∣∣} > 0.

Hence, zj (t) < Kδ for t ∈ [−τ,0] and all j = 1,2, . . . ,2n. In the following, we shall prove that

(16)zj (t) < Kδ for all t > 0, j = 1,2, . . . ,2n.

Suppose this is not the case. Then there are an j ∈ {1,2, . . . , n} (say j = k) and a t0 for the first time such that

zj (t) � Kδ, t ∈ [−τ, t0], j = 1,2, . . . ,2n, j �= k,

zk(t) < Kδ, t ∈ [−τ, t0),

zk(t0) = Kδ, with żk(t0) � 0.

Without losing generality, assume k � n.
Note that zk(t0) = Kδ > 0 implies uk(t0) �= 0. Hence |uk(t)| and zk(t) are differentiable at t = t0. From (13), we derive that

(17)
d

dt

∣∣uk(t0)
∣∣ � −ak

∣∣uk(t0)
∣∣ +

n∑

j=1

|bkj |g′(ηj )
∣∣vj (t − τkj )

∣∣.
Hence, from (14) and (17),

żk(t0) � μeμt0
∣∣uk(t0)

∣∣ + eμt0

[
−ak

∣∣uk(t0)
∣∣ +

n∑

j=1

|bkj |g′(ηj )
∣∣vj (t0 − τkj )

∣∣]

� −(ak − μ)eμt0
∣∣uk(t0)

∣∣ +
n∑

j=1

|bkj |g′(ηj )e
μτkj zn+j (t0 − τkj )

� −(ak − μ)eμt0
∣∣uk(t0)

∣∣ +
n∑

j=1

|bkj |g′(ηj )e
μτkj

[
sup

θ∈[t0−τ,t0]
zn+j (θ)

]

� −
{

ak − μ −
n∑

j=1

|bkj |g′(ηj )e
μτkj

}
Kδ

< 0

which is contradict to żk(t0) � 0. Hence the inequality (16) holds. Since δ > 1 is arbitrary, by allowing δ → 1+, we have zi(t) � K

for any t > 0, i = 1,2, . . . ,2n. Therefore, we have∣∣xi(t) − x̄i

∣∣ � Ke−μt ,
∣∣yi(t) − ȳi

∣∣ � Ke−μt ,

for any t > 0, i = 1,2, . . . , n, (x(t),y(t)) is exponentially convergent to (x̄, ȳ). The proof is completed. �
Remark 3. System (3) can be regarded as a particular case of system (4) for τ = 0. Hence there exist 2n exponentially stable
equilibria for system (3) under the assumptions (H1), (H2) and (H3).

4. Further extension

In this section, we shall consider a more general BAM neural networks as follows:

(18)

{
ẋi (t) = −aixi(t) + ∑m

j=1 bij g(yj (t − τij )) + Ii,

ẏj (t) = −cj yj (t) + ∑n
i=1 djig(xi(t − σji)) + Jj ,

for i = 1,2, . . . , n, j = 1,2, . . . ,m, where g(x) = tanh(x). If all τij , σji = 0, then system (18) is an ordinary differential equations;
else it is a functional differential equations. If n = m, system (18) is equal to system (4). If n �= m, then the number of neurons
in each layer of the BAM neural networks are different. To consider the multistability of system (18), we propose more general
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conditions as follows, for 0 � k � min{n,m}
(
H(k)

1

) biidii

aici

> 1, i = 1,2, . . . , k

(H(k)
2 ) for i = 1,2, . . . , k, there exist two points (ui1, vi1) and (ui2, vi2), where ui1 < ui2, that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if bii , dii > 0, H+
i (ui1) < vi1,G

+
i (vi1) < ui1,

H−
i (ui2) > vi2,G

−
i (vi2) > ui2;

if bii , dii < 0, H−
i (ui1) > vi1,G

+
i (vi1) < ui1,

H+
i (ui2) < vi2,G

−
i (vi2) > ui2,

where

G+
i (yi) = 1

ai

(
biig

(
yi(t)

) + Ii +
m∑

j=1,j �=i

|bij |
)

, G−
i (yi) = 1

ai

(
biig

(
yi(t)

) + Ii −
m∑

j=1,j �=i

|bij |
)

,

H+
j (xj ) = 1

ci

(
diig

(
xi(t)

) + Ji +
n∑

j=1,j �=i

|dij |
)

, H−
i (xi) = 1

ci

(
diig

(
xi(t)

) + Ji −
n∑

j=1,j �=i

|dij |
)

.

