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Introduction: EEG microstates have been widely adopted to understand the complex and dynamic-changing process in dynamic brain
systems, but how microstates are temporally modulated by emotion dynamics is still unclear. An investigation of EEG microstates
under video-evoking emotion dynamics modulation would provide a novel insight into the understanding of temporal dynamics of
functional brain networks. Methods: In the present study, we postulate that emotional states dynamically modulate the microstate
patterns, and perform an in-depth investigation between EEG microstates and emotion dynamics under a video-watching task. By
mapping from subjective-experienced emotion states and objective-presented stimulation content to EEG microstates, we gauge
the comprehensive associations among microstates, emotions, and multimedia stimulation. Results: The results show that emotion
dynamics could be well revealed by four EEG microstates (MS1, MS2, MS3, and MS4), where MS3 and MS4 are found to be highly
correlated to different emotion states (emotion task effect and level effect) and the affective information involved in the multimedia
content (visual and audio). Conclusion: In this work, we reveal the microstate patterns related to emotion dynamics from sensory and
stimulation dimensions, which deepens the understanding of the neural representation under emotion dynamics modulation and
will be beneficial for the future study of brain dynamic systems.
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Introduction
Electroencephalography (EEG) microstate analysis is
an effective computational method that provides per-
spectives into EEG spatial–temporal dynamics (Koenig
et al. 2002; Khanna et al. 2015; Michel and Koenig
2018). Microstates, as a topographical information
representation of the electrical potentials over mul-
tichannel EEG signals, offer a powerful approach to
reveal the spatial–temporal dynamical system of whole-
brain spontaneous activities. Recent findings show
that EEG microstates have close electrophysiologi-
cal relations with global functional brain networks
observed from functional magnetic resonance imaging
(fMRI). For the commonly recognized 4 canonical
microstates (termed as MS1, MS2, MS3, and MS4 below),
the existing studies show that the 4 microstates are
associated with auditory network, visual network,
default mode network (DMN), and dorsal attention
network (DAN) (Koenig et al. 2002; Khanna et al. 2015;
Michel and Koenig 2018).

Microstates reflect momentary brain activities with
high temporal resolution. The changes of microstates
do not happen randomly, and the transitions between
microstates could be interpreted as a sequential acti-
vation of different global functional brain networks.

Current microstate studies have found that microstates
can directly characterize the qualitative and quantitative
aspects of perception and cognition processing (Britz
et al. 2010; Musso et al. 2010; Yuan et al. 2012). For
example, Seitzman et al. (2017) discovered that cognitive
task manipulation yielded a significant increase in MS4
but a decrease in MS3. Besides, the visual-stimulated
tasks were mainly related to MS2 activities. In Milz
et al. (2016), MS1 and MS2 activities were found to be
significantly related to the visual and verbal processing
in the brain, and MS4 mainly responded during goal-
directed perceptual task processing. These results
suggest that a representation of the quasi-stable and
consistent set of patterns could be established as reliable
neurophysiological biomarkers for brain activity study
under various physiological and psychological states.

Till now, the given physiological and cognitive signifi-
cance of EEG microstates has not been fully explored. The
emotional state could be probably an important factor
modulating the representation patterns of microstates
and affecting the microstate transitions. In Gianotti
et al.’s (2008) emotion-evoked event-related potential
(ERP) work, it was found that the temporally microstate
dynamic patterns on valence and arousal emotion
dimensions were different. Valence-related microstate
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was first detected around 118 ms in emotional word
experiments and around 142 ms in emotional picture
experiments; arousal-related microstate was found early
at 266 ms in word experiments and 302 ms in picture
experiments. The results observed an earlier effect of
valence states on EEG microstate activities than the
arousal and demonstrated the effectiveness of EEG
microstate analysis in emotion study. Besides, Shen
et al. (2020) discovered that the microstate syntax was
discriminant for emotion understanding, where the tran-
sition probability (TP) from one microstate to another
was correlated with emotion ratings in terms of valence
and arousal. Here, the public microstate templates
were adopted for microstate detection, and possible
microstate parameters such as duration, occurrence,
coverage, and transition probabilities were all considered.
These works show that there exists a link between the
alternations of microstate presentations and emotions.
However, existing studies concerning the associations
between microstates and emotions are still quite limited.
Much less is known about how time-series microstate
representations dynamically alter with the subjective-
experienced emotions. An in-depth neurophysiological
investigation is required to lead to a more complete,
accurate, and reliable deciphering of the temporally
modulation effect of emotions on microstates.

On the other hand, video is widely used as experi-
mental stimulation in neurophysiological experiments
for emotion induction, which contains rich audiovisual
information and offers realistic and vivid scenarios
for evoking various human emotions in a laboratory
environment (Koelstra et al. 2012; Zheng and Lu 2015;
Katsigiannis and Ramzan 2018). During video watching,
EEG signals related to the video-evoking emotions are
simultaneously recorded. Here, to wider our knowl-
edge of the emotion-related EEG dynamics in terms
of microstates and examine whether the sentiment
information involved in the multimedia stimulation
could also modulate the changing microstates, an
investigation of the association between the evoked
emotional dynamic EEG microstate activities and video
content is carried out.

Overall, to better understand emotion-induced micro
states, the present work investigates the involved poten-
tial emotion relevance in EEG microstate representations
in terms of subjective-experienced emotion state
analysis (Study 1) and objective-presented stimulation
effect analysis (Study 2). The main contribution of
this work is to understand how EEG microstates are
temporally modulated by emotions. The underlying
relationships among microstate dynamics, subjective-
experienced emotion state, and objective-presented mul-
timedia stimulation content are investigated. Through
mapping from subjective-experienced emotion states to
neurophysiological signals and from objective-presented
stimulation content to real-perceived emotion process-
ing in the brain, this work offers a deeper insight into

which characteristics of microstates are relevant to
potential emotion changes.

Methods
Overview
In light of the sensitivity of microstate parameters
to transient changes in brain states, the relations
among EEG microstates, emotion states, and stimula-
tion content are explored, and a clarification of how
microstates related to the internal (emotions) and
external (stimulation) changes will be conducted (as
shown in Fig. 1). For the subjective-experienced emotion
state analysis (Study 1), an examination of the changes
in microstates related to evoked emotion states will be
implemented. In line with the complex characteristics
of emotions, we will manifest a comprehensive study
on emotion dynamics from the representation patterns
of EEG microstates under different emotional states
(task effect), emotional levels (level effect), and during
processes of emotion induction (evoking dynamics).
For the objective-presented stimulation effect analysis
(Study 2), the temporal associations between EEG
microstate activities and multimedia stimulation will
be estimated to an alternative understanding of how
emotion perceives in the brain. The evoking effect of
emotional multimedia will be separately analyzed on
visual and audio content. In summary, 2 studies will be
conducted as follows.

• Study 1: subjective-experienced emotion state
analysis (Section 2.4). EEG microstate dynamics will
be first characterized to describe spatial–temporal
changes of EEG activities under various emotion
states during video watching. Subsequently, the
activity patterns of EEG microstates will be analyzed
to characterize emotion-related neural dynamics
from 3 perspectives. (i) Task effect (Section 2.4.1): to
quantify the differences of EEG microstate activities
between prestimulus and poststimulus stages. (ii)
Level effect (Section 2.4.2): to measure the differences
of EEG microstate activities between low-level and
high-level groups on different emotion dimensions.
(iii) Evoking dynamics (Section 2.4.3): to evaluate
the temporal dynamics of emotion processing in the
brain, in which the moment-to-moment changes of
EEG microstate activities during video watching will
be examined.

