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The dominant approach in investigating the individual reliability for event-related potentials (ERPs) is to extract 

peak-related features at electrodes showing the strongest group effects. Such a peak-based approach implicitly 

assumes ERP components showing a stronger group effect are also more reliable, but this assumption has not 

been substantially validated and few studies have investigated the reliability of ERPs beyond peaks. In this study, 

we performed a rigorous evaluation of the test-retest reliability of ERPs collected in a multisensory and cognitive 

experiment from 82 healthy adolescents, each having two sessions. By comparing group effects and individual 

reliability, we found that a stronger group-level response in ERPs did not guarantee higher reliability. A perspec- 

tive of neural oscillation should be adopted for the analysis of reliability. Further, by simulating ERPs with an 

oscillation-based computational model, we found that the consistency between group-level ERP responses and 

individual reliability was modulated by inter-subject latency jitter and inter-trial variability. The current findings 

suggest that the conventional peak-based approach may underestimate the individual reliability in ERPs and a 

neural oscillation perspective on ERP reliability should be considered. Hence, a comprehensive evaluation of the 

reliability of ERP measurements should be considered in individual-level neurophysiological trait evaluation and 

psychiatric disorder diagnosis. 
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. Introduction 

Event-related potentials (ERPs) are noninvasive electrophysiological

easures of indexing a range of sensory, cognitive, and motor processes

nvolved in human brain activity. In clinical and translational applica-

ions of ERPs, a key challenge is to identify a reliable and valid mapping

etween individuals’ brain activation and their perceptual or cognitive

apacities ( Nelson and Guyer, 2012 ). Measurement reliability is the pre-

equisite for clinical applications of ERPs, such as assessments of medi-

ative practice using sensory-evoked potentials ( Cahn and Polich, 2006 )

r diagnoses of psychiatric cognitive dysfunction by cognitive ERPs like

300 ( Polich, 2004 ), and studies concerning reliability have received

ore attention recently ( Dubois and Adolphs, 2016 ; Höller et al., 2017 ;

oble et al., 2019 ; Croce et al., 2020 ). 

Originating from the field of psychometrics, reliability reflects

he “trustworthiness ” of a measure and denotes the extent to which

 measure will yield a reproducible difference between individuals
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 Kraemer, 2014 ). The importance of reliability in the research of in-

ividual difference cannot be overstated, regardless of the data analyt-

cs approaches used (e.g., correlational analysis or machine learning).

n correlational analysis, the ability to find correlations between brain

ctivation and cognitive behavior depends on the reliability of these

easures ( Goodhew and Edwards, 2019 ). In other words, the maxi-

um possible correlation is constrained by the reliability of the indi-

idual measures used to calculate the correlation ( Spearman, 1910 ). In

achine learning-based individualized prediction, reliability has been

roved mathematically to provide a lower bound on predictive accu-

acy ( Bridgeford et al., 2020 ). 

Since the first systematic study on the reliability of ERPs

 Segalowitz and Barnes, 1993 ), numerous studies have evaluated the

est-retest reliability of ERP amplitude and the latency elicited from a va-

iety of experimental paradigms ( Cassidy et al., 2012 ; Cruse et al., 2014 ),

ut the primary focus has always been restricted to narrow time win-

ows around ERP peaks ( Thigpen et al., 2017 ; Cruse et al., 2014 ; Ip et al.,
r, Shenzhen University, Shenzhen, 518060, China. 
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018 ). Characteristic features, including latency, maximum amplitude,

ean amplitude, and area under the window, are typically used to ex-

mine the reliability of ERPs. These ERP features are used in a machine

earning model or correlation analysis to establish linkage between ERPs

nd cognitive/behavioral variables ( Hu and Iannetti, 2019 ). However,

uch an analysis routine implicitly assumes that only the peak-related

RP measures reflect the subject-specific neurophysiological process to

n external stimulus. This assumption is problematic because the en-

ire ERP shapes (rather than latency and amplitude of ERP peaks) are

hysiologically meaningful and important ( Gaspar et al., 2011 ). Taking

he temporal evolution of facial emotion perception as an example, the

emporal shape of ERP can provide valuable clues about processing dy-

amics beyond what can be inferred from data restricted to ERP peaks

 Van Rijsbergen and Schyns, 2009 ). 