As in Section 2, there also exists the similar points (x+
i1, y

+
i1), (x−

i1, y
−
i1), (x+

i2, y
+
i2), (x−

i2, y
−
i2), (x+

i3, y
+
i3), (x−

i3, y
−
i3) and the similar

regions

Ω1
i := {

(x, y) ∈ R
2
∣∣ (x, y) ∈ [

x−
i1, x

+
i1

] × [
y−
i1, y

+
i1

]}
,

Ω2
i := {

(x, y) ∈ R
2
∣∣ (x, y) ∈ [

x−
i2, x

+
i2

] × [
y−
i2, y

+
i2

]}
,

Ω3
i := {

(x, y) ∈ R
2
∣∣ (x, y) ∈ [

x−
i3, x

+
i3

] × [
y−
i3, y

+
i3

]}
,

where i � k. For i > k, denote

x−
i0 = 1

ai

(
−

m∑

j=1

|bij | + Ii

)
, x+

i0 = 1

ai

(
m∑

j=1

|bij | + Ii

)
, i = k + 1, . . . , n,

y−
i0 = 1

ci

(
−

n∑

j=1

|dij | + Ji

)
, y+

i0 = 1

ci

(
n∑

j=1

|dij | + Ji

)
, i = k + 1, . . . ,m

and

Ω0 := {
(xk+1, . . . , xn, yk+1, . . . , ym) ∈ R

(n−k)×(m−k)
∣∣

xi ∈ [
x−
i0, x

+
i0

]
, yj ∈ [

y−
j0, y

+
j0

]
for i = k + 1, . . . , n, j = k + 1, . . . ,m

}
.

There are 3k disjoint closed regions in R
n×m. Set Ωβ = {(x1, . . . , xn, y1, . . . , ym) ∈ R

n×m|(xi, yi) ∈ Ω
βi

i , (xk+1, . . . , xn, yk+1, . . . ,

ym) ∈ Ω0} with β = (β1, β2, . . . , βk), and βi = 1,2,3.
Applied the same method in Section 3, the similar points (x̃−

i1, ỹ
−
i1), (x̃+

i1, ỹ
+
i1), (x̃−

i3, ỹ
−
i3), (x̃+

i3, ỹ
+
i3) can be found for i � k.

Consider the following 2k subsets of C([−τ,0],Rn×m). Let β = (β1, β2, . . . , βk) with βi = 1, or 3, and set

Λβ = {
(φ,ψ) = (φ1, φ2, . . . , φn,ψ1,ψ2, . . . ,ψn)

∣∣ (φi,ψi) ∈ Λ
βi

i , for i � k; (φk+1, . . . , φn,ψk+1, . . . ,ψm) ∈ Λ0},
where

Λ1
i = {

(φi,ψi) ∈ C
([−τ,0],R

2) ∣∣ φi(θ) ∈ [
x̃−
i1, x̃

+
i1

]
, ψi(θ) ∈ [

ỹ−
i1, ỹ

+
i1

]
, for all θ ∈ [−τ,0]},

Λ3
i = {

(φi,ψi) ∈ C
([−τ,0],R

2) ∣∣ φi(θ) ∈ [
x̃−
i3, x̃

+
i3

]
, ψi(θ) ∈ [

ỹ−
i3, ỹ

+
i3

]
, for all θ ∈ [−τ,0]},

Λ0 = {
(φk+1, . . . , φn,ψk+1, . . . ,ψm) ∈ C

([−τ,0],R
(n−k)×(m−k)

)∣∣φi(θ) ∈ [
x−
i0, x

+
i0

]
,

ψi(θ) ∈ [
y−
j0, y

+
j0

]
, for all θ ∈ [−τ,0]}.