• Study 2: objective-presented stimulation effect
analysis (Section 2.5). The multimedia content for
emotion induction will be described by the low-level
attribute features and high-level semantic features
of visual content (Section 2.5.1) and audio content
(Section 2.5.2). The corresponding associations
between visual/audio content and emotion-related
EEG microstate activities will be measured. The
timing effect (Section 2.5.3) of visual and audio
content on time-series microstate representation will

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/3/523/6545267 by Shenzhen U

niversity user on 16 M
arch 2023



Wanrou Hu et al. | 525

Fig. 1. The investigation framework of EEG microstates under modulation of video-evoked emotion dynamics. In Study 1, based on EEG microstate
analysis, the relationships between subjective-experienced emotion states and dynamic brain activities are characterized. The emotion-related EEG
dynamics are described by the representation pattern of EEG microstate activities under the exploration of task effect, level effect, and evoking dynamics.
In Study 2, the stimulation effect of objective-presented multimedia content on EEG microstate activity patterns is analyzed. The time effect of emotional
stimulation is to evaluate temporal associations between EEG microstate activities and presented visual/audio content in a time-shifting manner.

be separately studied, and the temporal correlations
between the dynamic EEG microstate activities and
the changing visual/audio content will be examined.

EEG data and preprocessing
A well-known DEAP database (a database for emotion
analysis using physiological signals) (Koelstra et al. 2012)
with 32 subjects’ EEG recordings during video watch-
ing is used for emotion dynamics investigation. In this
database, 40 emotional music videos (corresponding to
40 trials below) with a fixed length of 60 s were ran-
domly presented for emotion induction. Simultaneously,
32-electrode EEG signals were recorded at a sampling
rate of 512 Hz. Throughout the entire emotion-evoking
experiment, all the EEG data were collected in an eye-
open condition. To investigate the emotion-related brain
dynamics from the recorded EEG data, we first perform
a standard EEG preprocessing procedure (including fil-
tering, common average rereference, and independent
component analysis) for noise removal and signal qual-
ity enhancement. Then, the preprocessed EEG data are
divided into prestimulus (3 s), video-stimulated (60 s),
and poststimulus (3 s) segments for further analysis.
More details about the DEAP database and EEG pre-
processing procedure are provided in Appendix 1 of the
Supplementary Materials.

EEG microstate analysis
In this section, we will first introduce a standard EEG
microstate analysis. In the EEG microstate analysis,
microstate detection is a fundamental and crucial
part, which will directly influence the validity and
reliability of the analysis performance. However, the
current microstate detection methods mainly focus

on the resting-state EEG and may fail to be adaptive
enough for the task-state. In this work, we introduce
a sequential microstate clustering analysis for efficient
and representative EEG microstate template detection.

A standardized EEG microstate analysis is imple-
mented as shown in Fig. 2, including candidate topog-
raphy extraction, microstate detection, back-fitting, and
feature extraction (Pascual-Marqui et al. 1995). EEG
microstate analysis starts with a bottom-up extraction
of EEG microstate templets from the spontaneous EEG
signals (Fig. 2b and c). Then, a top-down process termed
back-fitting (Fig. 2d) is conducted to rerepresent EEG data
into a series of dynamic microstate sequences. Based on
the criterion of global map dissimilarity (GMD; Murray
et al. 2008), each EEG sample point is assigned to 1
microstate with high spatial similarity (Lehmann et al.
2005; Zanesco et al. 2020). Then, a temporal smoothing
process (Poulsen et al. 2018) is adopted to reject the
noisy time segments, and the interrupted microstate
segments shorter than 30 ms would be re-assigned to
another microstate based on GMD calculations. Finally,
the corresponding microstate features are extracted
to quantify the dynamic changes of EEG microstate
activities (Fig. 2e) and represent the spatial–temporal
oscillations of brain activities during video watching.

To improve the representative microstate template
detection for emotion-related EEG dynamics analysis,
a sequential microstate detection with 2-step spatial
clustering is introduced (Fig. 2c). The first clustering
is implemented at a within-subject level to extract
subject-representative microstate topographies from
both eye-open resting-state EEG data (prestimulus and
poststimulus stages) and task-state EEG data (video-
stimulated stage). Here, based on the recorded 40 trials
of EEG data from every single subject, the candidate
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Fig. 2. A standard procedure of EEG microstate analysis. Based on a) the preprocessed EEG data, b) candidate topographies with high signal-to-noise ratios
are extracted from the local maxima of the GFP curve. c) A sequential microstate clustering is conducted for representative and reliable EEG microstate
detection, where the first clustering is performed at a within-subject level and the second clustering is conducted at a cross-subject level. d) The final
detected EEG microstate templates are then fitted back into the preprocessed EEG data by assigning each time point to 1 predominant microstate. After
EEG microstate back-fitting, the original EEG time series are rerepresented into EEG microstate sequences covering whole-brain spontaneous spatial–
temporal activities. e) A series of microstate features are calculated for quantitative measurement, including duration, occurrence, coverage, and TP,
named as {f1, . . . ,fk, . . . ,fn}. Here, fk refers to the kth extracted microstate feature and n is the total feature number.

topographies under 3 experimental stages are separately
extracted from the local maximum of global field power
(GFP; Lehmann and Skrandies 1980; Skrandies 1989)
and then output into a modified k-means clustering
algorithm (Pascual-Marqui et al. 1995) with a cluster

number c ranging from 2 to 8 and an iteration number
I of 1,000. Within the iteration of spatial clustering, the
cluster centroids with high global explained variance
(GEV) and low cross-validation (CV) criterion values
are identified and extracted as subject-representative
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microstate topographies. In other words, the subjective-
representative microstate topographies are identified in
a data-driven manner with optimal microstate numbers
and topographical shapes (as shown in Appendix 2
of the Supplementary Materials). Next, following the
similar parameter settings of the first-step clustering,
the second-step clustering is conducted for final EEG
microstate template detection. Through a clustering
of all the identified subject-representative microstate
topographies across 32 subjects and 3 different exper-
imental stages, the final detected EEG microstate tem-
plates could be established as reliable neurophysiological
patterns to represent the EEG changes under emotion
induction. The EEG topographies with high spatial
similarity are identified as the final EEG microstates
for emotion-related neural dynamics analysis. The
obtained EEG microstate templates (named MS1, MS2,
MS3, and MS4) show a low variance of residual noise
(Pascual-Marqui et al. 1995; Murray et al. 2008) and good
tolerance for individual differences (Michel and Koenig
2018; D’Croz-Baron et al. 2021) in emotion-evoked EEG
dynamics analysis across 32 subjects and 40 trials. After
back-fitting using the detected EEG microstates, a series
of EEG microstate time sequences are obtained. Four
commonly used EEG microstate features are extracted
below for further investigation of emotion-related neural
mechanisms.

• Duration: the average time span that a specific
microstate remains dominant, which can reflect
the stability of the underlying neural configuration
during emotion induction (Khanna et al. 2015).

• Occurrence: the times of presentation per second
that a specific EEG microstate remains dominant,
which indicates the representation tendency of the
underlying neural activation (Koenig et al. 2002).

• Coverage: the ratio of the period that a specific
microstate keeps dominant to the total recording
time (Seitzman et al. 2017).