ERP peaks represent the strongest group effects (i.e., group-level ex-

erimental effects among different conditions/cohorts). More specifi-

ally, by comparing the ERP response with its baseline activity, or con-

rasting two experimental conditions (i.e., the ERP difference wave),

eak-related features of well-known ERP components, like N100, N200,

nd P300, were claimed to be closely associated with various perceptual

nd cognitive variables ( Sur and Sinha, 2009 ). Here, the focus was on

ignificant group effects responding to one condition versus another. As

 representative example relevant to this research, the P300 was found

o reflect the processes involved in stimulus evaluation or categorization

s evidenced by experimental manipulation; thus, it is often reasonable

o ask whether peak-related features of P300 reflect an individual’s cog-

itive function. From this perspective, as the dominant approach in in-

estigating individual differences in ERPs, peak-based analysis implic-

tly employs group-level prior information. However, from the perspec-

ive of individual difference, it remains unclear whether peak-related

ctivity shows robustness or consistency in assessing between-subject

ariance( Brandmaier et al., 2018 ). 

Indeed, the approach of identifying regions-of-interests (ROIs) by

he strongest group effects and subsequently testing them for individ-

al reliability was a common practice in evaluating individual differ-

nces in ERP studies, but recent studies have raised concerns that such

 conventional approach may reduce the probability of detecting signifi-

ant individual-level effects, especially in functional magnetic resonance

maging (fMRI) ( Fröhner et al., 2019 ; Infantolino et al., 2018 ). For re-

earchers interested in individual differences, between-subject variance

n brain function is usually considered as the signal of interest rather

han noise ( Seghier and Price, 2018 ). For researchers interested in ex-

erimental effects, within-subject variance is treated as the signal of in-

erest, and between-subject variance represents the noise that should be

inimized. Those different views imply that regions eliciting greater

ctivation (i.e., a peak at an electrode showing the strongest group-

veraged activity) on group effects may not correspond to reliable indi-

idual effects, which has been thoroughly discussed in psychology re-

ently ( Hedge et al., 2018 ; Goodhew and Edwards, 2019 ; Fisher et al.,

018 ). To the best of our knowledge, the rationality of selecting indi-

idual difference variables based on group effects in ERP analysis has

een seldom challenged. Whether and in which situation the group ef-

ects and individual reliability are consistent is still questionable. In real

ata, the underlying factors among different subjects are unmeasurable

nd cannot be adjusted at will, which makes it challenging to answer

his question. Thus, a simulation model should be applied to investigate

nderlying factors of modulating the consistency between the group ef-

ect and individual reliability, but this investigation via computational

odeling is still absent. 

To address the abovementioned problems, the present study sought

o examine the test-retest reliability of sensory-evoked potentials and

ognitive ERPs based on the whole waveforms but not those restricted

o narrow time windows around the peaks. More specifically, to test

hether there is a spatial and temporal dissociation between group

ffects and the individual reliability result, the reliability of auditory-

voked potential (AEP), somatosensory-evoked potential (SEP), visual-
2 
voked potential (VEP), and P300 were systematically examined by spa-

iotemporal decomposition and evaluation in a pointwise way (i.e., at

ach spatial-temporal EEG sample). Further, a dynamical system model

as applied for the simulation of ERP generation to investigate the un-

erlying mechanism explaining the real data results, in which key model

arameters were varied to test their influences on the consistency be-

ween group effects and individual reliability. Data and code are avail-

ble online ( https://osf.io/v59qu ). 

. Materials and methods 

.1. Data collection and preprocessing 

.1.1. Subject information 

A total of 106 healthy subjects participated in this study, and 95 sub-

ects ( Mea n age = 21 . 3 years ; SD age = 2 . 2 years , 73 males ) among them

ttended two sessions, which were scheduled on different days, sepa-

ated more than 6 days and 20 days apart on average. After removing

3 subjects whose data were corrupted with heavy artifacts, 82 sub-

ects were included in subsequent reliability analyses. Ethical approval

f the study was obtained from the Medical Ethics Committee, Health

cience Center, Shenzhen University (No. 2,019,053). All subjects were

nformed of the experimental procedure, and they signed informed con-

ent before the experiment. 

