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Abstract

In this paper, the multistability is studied for two-dimensional neural networks with multilevel activation functions.
And it is showed that the system has n2 isolated equilibrium points which are locally exponentially stable, where the acti-
vation function has n segments. Furthermore, evoked by periodic external input, n2 periodic orbits which are locally expo-
nentially attractive, can be found. And these results are extended to k-neuron networks, which is really enlarge the capacity
of the associative memories. Examples and simulation results are used to illustrate the theory.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decades, the studies of neural networks have attracted a tremendous amount of research interest.
The dynamical behaviors including stability [1–5], periodic bifurcation and chaos [6–9] of the neural networks
have become a focal topic. While the applications of the neural networks range from classifications, associa-
tive memory, image processing, and pattern recognition to parallel computation and its ability to solve opti-
mization problems. While the theory on the dynamics of the networks have been developed according to the
purposes of the applications.

In some applications, there is a need to design a neural circuit possessing a unique equilibrium point. For
example, when solving important classes of optimization problems [10–12], where uniqueness of the equilibrium
is required to prevent convergence toward local minima (undesired spurious responses) and hence ensure global
optimization. Such a convergent behavior is referred to as ‘‘monostability’’ of a network. Many results on global
convergence concern neural networks where the neuron activations are modeled by Lipschitz-continuous
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functions. However, discontinuous neuron activations are of importance and do frequently arise in practice. For
example, the classical Hopfield neural networks (HNNs) with graded response neurons [13]. The dynamical
behaviors of neural networks with discontinuous activation functions have been studied in [14–16].

On the other hand, when a neural network is employed as an associative memory storage for pattern rec-
ognition, the existence of many equilibria is a necessary feature. The notion of ‘‘multistability’’ of a neural
network is used to describe coexistence of multiple stable patterns such as equilibria or periodic orbits. The
existence of multiple stable patterns has been developed for cellular neural networks in [17–19]. It is found
that an k-neuron cellular neural networks can have up to 2k locally stable equilibria in [20]; and 2k locally
attractive periodic orbits with periodic external inputs in [21]. Some similar results have been found with Hop-
field-type neuron activations in [22]. The multistability of neural networks with piecewise linear activation
functions has developed in [23,24]. In this paper, we study a type of two-dimensional neural networks with
discontinuous neuron activations, which can have n2 locally stable equilibria, where n is the number of seg-
ments of the multilevel activation functions. And n2 locally attractive periodic orbits can been found with peri-
odic external inputs. In extension, there could been nk locally stable equilibria in a k-neuron networks.
Compared with the previous result [20–24], by using multilevel activation function, we can design neural net-
works with arbitrary number of stable equilibria which is really enlarge the capacity of associative memories.

The remaining part of this paper is organized as follows. In Section 2 the model and the activation function
are given. In Section 3, the number of equilibria of neural networks are obtained. In Section 4, three illustra-
tive examples are provided with simulation results. Finally, conclusions are given in Section 5.
2. Model description

Consider two-dimensional (2-D) neural networks described by the following of differential equations:
dx1ðtÞ
dt ¼ �x1ðtÞ þ a11f ðx1ðtÞÞ þ a12f ðx2ðtÞÞ þ I1;

dx2ðtÞ
dt ¼ �x2ðtÞ þ a21f ðx1ðtÞÞ þ a22f ðx2ðtÞÞ þ I2

(
ð1Þ
or its equivalent vector form
dxðtÞ
dt
¼ �xðtÞ þ Af ðxðtÞÞ þ I ;
where xi denotes the activity neuron i, x ¼ ðx1; x2ÞT 2 R2 denotes neuron state, f(x) = (f(x1), f(x2))T denotes

activation function, A ¼ a11 a12

a21 a22

� �
2 R2�2 is a matrix whose entries represent the synaptic neuron intercon-

nections, and I ¼ ðI1ðtÞ; I2ðtÞÞT 2 R2 is a vector of constant external neuron inputs. If the inputs are x-peri-
odic, then the neural networks can be written as follows:
dx1ðtÞ
dt ¼ �x1ðtÞ þ a11f ðx1ðtÞÞ þ a12f ðx2ðtÞÞ þ I1ðtÞ;

dx2ðtÞ
dt ¼ �x2ðtÞ þ a21f ðx1ðtÞÞ þ a22f ðx2ðtÞÞ þ I2ðtÞ;

(
ð2Þ
where the inputs IðtÞ ¼ ðI1ðtÞ; I2ðtÞÞT 2 R2 is a vector with x-period.
In the neural networks, Eqs. (1) and (2), the activation function is discontinuous, which has n segments.