• Transition probability: the transition percentage
between any 2 EEG microstates, which estimates
the sequential activation tendency of scalp electric
potentials on a millisecond time scale (Koenig et al.
2005; Khanna et al. 2015).

Study 1: Subjective-experienced emotion state
analysis
In Study 1, we will investigate the representation differ-
ences of emotion-evoked EEG microstate activities from
the perspectives of (i) task effect, (ii) level effect, and (iii)
evoking dynamics.

Task effect

The emotion task effect on EEG microstate activities is
measured as the pairwise statistical differences between
prestimulus and poststimulus stages (Fig. 3a). First, for
each subject, the representation differences of EEG
microstate activities before and after emotion-evoking

tasks are measured as di
j (i ∈ [1, 32] is the subject number

and j ∈ [1, 40] is the trial number). The pairwise differ-
ences between prestimulus and poststimulus stages are
first measured. Specifically, the differences in terms of
each microstate feature extracted at the prestimulus and
poststimulus stages from the same trial are calculated.
The pairwise differences across 40 trials for each subject
are then output for t-statistic calculation. A t-value,
ti (i ∈ [1, 32]), is calculated as the statistical measurement
of subject-specific representation differences in one
type of microstate feature. Thus, for one microstate
feature, a list of t-values from 32 subjects is obtained.
Second, to evaluate the emotion-evoking task effect
from a cross-subject perspective, a one-sample t-test
is implemented on the obtained list of t-values for 1
microstate feature and a P-value is measured. Third, to
minimize the influence of type I errors, all the obtained
P-values are corrected for multiple comparisons using
the false discovery rate (FDR) with a significance level of
5% (P < 0.05).

Level effect

The emotion level effect characterizes the EEG microstate
differences at different levels (high or low) on emotion
dimensions (valence and arousal). Generally, the level
differences in valence reflect the category of emotions
ranging from negative to positive states and the level
differences in arousal reflect the extent of evoked
emotions ranging from boring to exciting states (Morris
1995; Kensinger 2004; Alarcão and Fonseca 2019). The
level effect on every emotion dimension offers alter-
native inspects into the neural mechanism of emotion
perception. For each emotion dimension, we first divide
the emotion-evoked EEG data into low- and high-level
emotional groups according to the self-assessment
ratings from the 32 subjects. Here, the threshold for
level grouping is defined by a self-adaptive threshold
reassignment method (Yin et al. 2017) that is presented
in detail in Appendix 3 of the Supplementary Materials.
Second, the emotion level effect is measured as the
representation difference between low- and high-level
groups in terms of each microstate feature (Fig. 3b). As
the emotion dynamics on different emotion dimensions
are independent, the evaluation of the emotion level
effect is separately measured on valence and arousal
dimensions. Specifically, based on the distribution
estimation of a Lilliefors test, an independent t-test (for
normally distributed groups) or Wilcoxon Rank Sum
test (for nonnormally distributed groups) is conducted
for statistical analysis on each microstate feature and
the intergroup differences across trials and subjects are
measured. The obtained P-values reveal the statistical
evaluation of emotion level effect on EEG microstate
activities.

Evoking dynamics

In emotion-evoking experiments, continuous presenta-
tion of multimedia stimulation dynamically influences
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Fig. 3. The statistical analysis processes of emotion dynamics analysis in terms of a) task effect, b) level effect, and c) evoking dynamics.

brain activities during stimulation perception and pro-
cessing (Zheng and Lu 2015). An investigation of temporal
variations in multimedia-evoked EEG activities helps
to understand the dynamic characteristics of emotion
processing in the brain. In this study, we measure the
temporal dynamics of EEG activities under each video
of emotion-evoking tasks in terms of each microstate
feature as follows (Fig. 3c). (i) Data segmentation. The
video-stimulated EEG data at one trial are divided
into a number of short segments with a fixed length
of 3 s. Total 20 segments are obtained (video length
60 s/segment length 3 s = 20 segments). There is no
overlap between any 2 adjacent segments. To highlight
the temporal variation of emotion-related EEG dynamics,
for clarity, the first 8 segments are named as early
stimulation stage (1 ∼ 24 s), the following 6 segments
are marked as middle stimulation stage (25 ∼ 42 s),
and the last 6 segments are assigned to late stimulation
stage (43 ∼ 60 s). (ii) Segment-based feature extraction.
Four types of microstate features (duration, occurrence,
coverage, and TP) are extracted from each segment. (iii)
Baseline correction. To obtain a better estimation of
emotion dynamics and minimize the emotion-unrelated
effect, a baseline correction is employed by normalizing
the segment-based microstate features with the corre-
sponding features extracted from the prestimulus stage
(−3 to 0 s). (iv) Statistical measurement. For each video,
a paired Wilcoxon Signed Rank test (nonparametric
statistical analysis based on the normality estimation of

Lilliefors test) is conducted on any 2 adjacent segments
across 32 subjects (stimulated under the same given
video) in terms of each microstate feature, and 19
pairs (total 20 segments for each video) of segment-
based statistical differences are obtained to represent
the video-specific temporal characteristics of emotion
processing in the brain.

Study 2: Objective-presented stimulation effect
analysis
To better understand the neural dynamics in emotion
induction, the stimulation effect of objective-presented
multimedia content on EEG microstate activity changes
is further analyzed through a temporal correlation analy-
sis following an analytical process shown in Fig. 4. In line
with the characteristics of human sensory processing,
both low-level attribute features and high-level semantic
features from visual and audio content are extracted to
give a fuller description of the stimulation content deliv-
ered in a given video clip. Taking advantage of the devel-
opment of computer science and deep learning fields, the
high-level visual and audio features are characterized
by two pretrained deep convolutional neural networks
(CNNs).

Visual content

Image brightness is a fundamental visual characteristic
for visual perceptual processing (Itti et al. 1998) with a
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Fig. 4. A general flowchart for temporal correlation detection between emotion-related EEG microstate activities and emotion-evoking multimedia
stimulation content. In this process, how EEG microstates react to different objective-presented multimedia stimulation content is studied for emotion
perceptual mechanism investigation.

well-validated role in emotion induction (Lakens et al.
2013). In this study, the brightness of video frames is
extracted as the low-level visual feature for attribute
representation. Frame-based visual brightness is first
extracted and then converted to a segment-based visual
feature through an average calculation. The changes of
segment-based visual features characterize the tempo-
ral variations of low-level visual content in multimedia
stimulation, which provides the evoking clues for emo-
tion dynamics analysis.

A pretrained VGG16 model (Simonyan and Zisserman
2014), a well-recognized CNN model with 13 convolu-
tional layers, is utilized for high-level visual feature
extraction. The VGG16 model was trained by millions of
labeled categorial images from the ImageNet database
(Deng et al. 2009), which is capable of extracting discrim-
inative features for visual representation and achieves
outstanding performance in image classification. Each
convolutional layer of the VGG16 model functions as
an automated feature extractor. With an increase of
convolutional layers, from the shallow to the deep
layers, more semantic-related visual information could
be successfully characterized. To extract high-level
visual features for emotion dynamics analysis (Fig. 5a),
video frames are sequentially input into VGG16, and a
set of feature maps are characterized from the deep
convolutional layers (termed as conv11, conv12, and

conv13) that corresponding to the semantic information
involved in the visual content. Similar to low-level
visual feature extraction, frame-based visual features
are obtained and then converted to segment-based visual
features through an average calculation. In total, 1 low-
level visual feature and 3 types of high-level visual
features are extracted for characterizing the visual
content of the video clip in terms of segments.