.1.2. Experimental paradigm 

As illustrated in Fig. 1 , the experimental paradigm was the same

or the two sessions on different days. The experimental paradigm con-

ained three types of sensory-evoked experiments (visual, auditory, and

omatosensory) and a cognitive visual oddball experiment. Multiple sen-

ory stimuli were arranged in two runs for each session. Each run con-

isted of 90 trials, including visual, auditory, and somatosensory vibra-

ion stimuli. These stimuli were delivered in a random order with inter-

timulus-interval (ISI) randomly distributed in the range of 2–4 s. Each

timulus lasted 50 ms. Hence, for each subject, there were a total of 180

rials of sensory stimulation in each session and 60 trials for each of the

isual, auditory, and somatosensory stimuli. The P300 experiment was

rranged between the two runs of multiple sensory stimuli for each ses-

ion. The visual oddball experiment was performed with the red squares

s the target stimuli and the white squares as the nontarget stimuli on

he screen. Each square lasted 80 ms, with an ISI of 200 ms. Hence, a

otal of 600 trials were delivered within 2 min in a run, in which the

arget stimuli appeared with the possibility of 5%. A subject was asked

o count the number of red squares and report the result at the end of

he run to keep his/her attention on the screen. 

.1.3. Platform setup 

During the experiment, the subjects were seated in a comfortable

hair. For multisensory stimuli, an Arduino Uno platform was pro-

rammed to release the three types of stimuli, which communicated

ith the Matlab program (The MathWorks Inc., Natick, USA) on a PC

hrough a serial port. Visual stimuli were delivered by a 3 W light-

mitting diode (LED) with a 2 cm diameter circular light shield, which

s placed 45 cm away from subjects’ eyes. The LED intensity was 1074

ux as measured by a light meter (TES-1332A, TES). Auditory stimuli

ere presented via a Nokia WH-102 headphone. The intensity is set at

 comfortable level (75 dB SPL) for all subjects as measured by a digi-

al sound level meter (Victor 824, Double King Industrial Holdings Co.,

td. Shenzhen, China). Somatosensory stimuli were generated by a 1027

isk vibration motor with the rated power 3 W, efficiency 80%, and di-

ensions 10mm 

∗ 2.7 mm). For the visual oddball P300 experiment, a

4.5-inch screen with a 240-Hz refreshing rate (Alienware AW2518H,

iami, USA) was used to present the visual stimuli. The 300 ×300 pixels

ed and white squares were delivered in sequence in the center of the

920 ×1080 pixels screen with the background in black. 
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Fig. 1. Experiment procedure. Lower Left: Sensory-evoked potentials were elicited by a random sequence of somatosensory, auditory, and visual stimuli. Auditory 

stimuli were brief tones produced by a speaker; visual stimuli were brief flashes produced by an LED; somatosensory stimuli were applied to the index finger of the 

left hand by a vibrator. Lower Right: Cognitive ERPs were elicited by the classical visual oddball paradigm with the red squares as the target stimuli and white as 

the nontarget stimuli on the screen. 

Table 1 

Data preprocessing sheet. 

Software Matlab 2018b & Letswave7 (Letswave.cn) 

Band-pass filtering Butterworth filter, 0.01–200 Hz, 4th order, 24 dB/octave, zero-phase 

Notch filtering Butterworth filter, 49–51 Hz, 4th order, 24 dB/octave, zero-phase 

Channel interpolation Bad channels were identified manually and interpolated with the mean value of the three surrounding channels. 

Re -reference Re -reference to the mean value of TP9 and TP10 

Artifacts removal by ICA Eye movement related ICA components were identified by visual inspection of their scalp topographies, time courses, and spectra. 

Band-pass filtering Butterworth filter, 0.1–30 Hz, 4th order, 24 dB/octave, zero-phase 

Segmentation Segmentation from − 0.5 to 1.0 s relative to the stimulus onset 

Averaging Average all trials for each subject 

Baseline correction Remove the DC offset (based on − 0.5 to 0 s pre-stimulus) 
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For data collection, EEG signals were recorded via a multichannel

EG system (64 Channel, Easycap) and an EEG Amplifier (BrainAmp,

rain Products GmbH, Germany). The signals were recorded at a sam-

ling rate of 1000 Hz by 64 electrodes, placed in the standard 10–20

ositions. FCz was set to be the reference. Before data acquisition, the

ontact impedance between the EEG electrodes and the cortex was cali-

rated to be lower than 20 k Ω to ensure the quality of EEG signals during

he experiments. 