Choose two arrays of number {b0; b1; b2; . . . ; bn}, {c1; c2; . . . ; cn} as
�1 ¼ c1 < b1 < c2 < b2 < c3 < . . . < bn�2 < cn�1 < bn�1 < cn ¼ 1; and b0 ¼ �1; bn ¼ þ1:

f ðxÞ ¼
c1; x < b1;

ci; bi�1 6 x < bi;

cn; x P bn�1:

8><
>:

ð3Þ
for i ¼ 1; 2; . . . ; n; while x < b1 () b0 6 x < b1, and x P bn�1 () bn�1 6 x < bn. So f can be rewritten as:
f ðxÞ ¼ ci; if bi�1 6 x < bi:



Fig. 1. The figure of f(x), �x + f(x), af(x) and �x + af(x), where f(x) is a multilevel function with four segments.

(a) The figure of f(x), which is a multilevel function with four
segments, and cross line g(x) = x four times.

(b) The figure of �x + f(x), where f(x) is a multilevel function with
four segments. And �x + f(x) have four zero points.

(c)The figure of af(x), where f(x) is a multilevel function with four
segments, and cross line g(x) = x four times.

(d)The figure of �x + af(x), where f(x) is a multilevel function with
four segments. And �x + af(x) have four zero points.
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3. Main results

First, we consider the following model with the single neuron:
dxðtÞ
dt
¼ �xðtÞ þ f ðxðtÞÞ ¼ F ðxðtÞÞ: ð4Þ
Denote Ni ¼ ðbi�1; biÞ. f(x), as defined above, has n points of intersection with line g(x) = x, which are
c1; c2; . . . ; cn, ci 2 N i (See Fig. 1(a)). Hence there are n zero points for F(x) (see Fig. 1b). Furthermore, if
xðt0Þ 2 ½ci � e; ci þ e� � Ni, then the Eq. (4) can be rewritten as follows:
dxðtÞ
dt
¼ �xðtÞ þ ci:
Hence, ci is an equilibria of the equation, which is locally stable. So the Eq. (4) has n locally stable equilibrium,
which are c1; c2; . . . ; cn. Similarly, consider the equation as follows:
dxðtÞ
dt
¼ �xðtÞ þ af ðxðtÞÞ þ I : ð5Þ
If af(x) + I has n points of intersection with line g(x) = x, which is equivalent to ðaci þ IÞ 2 N i (see Fig. 1c),
then Eq. (5) has n locally stable equilibrium (see Fig. 1d).
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For example in Fig. 1, a = 1.2, I = 0.2 and f(x) is defined as follows:
f ðxÞ ¼

�1; x < � 2
3
;

� 1
3
; � 2

3
6 x < 0;

1
3
; 0 6 x < 2

3
;

1; x P 2
3
:

8>>><
>>>:

ð6Þ
From Fig. 1a and c in the left, we can find that f(x) and af(x) + I both have four points of intersection with
line g(x) = x four times. So Fig. 1b and d show that �x + f(x) and �x + af(x) + I both have four zero points.
Hence, Eqs. (4), (5) have four locally stable equilibria.

In the following, two-dimensional neural networks are considered. We will give two theorems for checking
the multistability of system (1) and (2).

Theorem 1. The two-dimensional neural network (1) has n2 locally exponentially stable equilibrium points with

constant input I and n segments multilevel function f, if for " i 2 1; 2; . . . ; n,
bi�1 þ ja12j < a11ci þ I1 < bi � ja12j
bi�1 þ ja21j < a22ci þ I2 < bi � ja21j

�
ð7Þ
Proof 1. Denote N ij ¼ ðbi�1; biÞ � ðbj�1; bjÞ. If ðx�1i; x
�
2jÞ 2 Nij is an equilibrium of system (1), then we have
�x�1i þ a11f ðx�1iÞ þ a12f ðx�2jÞ þ I1 ¼ 0;

�x�2j þ a21f ðx�1iÞ þ a22f ðx�2jÞ þ I2 ¼ 0;

(

x�1i ¼ a11ci þ a12cj þ I1;

x�2j ¼ a21ci þ a22cj þ I2:

(

From Eq. (7), for 8i; j 2 f1; 2; . . . ; ng, we have
bi�1 < a11ci þ a12cj þ I1 < bi ;

bj�1 < a21ci þ a22cj þ I2 < bj:
Hence, in the local area Nij, system (1) has exactly equilibrium ðx�1i; x
�
2jÞ, where x�1i ¼ a11ci þ a12cj þ I1 2

ðbi�1, biÞ; x�2j ¼ a21ci þ a22cj þ I2 2 ðbj�1; bjÞ. So, for i ¼ 1; 2; . . . ; n, j ¼ 1; 2; . . . ; n, there are n2 local equilibrium
points in all.