Audio content

Zero-crossing rate (ZCR; Teixeira et al. 2012) is an inher-
ent prosodic feature that characterizes the frequency
component of the audio signal by counting the average
number that the audio amplitude crosses zero within
a given time interval. In this study, the ZCR feature is
extracted at each segment as the low-level audio feature,
and the temporal variations among the segment-based
audio features quantify the audio content presented for
emotion induction.

To characterize the semantic content delivered by the
audio content, a pretrained VGGish (Hershey et al. 2017)
with 6 convolutional layers is adopted for high-level
audio feature extraction. The VGGish model was trained
by 2 million manual-labeled YouTube video soundtracks
from the Google Audio Set (Gemmeke et al. 2017), and
it has been proven to be an excellent audio feature
extractor for learning representative deep characteristics
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Fig. 5. The pretrained deep CNNs (VGG16 and VGGish) for high-level visual and audio feature extraction. For visual content, the features extracted from
conv11 to conv13 in VGG16 are termed high-level visual features. For audio content, the features extracted from conv5 and conv6 in VGGish are termed
high-level audio features.

from the original video soundtracks. For each video
segment, the corresponding soundtrack signal is input
into the VGGish model and the high-level audio features
for sematic content representation are extracted at the
5th and 6th convolutional layers (termed as conv5 and
conv6 in Fig. 5b). In total, for each audio segment, there
are 1 low-level audio feature and 2 types of high-level
audio features.

Timing effect

To interpret the dynamic process of multimedia-evoked
emotion induction, the timing effect of stimulation
content on EEG microstate activities is investigated. In
a time-shifting manner, the time courses of visual and
audio features are shifted in a preceded or succeeded
direction. The temporal relationships are examined
between presented emotional multimedia content and
real-evoked EEG microstate activities. Here, the shifting
range is given from −1 s (stimulation preceded) to 1 s
(stimulation succeeded), with a step of 100 ms. In total,
there are 21 time-shifting parameters. Note that no
time-shifted processing is applied on EEG microstate
features. For each time-shifting parameter, the temporal
correlation between the shifted multimedia stimulation
and EEG microstate responses is measured as follows.
(i) Temporal brain dynamics computation. For each
trial, the subject-specific time-varying EEG microstate
activities are characterized by calculating the first-order
differences between any 2 adjacent segments in terms
of each microstate feature. (ii) Temporal multimedia
dynamics computation. For each multimedia stimula-
tion, the contents are first shifted at the given time-
shifting parameter. Then, the temporal changes are
measured by computing the first-order differences in
terms of segment-based visual or audio features. (iii)
Subject-specific correlation measurement. For each
subject and each microstate feature, the temporal corre-
lation between the computed temporal brain dynamics
and the computed temporal multimedia dynamics
(with a specific time-shift parameter) is measured by
calculating the Pearson correlation coefficients. For
each multimedia stimulus, in total, 32 subject-specific
correlation coefficients (corresponding to 32 subjects)

are obtained for each microstate feature and for each
time-shifting parameter. (iv) Video-specific correlation
measurement. For each multimedia stimulus and each
microstate feature, the obtained 32 subject-specific
correlation coefficients are then verified by t-statistic
calculation (cross-subject measurement). The calculated
t-values quantify the general changing trend of EEG
microstate activities in response to the given multimedia
stimulation (after time-shifting) across 32 subjects. (v)
Cross-video temporal correlation evaluation. To explore
the cross-video and cross-subject stimulation effect on
the dynamic changes of each EEG microstate feature,
the calculated 40 t-values (corresponding to 40 videos) in
step (4) are then fed into a two-tailed one-sample t-test.
The final obtained t-value characterizes the temporal
stimulation effect on EEG microstate activities with a
positive or negative correlation, and the corresponding
P-value reveals whether the temporal stimulation effect
is statistically significant. The above steps (1)–(5) are
repeated until each time-shifting parameter and each
microstate feature are evaluated, and the overall timing
effect of multimedia stimulation on emotion-related EEG
dynamics is obtained.

Results
Overview
In this section, we will present the observations of the
changes in microstate parameters under the studies of
subjective-experienced emotion state analysis (Study
1) and objective-presented stimulation effect analysis
(Study 2). Two main observations of this work are
summarized as follows. (i) The representation patterns
of EEG microstates can reveal the subjective-experienced
emotion states. Different distinctive microstate patterns
are observed for different emotion dimensions. It is
found that arousal changes mainly affect MS3 activities,
and valence states are mainly related to MS4 activities.
(ii) Objective-presented multimedia stimulation content
modulates the representation pattern of emotion-related
EEG microstate activities. The changes of microstates
perform differently for perceiving different stimulation
information. Visual content mainly leads to the changes
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Fig. 6. The detected EEG microstate templates for emotion-related EEG dynamics analysis. a) Microstate detection performance with different numbers
of EEG microstate classes and the calculated GEV and CV values. Here, the corresponding calculated GEV and CV values of the 4 identified microstate
templates are 82.23% and 63.33%. For visualization, the CV values are normalized to the range of [0, 1]. b) Under consideration of GEV and CV values in
the interaction process of topographical clustering, an optimal cluster number of 4 is identified which refers to the maximum first-order difference in
a ratio of GEV to CV. c) Visualization on the topographical shape of the final detected 4 EEG microstate templates named MS1, MS2, MS3, and MS4 in
the present work.

in MS4 activities, and audio content is mainly related to
the changes in MS3. Overall, by examining the dynamic
characteristics of brain activities during emotion induc-
tion, the associations among EEG microstates, emotion
states, and stimulation content are verified.

EEG microstates
Based on the DEAP database, 4 EEG microstates are
detected in a data-driven manner as presented in
Section 2.3. The corresponding GEV and CV values of
4 identified microstate templates are 82.23% and 63.33%
(as shown in Fig. 6a), referring to the maximum first-
order difference in a ratio of GEV to CV (Fig. 6b). The
detected microstate templates are presented in Fig. 6c,
which share similar topographical configurations to
the canonical microstates reported in the literature
(Pascual-Marqui et al. 1995; Koenig et al. 2002; Britz et al.
2010; Michel and Koenig 2018). For consistency, we label
the detected microstate templates as MS1, MS2, MS3,
and MS4 according to topographical orientation. Besides,
to quantify the stability of the detected microstate
templates along with emotion-evoking experiments, we
introduce two evaluation indexes (microstate proportion
and Cronbach’s α value) for quantitative measurement
of the 4 microstate templates. As reported in Table 1,
MS3 and MS4 account for a major proportion across
3 experimental stages, compared with MS1 and MS2.
The calculated proportion value of MS1 and MS2 is
37.71±0.76% and that of MS3 and MS4 is 62.30±0.76%.
A larger proportion of MS3 and MS4 is in line with the
finding that MS3 and MS4 activities are more related
to emotion perception in the brain. The Cronbach’s α

values across 3 experimental stages are all larger than
0.7 (0.7290±0.0239), supporting that the identified EEG
microstates are temporally stable along with emotion-
evoking experiments.

Results of Study 1
The activation differences of EEG microstates under dif-
ferent emotion states are examined in the perspectives
of task effect, level effect, and evoking dynamics.