.1.4. EEG preprocessing 

For EEG preprocessing ( Pernet et al., 2020 ), the sequence of steps,

pecific parameters for each step in preprocessing pipeline are shown

n Table 1 . After preprocessing, grand average ERP waveforms were

omputed for each participant and stimulus type (visual, auditory, so-

atosensory, and target stimuli of the visual oddball paradigm). All EEG

re-processing steps were carried out by Letswave7 ( Huang, 2019 ) and

atlab. 

.2. Reliability analysis 

.2.1. Peak-based analysis and pointwise analysis 

As the peak of each ERP component indicates the time point with

 larger signal-to-noise ratio in the surrounding samples, peak ampli-

ude is commonly used as a representative feature in ERP analysis. In

his research, the most significant positive and negative peaks were de-
3 
ected by manually searching for the local maximum/minimum value in

heir corresponding time intervals for each subject. The mean amplitude

round the peaks was not considered in this research because it is not

air to compare the reliability of pointwise analysis with the reliability

f the mean amplitude, which is the average of multiple points. 

Pointwise analysis was also used to examine the reliability of the

RP. More specifically, the ERP amplitude at each time point and each

hannel was taken as the variable for measuring the individual differ-

nce. Unlike the peak-based analysis, pointwise analysis is a fully data-

riven method that is performed along with the temporal and spatial

omain in a point-by-point way. 

.2.2. Metric of reliability: Intraclass correlation coefficient (ICC) 

ICC is a commonly used metric for reliability analysis. In this study,

he reliability was measured by using ICC(A, 1) of case 2A ( McGraw and

ong, 1996 ) to represent the absolute agreement between repeated

easurements for both the peak-based and pointwise analyses for both

he peak-based and pointwise analyses. The subject-by-experiment ma-

rix was modeled by a two-way ANOVA with random subject effects

row effects), random session effects (column effects), and residual ef-

ects, as shown in Eq. (1) , and ICC(A, 1) is calculated as Eq. (2) . 

𝑥 𝑖𝑗 = 𝜇 + 𝑟 𝑖 + 𝑐 𝑗 + 𝑒 𝑖𝑗 , (1) 

𝐼𝐶 𝐶 ( A , 1 ) = 

𝜎2 𝑟 
𝜎2 + 𝜎2 + 𝜎2 

, (2) 

𝑟 𝑐 𝑒 
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n which, 𝑖 = 1 , .., n ( 𝑛 = 82 ) is used as the subscript for subjects; 𝑗 =
 , … , k ( 𝑘 = 2 ) is the subscript for multiple observations, which is the

essions in this work; 𝑥 𝑖𝑗 denotes the observation in the 𝑗-th session from

ubject 𝑖 ; 𝜇 is the population mean for all observations; 𝑟 𝑖 ∼ 𝑁( 0 , 𝜎𝑟 ) rep-

esents the row effects for subject 𝑖 ; 𝑐 𝑗 ∼ 𝑁( 0 , 𝜎𝑐 ) represents the col-

mn effects for session 𝑗; 𝑒 𝑖𝑗 ∼ 𝑁( 0 , 𝜎𝑒 ) represents the residual effects

s the error terms. According to ICC(A, 1), the reliability was defined

n Eq. (2) as the proportion of the between-subject variation 𝜎2 
𝑟 

over

he total variation 𝜎2 
𝑟 
+ 𝜎2 

𝑐 
+ 𝜎2 

𝑒 
. In Eq. (1) , we assume 𝑟 𝑖 , 𝑐 𝑗 , 𝑒 𝑖𝑗 are in-

ependent random variables with normal distribution. The mean value

nd confidence interval of ICC(A, 1) for both peak-based and pointwise

nalyses were obtained 1600 times by bootstrap, which involved choos-

ng random samples with replacement from a dataset and analyzing

ach sample in the same way. Two sample t -test was applied to com-

are the result between peak-based and pointwise analyses. Based on

q. (1) and Eq. (2) , the variance in an ERP measure comes from three

arts, which are 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) = 𝜎2 
𝑟 
, 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) = 𝜎2 

𝑐 
, and 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) = 𝜎2

𝑒 

 Segalowitz and Barnes, 1993 ). Partitioning variance into these three

arts, temporal and spatial variation of the 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) , 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) , and

 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) was analyzed in the spatial and temporal domains of the

RPs in a pointwise way. 