Consider (H(k)
3 ):{ −ai + ∑k

j=1 |bij |g′(ηj ) + ∑m
j=k+1 |bij | < 0, g′(ηj ) := max{g′(yj ) | yj ∈ [y−

j1, y
+
j1] ∪ [y−

j3, y
+
j3]},

−ci + ∑k
j=1 |dij |g′(ξj ) + ∑n

j=k+1 |dij | < 0, g′(ξj ) := max{g′(xj ) | xj ∈ [x−
j1, x

+
j1] ∪ [x−

j3, x
+
j3]}.
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Theorem 4.1. Under conditions (H(k)
1 ) and (H(k)

2 ), there exist 3k equilibria in system (18).

Theorem 4.2. Under conditions (H(k)
1 ) and (H(k)

2 ), there exist 2k positive invariant sets, denoted by Λβ , in system (18).

Theorem 4.3. If conditions (H(k)
1 ), (H(k)

2 ), and (H(k)
3 ) hold, there exist 2k exponentially stable equilibria for system (18).

The proofs are similar with Theorem 2.2, Theorem 3.1 and Theorem 3.2, and here omit them.

Remark 4. If n = m and k = n, the conclusion in Theorem 4.3 is the same with Theorem 3.2.

Remark 5. If k = 0, the condition (H(0)
1 ), (H(0)

2 ), and (H(0)
3 ) can be rewritten as follows{−ai + ∑m

j=1 |bij | < 0, i = 1, . . . , n,

−ci + ∑n
j=1 |dij | < 0, i = 1, . . . ,m.

Use the knowledge of M-matrix in [24], there exists an equilibrium for system (18), which is global exponentially stable.

5. Numerical examples

In this section, two numerical examples are given to illustrate the validity of results.

Example 1. Consider the BAM neural network as follows,

(19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1(t) = −x1(t) − 2g(y1(t − τ)) + 0.2g(y2(t − τ)) + 0.5,

ẋ2(t) = −x2(t) + g(y1(t − τ)) + 4g(y2(t − τ)) − 1,

ẏ1(t) = −y1(t) − 3g(x1(t − τ)) − 0.5g(x2(t − τ)) − 0.2,

ẏ2(t) = −y2(t) + g(x1(t − τ)) + 2.5g(x2(t − τ)) + 0.3,

where g(s) = tanh(s), and ġ(s) = 1 − g2(s). Hence,

G+
1 (y1) = −2g

(
y1(t)

) + 0.7, G−
1 (y1) = −2g

(
y1(t)

) + 0.3,

G+
2 (y2) = 4g

(
y2(t)

)
, G−

2 (y2) = 4g
(
y2(t)

) − 2,

H+
1 (x1) = −3g

(
x1(t)

) + 0.3, H−
1 (x1) = −3g

(
x1(t)

) − 0.7,

H+
2 (x2) = 2.5g

(
x1(t)

) + 1.3, H−
2 (x2) = 2.5g

(
x2(t)

) − 0.7.

Herein, the parameters satisfy our conditions:
Condition (H1):

b11d11

a1c1
= 6 > 1,

b22d22

a2c2
= 10 > 1.

Condition (H2): there exist four points (u11, v11) = (−1,1.4), (u12, v12) = (1,−1), (u21, v21) = (−2,−1), (u22, v22) = (1,1),
where u11 < u12 and u21 < u22, that

H−
1 (u11) = 1.5848 > v11, H+

2 (u21) = −1.1101 < v21,

G+
1 (v11) = −1.0707 < u11, G+

2 (v21) = −3.0464 < u21,

H+
1 (u12) = −1.9848 < v12, H−

2 (u22) = 1.2040 > v22,

G−
1 (v12) = 1.8232 > u12, G−

2 (v22) = 1.0464 > u22.