Task effect

For emotion task effect analysis, we examine the activa-
tion difference of EEG microstates at prestimulus (before
emotion-evoking task) and poststimulus (after emotion-
evoking task) stages. As shown in Fig. 7, a significant
increasing trend (after FDR) is observed in MS2 coverage
(P = 0.046) and MS4 coverage (P = 0.045), while a
significant decreasing trend is observed in MS3 coverage
(P = 0.005), duration (P = 0.029), and occurrence (P =
0.045). The transitions from MS3 to MS2 and from MS4 to
MS2 significantly increase after emotion task manipula-
tion, while the transition from MS4 to MS3 significantly
decreases. These results reflect that the emotion-evoking
task leads to a change in EEG microstate activities with
distinct patterns. It is found that a positive task effect
is observed in MS2 and MS4; meanwhile, a negative task
effect is observed in MS3.

Level effect

The influence of emotion levels (low/high) on brain
responses is examined on 2 independent emotion
dimensions (valence and arousal). For the valence
dimension (Fig. 8), a lower MS4 occurrence is observed in
the high valence group as compared with the low valence
group, with the corresponding P-value of 0.038 (< 0.05).
For the other EEG microstates (MS1, MS2, and MS3), no
significant statistical difference is observed between low
and high valence groups. By comparing the microstate
TP between low and high valence groups, we observe a
greater transition from MS1 to MS2 (P = 0.026) and a
lower transition from MS1 to MS4 (P = 0.023) in the high
valence group.

For the arousal dimension, the intergroup statistical
differences between low and high arousal groups are
shown in Fig. 9. It shows that greater coverage (P =
0.015) and occurrence (P = 0.020) of MS3 are found
in the high arousal group as compared with the low
arousal group. For MS1, MS2, and MS4, no significant
difference is observed between low and high arousal
groups. By comparing the differences in microstate TP
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Table 1. The calculated evaluation indexes of the detected microstate templates after back-fitting across 3 experimental stages.

Evaluation Index MS1 MS2 MS3 MS4

Microstate Proportion (%) Prestimulus 17.47 19.42 30.18 32.93
Video-stimulated 18.91 18.93 30.62 31.55
Poststimulus 17.61 20.78 27.72 33.89

Cronbach’s α value 0.7312 0.7097 0.7131 0.7620

Fig. 7. Emotion-evoking task effect evaluation on EEG microstate activities by measuring the paired difference between prestimulus and poststimulus
stages. The cross-subject statistical results of paired differences in terms of each microstate feature: a) coverage, b) duration, and c) occurrence. Here,
the dots represent the original feature distribution and the outlines of the violin plot represent the kernel probability density estimation. Box plots
illustrate the interquartile ranges of the features, along with median lines in black. d) The cross-subject statistical results of paired differences in
terms of microstate transition. Red arrows indicate an increasing transition from prestimulus to poststimulus, while blue arrows represent a decreasing
transition after the emotion-evoking task occurs. All P-values are corrected with FDR, setting the statistical significance at 5%. (∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗
P < 0.001).

between low and high arousal groups, a higher TP from
MS2 to MS3 (P = 0.024) is observed in the high arousal
group.

The above results show that the level differences in
emotion could be reflected by the patterns of microstate
activities, especially MS3 and MS4. Distinct activation

patterns of EEG microstates are observed on valence and
arousal. MS4 is sensitive to the changes in valence levels,
where high valence leads to a lower MS4 occurrence. In
contrast, MS3 activity is related to arousal levels, where
high arousal leads to higher MS3 coverage and occur-
rence.
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Fig. 8. Valence-based level effect on EEG microstate activities. An independent t-test/Wilcoxon rank sum test is utilized to examine the statistical
differences in EEG microstate activities between low and high valence groups. In the statistical results of a) coverage, b) duration, and c) occurrence, the
dots represent the original feature distribution and the outlines of the violin plot represent the kernel probability density estimation. Box plots illustrate
the interquartile ranges of the features, along with median lines in black. In the statistical results of d) TP, red arrows indicate an increasing transition
from low to high valence group, while blue arrows represent a decreasing transition in the high valence group as compared with the low valence group.
(∗ P < 0.05).

Evoking dynamics

The evoking emotion dynamics are measured as the EEG
microstate activity differences between any 2 adjacent
segments. These moment-to-moment changes are
evaluated as the temporal variation of emotion-evoked
EEG dynamics. In line with the previous observations
that MS3 and MS4 play an important role in high-level
cognitive function and conscious processing (Khanna
et al. 2015), our results in the study of task effect and
level effect also demonstrate that MS3 and MS4 are more
related to emotion perception. Next, the exploration of
emotion-related evoking dynamics will mainly focus on
these 2 microstates (MS3 and MS4). For each trial, the
evoking dynamics in terms of MS3 and MS4 features
are analyzed across 32 subjects and a cross-subject
multimedia-specific activation pattern is obtained for

each video. Here, we take the coverage feature as an
example and report the results in Fig. 10. As presented
in Fig. 10a, varied activation patterns of EEG microstate
responses in terms of MS3 and MS4 coverage are
observed at 40 trials (videos). For each video, we carefully
examine the temporal variations of EEG microstate
activities. As shown in Fig. 10b, the time segments
with significant statistical differences to the previous
segments could be considered as “turning points” in the
multimedia-evoked brain responses. According to our
observations, different videos (different multimedia con-
tent) lead to different evoking patterns on the temporal
characteristics of EEG microstate activities, where the
turning points happen at different time moments and the
temporal dynamic patterns of EEG microstate activities
perform differently. A detailed observation about the
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Fig. 9. Arousal-based level effect on EEG microstate activities. An independent t-test/Wilcoxon rank sum test is utilized to examine the statistical
differences in EEG microstate activities between low and high arousal groups. In the statistical results of a) coverage, b) duration, and c) occurrence, the
dots represent the original feature distribution and the outlines of the violin plot represent the kernel probability density estimation. Box plots illustrate
the interquartile ranges of the features, along with median lines in black. In the statistical results of d) TP, red arrows indicate an increasing transition
in the high arousal group compared with the low arousal group, while blue arrows represent a decreasing transition from the low to high arousal group.
(∗ P < 0.05).

evoking dynamics of video 20 is given as an example
(Fig. 10c). The turning points mainly occur from Seg 7 to
Seg 12 (in total 20 segments; video length: 60 s; segment
length: 3 s). For MS3 coverage, 1 turning point is observed
from Seg 11 to Seg 12 with a significant decreasing trend.
For MS4 coverage, significantly increasing trends are
observed from Seg 7 to Seg 8, from Seg 9 to Seg 10,
and from Seg 11 to Seg 12, and a significant decreasing
trend is found from Seg 8 to Seg 9. The differences of the
temporal dynamic evoking effects on emotion-related
EEG microstate activities could be possibly explained by
assuming that the content differences in multimedia
stimulation would lead to different evoking reactions
in the brain during emotion induction. More detailed
evoking dynamic changes of each video are reported in
Appendix 4 of the Supplementary Materials.