Next, we prove the n2 equilibrium points are local exponentially stable. For " Nij, we can find
b0i�1; b

0
i; b
0
j�1; b

0
j, which have
bi�1 < b0i�1 < x�1i < b0i < bi; bj�1 < b0j�1 < x�2j < b0j < bj:
Denote N 0ij ¼ ½b0i�1; b
0
i� � ½b0j�1; b

0
j�, which is a close set. For "(x1(t0), x2(t0)) 2 Nij, there must be a set N 0ij, which

contain ðx1ðt0Þ; x2ðt0ÞÞ. We say that it stays in the local area N 0ij. If this is not true, then there is a time t > t0,
ðx1ðtÞ; x2ðtÞÞ not in N 0ij. There must be x1(t) not in ½b0i�1; b

0
i�, or x2(t) not in ½b0j�1; b

0
j�. If x1ðtÞ < b0i�1, then there is a

time t1 6 t that x1ðt1Þ ¼ b0i�1 and dx1ðtÞ
dt jt¼t1

< 0. From the Eq. (1), we have
dx1ðtÞ
dt

����
t¼t1

¼ �x1ðt1Þ þ a11f ðx1ðt1ÞÞ þ a12f ðx2ðt1ÞÞ þ I1 ¼ �b0i�1 þ a11ci þ a12f ðx2ðt1ÞÞ þ I1 > 0;
which is contradiction. So we have x1ðtÞP b0i�1 for all t > 0. In the same way, we can prove x1ðtÞ 6 b0i for all
t < 0, and x2ðtÞ 2 ½b0j�1; b

0
j�. This shows the orbits stay in the area N 0ij, which is also in Nij. Now we can rewrite

Eq. (1) as
dx1ðtÞ
dt ¼ �x1ðtÞ þ x�1i;

dx2ðtÞ
dt ¼ �x2ðtÞ þ x�2j:

(
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Hence, the orbits from Nij tend to ðx�1i; x
�
2jÞ exponentially. There are up to n2 locally exponentially stable equi-

librium points fðx�1i; x
�
2jÞg, i; j ¼ 1; 2; . . . ; n: and the proof is completed. h

Theorem 2. The two-dimensional neural network (2) has n2 locally exponentially limit cycles with x-periodic

input I(t) and n segments multilevel function f, if for 8i 2 1; 2; . . . ; n,
bi�1 þ ja12j < a11ci þ I1ðtÞ < bi � ja12j;
bi�1 þ ja21j < a22ci þ I2ðtÞ < bi � ja21j:

�
ð8Þ
Proof 2. With the similar proof in Theorem 1, we can derive the same conclusion. For " i; j ¼ 1; 2; . . . ; n, if
ðx1ðt0Þ; x2ðt0ÞÞ 2 N ij, there must be a close set
N 0ij ¼ ½b
0
i�1; b

0
i� � ½b0j�1; b

0
j� � Nij
and the trajectory, from the initial value ðx1ðt0Þ; x2ðt0ÞÞ 2 N 0ij, will remain in the local area N 0ij. Hence it will also
remain in Nij. Eq. (2) can be rewritten as follows:
dx1ðtÞ
dt ¼ �x1ðtÞ þ a11ci þ a12cj þ I1ðtÞ;

dx2ðtÞ
dt ¼ �x2ðtÞ þ a21ci þ a22cj þ I2ðtÞ:

(
ð9Þ
Let xðt; t0;~x0Þ, and xðt; t0; x̂0Þ be two states of Eq. (2), with initial conditions ðt0;~x0Þ and ðt0; x̂0Þ, where ~x0,
x̂0 2 Nij. We can find a close set N 0ij � N ij, such that ~x0, x̂0 2 N 0ij. From Eq. (5), for t > t0; i ¼ 1; 2
dðxiðt; t0;~x0Þ � xiðt; t0; x̂0ÞÞ
dt