Condition (H3):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 + 2g′(η1) + 0.2g′(η2) = −0.3577 < 0,

−1 + g′(η1) + 4g′(η2) = −0.2011 < 0,

−1 + 3g′(ξ1) + 0.5g′(ξ2) = −0.5314 < 0,

−1 + g′(ξ1) + 2.5g′(ξ2) = −0.1244 < 0,

where

x− = −1.6919, x+ = −1.1923, x− = 2.2796, x+ = 2.6974, g′(η1) = g′(x+ ) = 0.3089,
11 11 13 13 11
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Fig. 4. Transient behavior of system (19), where τ = 0.

y−
11 = 1.7939, y+

11 = 3.1031, y−
13 = −3.6728, y+

13 = −2.6378, g′(ξ1) = g′(y−
11

) = 0.1048,

x−
21 = −5.9867, x+

21 = −3.3267, x−
23 = 1.7109, x+

23 = 3.9959, g′(η2) = g′(x−
23

) = 0.1225,

y−
21 = −3.2000, y+

21 = −1.1936, y−
23 = 1.6419, y+

23 = 3.7983, g′(ξ2) = g′(y+
21

) = 0.3083.

For τ = 0, system (19) has 9 equilibria, in which 4 equilibria are stable, according to Theorem 3.2. Simulation results with 60
random initial states are depicted in Fig. 4.

Example 2. In Example 1, if we delete the neuron y2 and its corresponding connections with other neurons, then the neural networks
is as follows:

(20)

⎧⎨
⎩

ẋ1(t) = −x1(t) − 2g(y1(t − τ)) + 0.5,

ẋ2(t) = −x2(t) + g(y1(t − τ)) − 1,

ẏ1(t) = −y1(t) − 3g(x1(t − τ)) − 0.5g(x2(t − τ)) − 0.2,
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Fig. 5. Transient behavior of system (20), where τ = 1.

where g(s) = tanh(s), and ġ(s) = 1 − g2(s). Hence,

G+
1 (y1) = −2g

(
y1(t)

) + 0.5, G−
1 (y1) = −2g

(
y1(t)

) + 0.5,

H+
1 (x1) = −3g

(
x1(t)

) + 0.3, H−
1 (x1) = −3g

(
x1(t)

) − 0.7,

where G+
1 (y1) = G−

1 (y1).
Herein, the parameters satisfy our conditions:
Condition (H(1)

1 ):

b11d11

a1c1
= 6 > 1.

Condition (H(1)
2 ): there exist four points (u11, v11) = (−1,1.4), (u12, v12) = (1,−1), where u11 < u12 that

H−
1 (u11) = 1.5848 > v11, H+

1 (u12) = −1.9848 < v12,

G+
1 (v11) = −1.2707 < u11, G−

1 (v12) = 2.0232 > u12.

Condition (H(1)
3 ):⎧⎨

⎩
−1 + 2g′(η1) = −0.5858 < 0,

−1 + g′(η1) = −0.7929 < 0,

−1 + 3g′(ξ1) + 0.5 = −0.2759 < 0,

where

x−
11 = −1.490, x+

11 = −1.424, x−
13 = 2.480, x+

13 = 2.497, g′(η1) = g′(x+
11

) = 0.2071,

y−
11 = 1.971, y+

11 = 3.010, y−
13 = −3.660, y+

13 = −2.658, g′(ξ1) = g′(y−
11

) = 0.0747.

For τ = 1, from Theorem 4.3, there are two equilibria which are exponentially stable in system (20). It is the same with the
condition for τ = 0 in system (20). And the dynamics are shown in Fig. 5.

6. Conclusions

In this Letter, the multistability has been studied for BAM neural networks. The capacity of the associative memories in the
BAM neural networks are learned. Due to the loss of self-connection, the amount of the equilibria is not as large as other neural
networks in [14–16]. For the BAM network with n neurons on each layer, there exist 2n exponentially stable equilibria. Moreover,
the model has been extended to more general condition. If there are n and m neurons on the two layers respectively, some sufficient
conditions are proposed to warrant the existence of 2k exponentially stable equilibria, where k varies from 0 to min{n,m}. For
k = 0, the equilibrium is global exponentially stable under the proposed condition. Finally, some examples have been provided to
verify the new results. Furthermore, the coexistence of stable equilibria, stable limit cycles, and even chaos is an interesting topic.
It will be investigated in near future.
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