Besides, the temporal distributions of the identified
turning points for each video are reported in Table 2 (for
MS3 coverage) and Table 3 (for MS4 coverage). It is found
that the turning points are observed in 55% of videos
(22/40). For MS3 coverage, it is found that 22.7% of turning
points are observed at the early stimulation stage, 54.5%
at the middle stimulation stage, and 59.1% at the late
stimulation stage. For MS4 coverage, 22.7% of turning
points are found at the early stimulation stage, 50.0% at
the middle stage, and 45.5% at the late stimulation stage.
These results generally show that the turning points
are mainly distributed at the middle and late stimu-
lation stages, which suggests the temporal patterns of
stimulation perception during emotion induction. Over-
all, the results obtained in Study 1 reveal that the
dynamic changes of the evoked emotions can be
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Fig. 10. Video-evoked emotion dynamics in terms of segment-based EEG microstate activities. a) Visualization of dynamic microstate activities in terms
of MS3 and MS4 coverage across 40 videos. A gray line refers to one video’s temporal dynamic pattern and the black line is the median of all the temporal
dynamic patterns across 40 videos. b) Statistic results of the temporal variations of EEG microstate activities during emotion induction. In the heatmap,
the colors refer to the microstate feature values, where the feature values are calculated as an average of segment-based MS3 or MS4 coverage features
across 32 subjects for each video and normalized into the range of [0, 1] for visualization. The segments marked by “∗,” “∗∗,” or “∗∗∗” refer to the turning
points at which the microstate activities of the current time segment are significantly changed compared with the previous time segment. c) A detailed
example of the temporal changes in terms of MS3 and MS4 coverage under an emotion-evoking task using video 20. (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).

well characterized by EEG microstate representations,
especially by MS3 and MS4.

Results of Study 2
To characterize the stimulation effect of multimedia con-
tent on the patterns of microstates, we separately ana-
lyze the temporal correlation between EEG microstate

activities and multimedia stimulation in terms of visual
content, audio content, and timing effect.

Visual content

The correlations between EEG microstate activities
and visual content in terms of low-level and high-
level visual features are reported in Fig. 11a and b. The
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Table 2. The temporal distribution of turning points of 40 videos in terms of MS3 coverage.

Video ID Early
stimulation

Middle
stimulation

Late stimulation Video ID Early
stimulation

Middle
stimulation

Late
stimulation

(Seg1–Seg8) (Seg9–Seg14) (Seg15–Seg20) (Seg1–Seg8) (Seg9–Seg14) (Seg15–Seg20)

1 × √ × 21 × × ×
2 × √ √

22 × × √
3 × √ × 23 × × ×
4 × √ × 24 × √ √
5 × × × 25 × √ √
6 × × × 26

√ × ×
7 × √ × 27 × × ×
8 × × × 28 × × √
9 × √ √

29 × √ √
10 × × × 30

√ × ×
11 × √ √

31
√ × √

12 × × × 32 × × ×
13 × × × 33

√ × ×
14 × × × 34 × × ×
15 × × √

35 × × ×
16 × × × 36 × √ √
17 × × × 37 × × ×
18 × × × 38

√ × ×
19 × × × 39 × × √
20 × √ × 40 × × √

Table 3. The temporal distribution of turning points of 40 videos in terms of MS4 coverage.

Video ID Early
stimulation

Middle
stimulation

Late stimulation Video ID Early
stimulation

Middle
stimulation

Late stimulation

(Seg1–Seg8) (Seg9–Seg14) (Seg15–Seg20) (Seg1–Seg8) (Seg9–Seg14) (Seg15–Seg20)

1 × √ × 21 × × ×
2 × √ × 22

√ × ×
3 × × × 23 × √ ×
4 × × × 24 × √ √
5 × × √

25 × × √
6 × × √

26 × √ ×
7 × × × 27

√ × ×
8 × × × 28 × × ×
9

√ × × 29
√ × ×

10 × √ × 30 × × √

11 × √ × 31 × × ×
12 × √ √

32 × × ×
13 × × × 33 × √ √
14 × × × 34 × × ×
15 × × √

35 × × ×
16

√ × √
36 × × ×

17 × × √
37 × × ×

18 × √ × 38 × × ×
19 × × × 39 × × ×
20 × √ × 40 × × ×

results show that the changes in visual content have
a close relationship with the dynamic activities of EEG
microstates, which is mainly reflected in the MS4 activity.
For low-level visual features, a positive correlation is
found between the brightness and MS4 occurrence,
where a higher MS4 occurrence is observed when
the presented videos with high brightness. For high-
level visual features, a positive correlation is observed
between the visual features extracted from conv11

to conv13 and MS4 coverage and duration. Besides, a
negative association is also observed between the high-
level visual features extracted from conv11 to conv12 and
MS3 coverage. Compared with the stimulation effect of
low-level visual features, a more complex stimulation
effect is found for high-level visual features, suggesting
that high-level features are more related to the changing
activities of MS3 and MS4 and play a more important role
in emotion induction.
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Fig. 11. Stimulation effect of visual and audio content on segment-based microstate features. The heatmap is a visualization display of the calculated
t values from correlation relationship measurement. A positive t value is marked as red, which indicates a positive correlation between stimulation
content and EEG microstate activities. A negative t value is marked as blue, which refers to a negative correlation between stimulation content and
microstate activities. (∗ P < 0.05, ∗∗ P < 0.01).

Audio content

Similar to the visual content effect analysis in Section
3.4.1, the correlations between audio content and EEG
microstate activities are reported in Fig. 11c and d. The
results show that audio content mainly influences MS3
activity. For low-level audio features, a negative correla-
tion (an increase of ZCR feature leads to a decrease of
MS3 occurrence) is observed. For high-level audio fea-
tures, a positive correlation (the audio features extracted
from conv5 activate MS3 responses for a larger coverage
and occurrence) is found. At the same time, a negative
correlation is observed between the features extracted
from conv5 and MS4 occurrence. In the investigation of
the audio content effect in terms of high-level audio
features, a complex correlation between EEG microstate
activities of MS3 and MS4 and the high-level audio fea-
tures extracted from conv5 is observed. However, for the
high-level audio features extracted from conv6, no signif-
icant correlation with EEG microstate activities is found.
One possible reason could be that the utilized VGGish
was trained for audio classification tasks based on the
Youtube-8 M database (Abu-El-Haija et al. 2016), and the
audio features characterized at the last convolutional
layer (conv6) could reflect more about classification infor-
mation instead of the affective information.

Timing effect

We shift the multimedia stimulation content in a pre-
ceded or succeeded direction with a time range of –1
to 1 s and measure the corresponding temporal corre-
lation with the EEG microstate activities at every time-
shifting parameter. For visual content perception, the

results (Fig. 12a) reveal that the valid time effect is in
the range of −100 to 400 ms. The highest correlation
is reached at 0 ms (stimulation onset), and then, the
correlation declines from 0 to 400 ms. Besides, a preceded
effect of visual content on EEG microstate dynamics is
also observed before the stimulation onset (−100 ms).
One possible reason could be that there may exist an
expectation effect before visual content presentation, as
the adjacent stimulation content in continuous videos
is closely content related. For audio content perception,
it is found that the timing effect mainly occurs from
0 to 600 ms (Fig. 12b). The highest correlation happens
at 200 ms, which shows a poststimulus effect of audio
content on brain responses during emotion induction.
These results show that, for visual and audio content,
the timing effects on simultaneous brain responses are
different, which results in a distinct activation pattern
of EEG microstate activities during multimedia-evoked
emotion induction. Stimulation perception of visual con-
tent is closely related to MS4 activities with an onset
effect, and that of audio content is more related to MS3
activities with a poststimulus effect.