¼ �ðxiðt; t0;~x0Þ � xiðt; t0; x̂0ÞÞ: ð10Þ
Define a mapping H: R2 ! R2 by H(s) = x(t0 + x;t0,s). Then HðN 0ijÞ � N 0ij, and Hm(s) = x(t0 + mx;t0,s). We
can choose a positive m such that exp(�mx) 6 a < 1, Hence, from Eq. (10),
kHmð~x0Þ � Hmðx̂0Þk 6 expð�mxÞk~x0 � x̂0k 6 ak~x0 � x̂0k:
By contraction mapping principle, there exists a unique fixed point x� 2 N 0ij such that Hmðx�Þ ¼ x�. Obviously,
it is also the unique fixed point in Nij. In addition, H mðHðx�ÞÞ ¼ HðH mðx�ÞÞ ¼ Hðx�Þ. This shows that H(x*) is
also a fixed point of Hm. Hence, by the uniqueness of the fixed point of the mapping Hm, Hðx�Þ ¼ x�; that is
xðt0 þ x; t0; x�Þ ¼ x�. Let xðt; t0; x�Þ be a state of Eq. (2), with initial condition ðt0; x�Þ. Then from Eq. (9), for
any t > 0
dx1ðt; t0; x�Þ
dt

¼ �x1ðt; t0; x�Þ þ a11ci þ a12cj þ I1ðtÞ;

dx2ðt; t0; x�Þ
dt

¼ �x2ðt; t0; x�Þ þ a21ci þ a22cj þ I2ðtÞ:
Hence, for any t þ x P t0
dx1ðt þ x; t0; x�Þ
dt

¼� x1ðt þ x; t0; x�Þ þ a11ci þ a12cj þ I1ðt þ xÞ

¼ � x1ðt þ x; t0; x�Þ þ a11ci þ a12cj þ I1ðtÞ;
dx2ðt þ x; t0; x�Þ

dt
¼� x2ðt þ x; t0; x�Þ þ a21ci þ a22cj þ I2ðtÞ:
This implies that xðt þ x; t0; x�Þ is also a state of Eq. (2), with initial condition ðt0; x�Þ. xðt0 þ x; t0; x�Þ ¼ x�

implies that for any t > 0
xðt þ x; t0; x�Þ ¼ xðt; t0 þ x; x�Þ ¼ xðt; t0; x�Þ:
xðt; t0; x�Þ is a periodic orbit of Eq. (2), with period x. From Eq. (9), it is easy to see that any state of Eq. (2),
with initial condition ðt0; x�Þ ðx� 2 NijÞ, converges to this periodic orbit exponentially as t! +1. Hence,
the isolated periodic orbit xðt; t0; x�Þ located in Nij is locally exponentially attractive, and Nij is a locally
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exponentially attractive set of xðt; t0; x�Þ. Hence there exist n2 isolated periodic orbits which are locally expo-
nentially attractive. This completes the proof. h

It is worth nothing that the obtained results can be easily extended to k-neuron networks,
dxðtÞ
dt
¼ �xðtÞ þ Af ðxðtÞÞ þ IðtÞ; ð11Þ
where x ¼ ðx1; x2; . . . ; xkÞ0 2 Rk denotes neuron state, A ¼ ðaijÞ 2 Rk�k is a real k · k, each of its elements aij

denotes the synaptic weights and represents the strength of the synaptic connection from neuron j to neuron
i, and IðtÞ ¼ ðI1ðtÞ; I2ðtÞ; . . . ; IkðtÞÞT 2 Rk denotes external inputs. The activation function f is a multilevel func-
tion with n segments. For any vector x 2 Rk,f ðxÞ ¼ ðf ðx1Þ; f ðx2Þ; . . . ; f ðxkÞÞT 2 Rk.

Theorem 3. The k-neuron network (11) has nk locally exponentially stable equilibrium points with constant
external input I and n segments multilevel function f, if for any i 2 f1; 2; . . . ; ng, and j 2 f1; 2; . . . ; kg
bi�1 þ
Xk

l¼1;l 6¼j

jajlj < ajjci þ Ij < bi �
Xk

l¼1;l 6¼j

jajlj:
Proof 3. The proof is similarly to Theorem 1. So we omit it, here. h

Theorem 4. The neural network (11) has nk locally exponentially limit cycles with x-periodic input I(t) and n

segments multilevel function f, if for any i 2 f1; 2; . . . ; ng, and j 2 f1; 2; . . . ; kg, t > t0
bi�1 þ
Xk

l¼1;l 6¼j

jajlj < ajjci þ IjðtÞ < bi �
Xk

l¼1;l 6¼j

jajlj:
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Fig. 2. Phase plot of (x1,x2) in Example 1.
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Proof 4. The proof is similarly to Theorem 2. So we omit it, here. h

Remark. In [22], the activation functions are considered as the Fermi function:
gðxÞ ¼ 1

1þ e�x=e
:

With constant external inputs, there exists 3k equilibria under the conditions proposed in [22], and in which 2k

equilibria are stable. And in [21], with the piecewise linear activation functions, there are 2k limit cycles, which
are evoked by periodic external inputs.