.2.3. Statistical analysis 

By comparing group effects and individual reliability, correlation

nalysis was performed between the reliability and each group- and

ndividual-level measure. Taking AEP as an example, a one-sample 𝑡 -test

as performed point wisely at the post-stimulus time points from the

RP signal of 82 subjects against zero at electrode Cz. The time points,

hich were significantly different from zeros ( p − value < 0 . 05∕1000
y Bonferroni correction; 1000 was the number of post-stimulus time

oints) were selected to reduce the influences of noisy background

ctivity. At these selected time points, two group-level measures and

ne individual-level measure were extracted. Two group-level measures

ere (1) abs( t -value) calculated by the absolute value of the t -value

nd (2) Hilbert envelope calculated by the grand value of the ERP en-

elope via the Hilbert Transform. The individual-level measure was (3)

etween-subject variance estimated by the standard deviation across

he 82 subjects. Then the linear trends were removed from the time se-

ies of each measure and reliability to avoid spurious correlation. The

ssociations between different measures and reliabilities were quanti-

ed by Spearman’s rank correlation coefficient, which is more robust to

he non-linearity of changes and outliers than Pearson’s correlation. For

EP, VEP, and P300, the same procedures were applied at electrodes

z, Oz, and Pz, respectively, to explore the consistency between group

ffects and individual reliability because those electrodes showed the

trongest group-level response. 

.3. Model simulation 

For the given real EEG data, we can calculate its reliability, but the

nderlying factors affecting reliability are fixed and unknown, which

imits the further study of reliability. Hence, a simulation model is

eeded to investigate the underlying mechanism behind the observa-

ions from real data. As a supplement to the real EEG data analysis, a

ynamic model simulation allows us to further understand the internal

echanism of the brain. As rhythmic oscillations are the basic charac-

eristics of an EEG signal and evoked changes of an EEG signal could be

scribed to transients that arise as the system’s trajectory returns to its

ttractor ( David et al., 2005 ), in this work, a second-order linear model

as applied in this study for its simplicity to explain what we observed

n real ERP data (i.e., the inconsistency between group effects and indi-

idual reliability). 

 

′( 𝑡 ) = Ax ( 𝑡 ) + 𝐶 ∗ 𝑢 ( 𝑡 ) + 𝑒 ( 𝑡 ) , (3)

n which 𝐴 = [ 𝑐 𝑑 

− 𝑑 𝑐 
] is the state-transition matrix with the corre-

ponding eigenvalues 𝑐 ± 𝑑i , 𝑐 < 0 to ensure that the real part of the
4 
igenvalue of 𝐴 is negative which decides the decaying rate, 𝑑 is the

mage part of the conjugate complex eigenvalues, which controls the

atural oscillation frequency of this autonomous system. In this work,

he elements of 𝐴 were selected empirically as 𝑐 = −10 and 𝑑 = 50 to
imic the response of AEP at Cz. The influence of each parameter in 𝐴

n model behavior was illustrated in the supplementary material (Fig.

6). The input strength, 𝐶, is formulated as 𝐶 𝑠𝑢𝑏 + 𝐶 𝑡𝑟𝑖𝑎𝑙 , where 𝐶 𝑠𝑢𝑏 is

 random variable representing the input strength for a given subject

onformed to a Gaussian distribution ( μsub , σ2 sub ) , and 𝐶 𝑡𝑟𝑖𝑎𝑙 is a random

ariable representing the input strength for a given trial conformed to a

aussian distribution ( μtrial , σ2 trial ) . According to Jansen and Rit’s neural

ass model ( Jansen and Rit, 1995 ), the input of the system was simu-

ated by using Eq. (4) : 