Discussion
The main goal of this study is to discover the associ-
ations among the appearance of microstates, emotion
dynamics, and stimulation content. Both the evoked
emotions and the used stimulation for emotion-evoking
are analyzed and the corresponding specific parameters
of EEG microstates that are significantly changed are
identified. The results show that, functioning as an infor-
mative intermediary, EEG microstates map the subjective
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Fig. 12. Temporal correlation between shifted multimedia content and EEG microstate activities. a) Temporal correlation between the time-shifting visual
content (brightness) and MS4 occurrence. b) Temporal correlation between the time-shifting audio content (ZCR) and MS3 occurrence. (∗ P < 0.05).

emotion states and present multimedia stimulation
content to dynamic activity patterns of the brain. The
observations of EEG microstate dynamics in video-
evoked emotion study and the potential neural mech-
anisms underlying emotion perception are further
discussed in this section.

Neurophysiological significance of EEG
microstates
In this work, 4 EEG microstate templates are detected
using a sequential clustering method. It is found that the
identified EEG microstates share similar topographical
configurations to the canonical EEG microstates in the
previous resting-state EEG studies (Britz et al. 2010;
Musso et al. 2010; Khanna et al. 2015; Michel and Koenig
2018). According to the literature, MS1, MS2, MS3, and
MS4 are functionally mapped to 4 important functional
brain networks (Table 4), including the auditory network,
visual network, DMN, and DAN. For example, Britz et al.
(2010) validated the spatial correlation between EEG
microstates and the 4 functional brain networks based
on the simultaneous EEG-fMRI data. In their study, it
was detected that MS1 was spatially correlated with
the negative BOLD activation over bilateral superior and
middle temporal gyri, MS2 was mapped with the negative
BOLD activation in bilateral extrastriate visual areas, MS3
was related with the positive BOLD signals in the anterior
cingulate cortex and bilateral inferior frontal gyri that
are important brain regions for emotion-related salience
information integration, and MS4 was correlated with the
negative BOLD activation in the right-lateralized dorsal
and ventral areas of frontal and parietal cortex (these
brain regions functionally activate for attention shifting
and reorienting task during external stimulation process-
ing). Besides, through the source localization of identified
EEG microstates across 164 subjects, Custo et al. (2017)
found that the corresponding activation relationships
between cortical regions and EEG microstates were: the

source localization of MS1 laid in the left middle and
superior temporal lobe and the left insular cortex; the
source localization of MS2 mainly laid in the left and right
occipital cortices; the source localization of MS3 laid in
the precuneus and the posterior cingulate cortex; and
the source localization of MS4 laid in the right inferior
parietal lobe, the right middle, and superior frontal gyri.
These spatial analyses of the neuronal generators of EEG
microstates through fMRI analysis or source localization
support the neurophysiological functional association
between EEG microstates and specific large-scale brain
networks.

Given the observed neurophysiological significances of
EEG microstates, researchers also applied EEG microstate
analysis for brain dynamics decoding. For example, Gui
et al. (2020) estimated the language processing of unre-
sponsive patients by mapping MS1 and MS2 into an
Anterior–Posterior (A-P) map and mapping MS3 and MS4
into a Left–Right (L-R) map. They observed a higher acti-
vation of an A-P state (MS1 and MS2) but a lower acti-
vation of the L-R state (MS3 and MS4) in patients when
compared with the healthy group. The results support
that MS1 and MS2 mainly respond to low-level sensory
brain processing, whereas MS3 and MS4 respond to high-
level cognitive information manipulation. The activation
bias between low-level sensory processing and high-level
cognitive information manipulation would be used to
explain the results of the patients with the disorders
of consciousness. Hence, taking the functional signifi-
cance of EEG microstates in neurophysiology into consid-
eration, the underlying neural mechanism of emotions
could be further revealed by inspecting the functional
patterns of EEG microstate activities.

Microstates as indicators of emotion states
The neural processing mechanisms of emotion
perception in the brain can be inferred from the
relationship between EEG microstate activities and
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Table 4. A summary of the neurophysiological significances of EEG microstates.

Microstates Our observations Functional significance

–

1. Associated with auditory network;
2. Spatially correlated with negative BOLD activation in bilateral
superior and middle temporal gyri.

1. Negative association with visual stimulation 1. Associated with the visual network;
2. Lower coverage after emotion-evoking tasks 2. Spatially associated with the negative BOLD activation in

bilateral extrastriate visual areas.

1. Positive relation with arousal states (higher coverage and
occurrence in high-level arousal)

1. Associated with the DMN;

2. Significantly respond to audio stimulation
2. Related with the positive BOLD signals in the anterior cingulate
cortex, bilateral inferior frontal gyri;
3. Integrate information of subjective perception and emotion
salience (task-negative).

1. Negative relation with valence states (lower occurrence
in high-level valence)

1. Associated with the DAN;

2. Significantly respond to visual stimulation

2. Correlated with the negative BOLD activation in ventral areas of
frontal and parietal cortex and right-lateralized dorsal;

3. Related with the activity of attention switching and reorientation
(task-positive).

subjective-experienced emotion states. First, in task
effect, the statistical differences in EEG microstate
activities between prestimulus and poststimulus stages
show that emotional task manipulations lead to an
increase in MS2 and MS4 coverage and a decrease in MS3
coverage, duration, and occurrence. The representation
difference in task effect can be possibly explained that
the fast-changing visual stimulation in an emotional
video activates the visual network increasing MS2
activities (Milz et al. 2016). For the decrease of MS3
activities, one possible reason could be video-watching
emotion that inhibits the activation of the DMN in
line with the findings that the DMN is task-negative
that mainly relates to intrinsic information processing
such as memory recall, self-judgments, and prospective
thinking (Britz et al. 2010; Yuan et al. 2012; Seitzman
et al. 2017). The review of Satpute and Lindquist (2019)
highlighted the functional role of DMN in emotion
perception by conceptualizing the stimulation content
(Gu et al. 2013). The increase of MS4 activities is in line
with the functional activity of the DAN (task-positive)
that would be activated in multimedia-directed emotion
induction for attention reorientation and focus switching
(Nummenmaa et al. 2012; Szczepanski et al. 2013). How-
ever, no significant difference is found in MS1 (related to
the auditory network). According to Britz et al. (2010), it
was found that MS1 simultaneously corresponded to a
negative BOLD activation mainly in bilateral superior and
middle gyri (auditory-related functional brain regions)
and the primary visual cortex of the bilateral extrastriate
cortex (visual-related functional brain regions) (Mantini
et al. 2007). In Milz et al.’s work for cognitive task-based
EEG microstate analysis, a larger MS1 duration was found
during the visual-stimulated task compared with the
resting-state and audio-stimulated task (Milz et al. 2016).
In our case, as video-based multimedia stimulation

is adopted for emotion induction, the simultaneous
presentation of audiovisual content would possibly
inhibit the activities of MS1.

Additionally, the significant differences in MS3 and
MS4 activities during emotion induction may indicate
that MS3 and MS4 accompanied with the DMN and DAN
are more related to the high-level perceptual processing
of emotion in the brain (Morawetz et al. 2016; Iordan and
Dolcos 2017; Satpute and Lindquist 2019). Similar to the
previous works, for example, Seitzman et al. (2017) found
that task manipulation mainly altered the activities of
MS3 and MS4 with an inhibiting effect on MS3 but a
promoted effect on MS4. For serial subtraction tasks,
the coverage, duration, and occurrence of MS3 signifi-
cantly decreased and these features of MS4 significantly
increased after task manipulation. Similar results were
also observed by Kim et al. (2021) that a significant
decrease of MS3 and a significant increase of MS4 were
found in good performance groups while performing
mental arithmetic tasks. These findings generally sug-
gest that the influences of cognitive task manipulation
(refers to emotion induction in this work) on microstate
activities are in line with task effects on the DMN (task-
negative, associated with MS3) and DAN (task-positive,
associated with MS4).