From Theorem 3, by using multilevel activation function, there would be nk stable equilibria with constant
external inputs, where n is the number of segments of the multilevel activation functions. And in Theorem
4, we also proved that there exist nk limit cycles under the periodic external inputs.
4. Three numerical examples

In this section, we give several numerical examples to illustrate the new results.

Example 1. Consider the following neural network:
_x1ðtÞ
_x2ðtÞ

� �
¼ � x1ðtÞ

x2ðtÞ

� �
þ 0:9 �0:15

0:2 1:1

� �
f ðx1ðtÞÞ
f ðx2ðtÞÞ

� �
þ 0:01

�0:1

� �
: ð12Þ
where f(x)is a piecewise function, which has four segments.
f ðxÞ ¼

�1; x < � 2
3
;

� 1
3
; � 2

3
6 x < 0;

1
3
; 0 6 x < 2

3
;

1; x P 2
3
:

8>><
>>:
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Fig. 3. Time response of x1,x2 in Example 1.
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This network satisfies the conditions of Theorem 1. As numerical simulate shows, model (12) has 42 = 16
locally stable points. (Figs. 2 and 3)

Example 2. Consider another neural network:
_x1ðtÞ
_x2ðtÞ

� �
¼ �

x1ðtÞ
x2ðtÞ

� �
þ

0:9 �0:08

0:03 1:1

� �
f ðx1ðtÞÞ
f ðx2ðtÞÞ

� �
þ

0:07 sinðtÞ
0:08 cosðtÞ

� �
: ð13Þ
where f(x) has five segments.
f ðxÞ ¼

�1; x < � 3
4
;

� 1
2
; � 3

4
6 x < � 1

4
;

0; � 1
4
6 x < 1

4
;

1
2
; 1

4
6 x < 3

4
;

1; x P 3
4
:

8>>>>>><
>>>>>>:
For network (13) the conditions of Theorem 2 hold. As numerical simulate shows, model (13) has 52 = 25
locally exponentially limit cycles (Figs. 4 and 5).

Example 3. In this example, we simulate the three-dimensional neural network:
_x1ðtÞ
_x2ðtÞ
_x3ðtÞ

0
B@

1
CA ¼ �

x1ðtÞ
x2ðtÞ
x3ðtÞ

0
B@

1
CAþ

0:95 0:1 0:1

0:2 1 0:1

�0:2 0:1 1

0
B@

1
CA

f ðx1ðtÞÞ
f ðx2ðtÞÞ
f ðx3ðtÞÞ

0
B@

1
CAþ

0:07 sinðtÞ
0:08 cosðtÞ
0:1ðsinðtÞ þ cosðtÞÞ

0
B@

1
CA: ð14Þ
where f(x) is a multilevel function, which has three segments.
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x1

x2

Fig. 4. Phase plot of (x1,x2) in Example 2.
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Fig. 5. Time response of x1,x2 in Example 2.
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Fig. 6. Phase plot of (x1,x2,x3) in Example 3.
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Fig. 7. Time response of x1, x2, x3 in Example 3.
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f ðxÞ ¼
�1; x < � 1

2
;

0; � 1
2
6 x < 1

2
;

1; x P 1
2
:

8><
>:
This parameters also satisfy the conditions of Theorem 4. As numerical simulate shows, there are 33 = 27 lo-
cally exponentially limit cycles. We demonstrate the dynamics as well as evolutions of components
x1ðtÞ; x2ðtÞ; x3ðtÞ for the system in Figs. 6 and 7, respectively.

5. Conclusion

In this paper, the multistability has been studied for two-dimensional neural networks with multilevel type
of activation function, and we extended the obtained results to the k-neuron networks. In associative memo-
ries, as a practical application of neural networks, the capacity of memories can be arbitrary large as you need,
even though the dimension of the neural network is really small. The simulation results show the character-
istics of the multistability. However, the distributing of the equilibrium points is still an open problem. Also,
the dynamics of the neural networks with delay is another interesting topic to be investigated in near future.
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