 ( 𝑡 ) = 

{ 

at 𝑒 − bt 𝑡 ≥ jitte 𝑟 sub 

0 𝑡 < jitte 𝑟 sub 

(4) 

n which 𝑗𝑖𝑡𝑡𝑒 𝑟 𝑠𝑢𝑏 is a rounded random variable with a uniform distri-

ution [ − 𝜏𝑠𝑢𝑏 , 𝜏𝑠𝑢𝑏 ] relative to the onset time 𝑡 = 0 , and 𝑒 ( 𝑡 ) is the pink

aussian noise representing the input of the background EEG activity

n the simulation. The core setting of this model was the additive term

 𝑠𝑢𝑏 + 𝐶 𝑡𝑟𝑖𝑎𝑙 , which coupled the input strength with the subject-level and

he trial-level, thus allowing both 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) and 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) to co-vary

ith the signal amplitude. Considering the neglectable proportion of

 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) in real data results, there is no difference in simulation be-

ween sessions. To ensure consistency with real data, we set subject

umber 𝑛 = 82 and session number 𝑘 = 2 in the simulation. For each

ession, there are 60 trials. To mimic the real data preprocessing pro-

edure, baseline correction was also applied to simulated ERP. With a

ampling rate of 1000 Hz, there were 1500 time points for each trial,

rom − 0.5 to 1 s. 

In this study, two major parameters of this model potentially influ-

ncing the test-retest reliability were investigated: (1) inter-subject vari-

bility, 𝜏𝑠𝑢𝑏 , for the latency jitter, 𝑗𝑖𝑡𝑡𝑒 𝑟 𝑠𝑢𝑏 , and (2) inter-trial variability,

𝑡𝑟𝑖𝑎𝑙 , for the input strength, 𝐶 𝑡𝑟𝑖𝑎𝑙 . Considering the oscillation of the

RP response as the trajectory in the 2-dimensional phase portrait in

ig. 2 C, the observed ERP response is the projection of this trajectory

n the axis of 𝑥 1 . Hence, the peaks, troughs, and zero crossings have

o special meaning, but some specific phases when the trajectory ro-

ates along with the origin. The value of 𝜎𝑡𝑟𝑖𝑎𝑙 affect the magnitude of

he ERP trajectory. Hence, 𝜎𝑡𝑟𝑖𝑎𝑙 determine the disturbance normal to

he trajectory of the ERP response. While the value of 𝜏𝑠𝑢𝑏 affect the

ime of trajectory of the ERP response. Hence, 𝜏𝑠𝑢𝑏 determine the distur-

ance tangent to the trajectory of the ERP response. These two factors,

𝑠𝑢𝑏 and 𝜎𝑡𝑟𝑖𝑎𝑙 , were selected to investigate the test-retest reliability in

he simulation because they provide disturbances in two directions or-

hogonal to each other. The different influence in different phases of the

RP response was expected for these two factors. Further, 𝜎𝑡𝑟𝑖𝑎𝑙 is a trial-

evel factor, 𝜏𝑠𝑢𝑏 is a subject-level factor, and the change in 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 )
nd 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) could be investigated in the simulation. The simulation

ode is available online ( https://osf.io/v59qu ). 

. Results 

.1. Reliability of real data 

.1.1. Reliability for multisensory and cognitive ERPs 

The grand average waveform of AEP at channel Cz, SEP at channel

z, VEP at channel Oz, and P300 at channel Pz are shown in Fig. 3 ,

here red and blue curves shaded by the standard deviation denoted

he signals of the two sessions. The representative ERP peaks, including

1 at 90 ms and P2 at 180 ms for AEP, N2 at 150 ms and P2 at 245 ms

or SEP, N1 at 64 ms, P2 at 185 ms for VEP, and P3 at 345 ms of P300,

ere selected for peak-based analysis. The negative and positive peaks

re indicated by light gray and dark gray lines respectively and the gray

haded interval indicated the interval between the two peaks. For the

ointwise analysis, the thick black lines indicated the maximal relia-
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Fig. 2. The ERP simulation, which was generated by a second-order dynamic system model (3). (A) the framework of the dynamic model in Eq. (3) ; (B) the evolution 

of 𝑥 1 and 𝑥 2 over time, with its two-dimensional projection of the phase portrait in (C) and the evolution of 𝑥 2 over time in (D). 
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Table 2 

Comparisons between the reliability of peak amplitudes and corresponding 

pointwise amplitude for AEP, SEP, VEP, and P300. 