In the investigation of microstate representation
differences on valence and arousal dimensions, we also
observe that emotion level differences mainly influence
the activities of MS3 and MS4. Valence level is positively
correlated with MS4 occurrence, while arousal level is
negatively correlated with MS3 coverage and occurrence.
These findings are congruent with the observations
of emotion level effects on the activities of functional
brain networks in the previous studies. Nummenmaa
et al. (2012) found that low valence increased the
activities of the DAN for emotion perception and
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induction, while high arousal activated the DAN for
attention switching via external multimedia stimula-
tion. Besides, Colibazzi et al. (2010) obtained similar
observations in a self-generated emotion induction
task. For low valence emotions, higher BOLD signals
were detected in the right dorsolateral prefrontal cortex
and rostral dorsal anterior cingulate cortex that are
spatially belonged to the DAN. For high arousal emotions,
higher BOLD responses were detected in the midline
and medial temporal lobes that are belonged to the
DMN. All the above results suggest that the DAN and
DMN are essential for emotion processing, where DAN
(MS4) mainly functions for valence-related emotion
processing and the DMN (MS3) functions for arousal-
related emotion processing.

Furthermore, the representation differences of EEG
microstate activities on valence and arousal dimensions
can be interpreted by the functional significances of
the DAN and DMN during emotion induction. As well
investigated in the literature, the DAN plays a dom-
inant role in stimulus-directed sensory and functions
for extracting emotion-related salient information for
valence induction (Szczepanski et al. 2013). The DMN is
mainly involved in self-reflection and internal percep-
tion, both of which are important for arousal processing
(McKiernan et al. 2003). These findings are also reflected
in our observations of the emotion level effect on EEG
microstate activities, resulting in a positive association
between valence level and MS4 activities and a negative
association between arousal level and MS3 activities.

Microstates and stimulation content
In this work, the temporal association between multime-
dia content and EEG microstate activities is measured
to describe the dynamic process of emotion perception
in the brain. In previous affective computing studies,
it was found that visual brightness as a fundamental
and commonly used visual feature has been validated
as an essential visual attribute for emotional valence
induction in video affective content analysis (Wang and Ji
2015). For the audio ZCR feature, it has been validated as
a key acoustic feature for emotion arousal enhancement
and has been widely applied for multimedia content-
based emotion recognition (Zhang et al. 2010). In our
study, these multimedia features are also found to be
highly associated with emotion-evoked EEG microstate
activities that a higher brightness leads to a higher
occurrence of MS4 and a higher ZCR leads to a lower MS3
occurrence. The stimulation effect is mainly found in
MS3/MS4 activities with low-level audio/visual features
instead of MS1/MS2 activities. One possible reason would
be that emotion induction is a complex perceptual pro-
cess associated with a subjective understanding of pre-
sented stimulation content, where the low-level visual
and audio features could also be considered as impor-
tant cues of subjective-experienced emotions. These
observations are consistent with the findings presented
in (Kurt et al. 2017; Seng et al. 2018).

Through investigating the temporal correlation between
multimedia stimulation and dynamic EEG activities
during emotion induction, our findings demonstrate
that emotion perception is a temporally dynamic process
coordinated with the stimulation of multimedia content
(Effron et al. 2006). For visual content, the temporal
association between visual content and dynamic EEG
activities is observed in the time range of −100 to 400 ms.
These results are consistent with the previous findings.
For example, Oya et al. (2002) observed a strong gamma
response around 150–450 ms on the amygdala under
the visual task using emotional pictures. In Potts et al.’s
visual-stimulated ERP task (Potts 2004), it was found
the P2a (about 220–316 ms) component significantly
increased in response to the visual content. In this
work, a preceded correlation (−100 ms) is found between
visual content and the triggered emotions, which
could be explained by the fact that emotion induction
is a temporally dynamic process and the previous
stimulation continuously affects the following emotion
states. Through exploring the potential associations
between continuous multimedia content and dynamic
EEG microstate activities, it helps us to understand
the temporal characteristics of video-evoked emotion
processing in the brain.

To further understand the emotion modulated neural
responses, we examine the temporal association between
EEG microstate activity dynamics and continuous stim-
ulation of multimedia content in terms of the timing
effect. Considering the EEG microstate representations
in terms of evoking dynamics (Section 3.3.3) and timing
effect (Section 3.4.3), we can infer that emotion induc-
tion is a temporally dynamic process reflected in the
temporal coordination between EEG microstate activities
and the objective-presented stimulation content during
video-watching emotion induction tasks.

Limitations and future work
There remains a lack of clarified identification of
emotion-specific EEG microstates. The specialized roles
of EEG microstate activities in interpreting the dynamic
process of emotion processing and regulation are still
an open issue. The extension of applying EEG microstate
analysis into video-triggered emotion induction study
offers a novel perspective into emotion dynamics, as well
as border knowledge of neurophysiological significances
of EEG microstates. Besides, there is still a lack of
locating surface EEG signals of emotion-related EEG
microstates into the corresponding neuronal activity.
It will limit the interpretability of EEG microstate
representation patterns in dynamic emotion analysis.
To extend, EEG microstate analysis with voxel-based
source localization would greatly enhance the spatial
resolution for accurate reflection of global neuronal
activities and improve the performance of functional
brain activity estimation, monitoring, and regulation.
Moreover, fMRI data with high spatial resolution can
capture the hemodynamic changes in deep brain
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structures. Combining EEG microstates and fMRI data
will provide a more comprehensive investigation of
emotion-related neurophysiological mechanisms in high
temporal and spatial resolution.

Additionally, instead of conducting video segmenta-
tion with fixed segment length, an adaptive content-
based segmentation method would offer more reliable
clues into the investigation of emotion perceptual
mechanisms during video watching. In the current
work, we simply segment the time process of video
watching into the early, middle, and late stimulation
stages with a fixed time length. The EEG microstate
activity differences among different stimulation stages
are measured for evoking dynamics analysis. However,
different stimulation content would yield a varied
temporal pattern of emotion-evoking. Taking advantage
of the development in the computer vision field, content-
based video segmentation methods such as explicit and
implicit video affective content analysis (Zhang et al.
2010; Wang and Ji 2015) could be incorporated for a better
inspection into the neural mechanisms of emotional
dynamics.

Conclusion
In summary, our work mainly focuses on the exploration
of EEG microstates patterns in associations with emotion
dynamics. A mapping among subjective-experienced
emotion states, objective-presented stimulation content,
and microstates is measured, and the use of EEG
microstates to reveal potential emotion relevance is
explored. The results show that EEG microstates are
capable of representing the dynamic characteristics of
emotion-related EEG dynamics in continuous video-
triggered emotion induction tasks. Especially, MS3 and
MS4, which have a close association to high-level func-
tional brain networks, show a good performance in the
studies of subjective-experienced emotion state analysis
and objective-presented stimulation effect analysis.
Distinctive EEG microstate activity patterns are observed
under different emotion states from the perspectives of
task effect, level effect, and timing effect. Also, it is found
that the emotional stimulation effect on EEG microstate
patterns can be inferred by the objective-presented video
content. This work of applying EEG microstate analysis
into dynamic emotion analysis borders our knowledge
of the functional significance of EEG microstates and
provides an attractive approach for time-varied emotion-
related neural mechanism exploration.
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Supplementary material is available at Cerebral Cortex
Journal online.
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