ERPs Measurements Reliability p -value 

Mean Conf 

AEP(Cz) N1 0.50 [0.31,0.68] < 10 −12 ( ∗ ∗ ∗ ) 
90ms 0.54 [0.34,0.70] 

P2 0.56 [0.39,0.68] 2 . 8 × 10 −8 ( ∗ ∗ ) 
180ms 0.58 [0.43,0.70] 

133ms 0.76 [0.68,0.85] 

SEP(Cz) N2 0.54 [0.38,0.68] < 10 −12 ( ∗ ∗ ) 
150ms 0.57 [0.43,0.71] 

P2 0.64 [0.52,0.78] 2 . 2 × 10 −8 ( ∗ ) 
245ms 0.66 [0.54,0.79] 

110ms 0.70 [0.60,0.83] 

VEP(Oz) N1 0.41 [0.22,0.58] < 10 −12 ( ∗ ∗ ∗ ) 
64ms 0.48 [0.34,0.62] 

P2 0.54 [0.33,0.69] < 10 −12 ( ∗ ∗ ∗ ) 
185ms 0.73 [0.61,0.84] 

183ms 0.74 [0.62,0.84] 

P300(Pz) P3 0.44 [0.24,0.63] < 10 −12 ( ∗ ∗ ∗ ) 
345ms 0.50 [0.31,0.66] 

223ms 0.61 [0.48,0.73] 

n  

n  

t  

A  

n  

t  

s  
ility along with the ERP time courses. Since the subjects were more

amiliar with the experimental environment in the second session, the

mplitudes of the ERP peaks were reduced. Importantly, the most re-

iable time point in the ERP did not correspond to the ERP peak. For

300 shown in Fig. 3 D, the maximal reliability time point in the point-

ise analysis appeared at 223 ms (thick black line), with a reliability of

.61. This was much earlier than the well-known P3 component in the

eak-based analysis, with the reliability of 0.44. 

From each violin plot, the high reliability depended on (1) the con-

istency of individual ranks between two sessions and (2) the large

etween-subject variances. Taking the pointwise ICC results in AEP for

xample, the amplitude of ERP showed comparable inter-subject vari-

nce at time point 90 ms, 133 ms and 180 ms. But at 133 ms, the less in-

erleaving between session 1 and 2 leads to a higher value of ICC (0.76)

s compared with the other two time points. Taking the pointwise ICC

esults in VEP for another example, the inter-subject variances at 64 ms

as relatively lower than time points at 183 ms and 185 ms, thus its

eliability was much lower. 

The comparison between the reliability results of the peak-based

nalysis and the pointwise analysis at corresponding time points were

hown in Table 2 , in which the peak amplitude was significantly ( 𝑝 <

0 −4 ) less reliable than the corresponding pointwise amplitudes at the

atency of the grand average for all four types of ERPs. 

.1.2. Spatiotemporal evaluation of reliability: a case study of AEP 

Next, AEP was used to further investigate the consistency between

roup effects and reliability with different exploratory analyses (results

or other types of ERPs are provided in the supplementary material

Fig. S(1–4))). As illustrated in Fig. 4 A, the t -value of significant regions

 𝑝 −value < 0 . 05∕1000∕64 with Bonferroni correction, where 1000 is the
5 
umber of post-stimulus time points, and 64 is the number of chan-

els) were presented in the shaded region, which was consistent with

he amplitude of the grand average waveform. Also, the post-stimulus

EP response behaved as a process of attenuating oscillations and fi-

ally approached the baseline. In contrast, the reliability of AEP after

he stimulation shown in Fig. 4 B increased greatly at the beginning of

timulation, lasting for a certain period, and then slowly returned to 0.
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Fig. 3. Grand average waveform and the test-retest reliability result for AEP, SEP, VEP, and P300.The left part is the grand average waveform for the four types of 

ERP, shaded by the standard deviation in both 1st session (in red) and 2nd session (in blue). The gray shaded interval indicates the interval between the negative 

and positive peaks. The thick black line indicates the time point for the maximum ICC value. On the right part, the violin plot shows the amplitude distribution and 

change of amplitude for each subject between two sessions for both pointwise comparison and peak-based comparison. 

6 
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Fig. 4. The test-retest reliability analysis for AEP at electrode Cz. (A) The grand average waveform of AEP. (B) Pointwise test-retest reliability analysis considering 

the entire shape of the AEP time-course calculated by ICC(A,1). (C) The variance in the observation matrix with the size of subject × experiment was decomposed 

into three parts: 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) , 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) , and 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) by a two-way random effects model along with the AEP time-course. Scatter plots of 82 subjects’ amplitudes 

of AEP at Cz in the two experiments were compared between 180 and 133 ms in (D) and between 180 and 350 ms in (E). 
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ence, the reliability of AEP along the ICC temporal profiles was not

orrelated with the amplitude of AEP. The maximal reliability of 0.78

ppeared at the time point 133 ms, with the mean amplitude of AEP

lose to 0, which did not correspond to N1 at 90 ms or P2 at 180 ms

ith the minimal/maximal amplitude. The topographies of the grand

verage amplitude and the reliability at 90, 133, and 180 ms are illus-

rated in Figs. 4 A and 4 B. 

Pointwise variance decomposition results based on a two-way

NOVA are shown in Fig. 4 C. The magnitude of 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) was close

o 0 before the stimulation. At the beginning of stimulation, the magni-

ude of 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) reached a peak at 180 ms and then returned to 0. The

ocal maximum of 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) did not correspond to the peak of AEP. The

agnitude of 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) showed similar trends as 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) , but the

aseline was not 0. During the first 400 ms after stimulation, there was a

ertain correspondence between the waveform of AEP and 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) .
he peak of AEP corresponded to the local maximum of 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) ,
hile the zero-crossing point of AEP corresponded to the local minimum

f 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) . Compared with 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) and 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) , the magni-

ude of 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) was too small and had little impact on reliability.

ence, the reliability was mainly determined by the ratio of 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 )
o 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) . Next, the time points of 133, 180, and 350 ms were se-

ected for the comparison, in which 180 ms corresponded to the peak

f the grand average of AEP, while 133 and 350 ms corresponded to

he local maximum of the reliability. It should be noted that, due to the
 t  

7 
nsufficient session number ( 𝑛 = 2 ), the estimation of 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) would

ossibly be negative, which was deeply elaborated in the supplementary

aterial (Fig. S5). 

Fig. 4 D shows the comparison of the scatter plots of 82 subjects’

mplitude of AEP between time points 133 ms (diamonds) and 180 ms

asterisks). As 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) was close to 0, 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) could be measured

s the variance along the black diagonal line, and 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) could be

easured as the variance perpendicular to the black diagonal line. As

hown in Fig. 4 D, the mean amplitude of AEP at 133 ms (mean value of

he diamonds) was much smaller than that at 180 ms (mean value of the

sterisks), but the 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) values at the two different time points were

imilar. Hence, the reliability at 133 ms was larger than that at 180 ms

ecause of the smaller 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) at 133 ms. Fig. 4 E shows a different

ituation compared with that shown in Fig. 4 D. The reliability at 180 ms

asterisks) and 350 ms (circles) were similar, but both 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) and

 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) at 350 ms were smaller than that at 180 ms. 

.1.3. Statistical results 

Spatiotemporal dissociation between group effects and individual re-

iability was revealed in Fig. 3 and Fig. 4 . These findings went against

ur expectations, given the fact that extracting peak-based measures us-

ng group-level prior information was the most common approach in re-

iability analysis. Hence, Spearman’s rank correlation analysis was fur-

her performed on AEP, SEP, VEP, and P300 to analyze the statistical
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Table 3 

Associations between group-level measures (abs( t -value), Hilbert envelope), individual-level 

measure (between-subject variance), and reliability. 

ERPs abs( t -value) Hilbert envelope between-subject variance 

Spearman’s 𝜌 p -value Spearman’s 𝜌 p -value Spearman’s 𝜌 p -value 

AEP (Cz) − 0.19 3 . 04 × 10 −5 0.27 < 10 −12 0.36 < 10 −12 

SEP (Cz) 0.38 < 10 −12 0.51 < 10 −12 0.71 < 10 −12 

VEP (Oz) 0.17 0 . 002 0.12 0.017 0.75 < 10 −12 

P300 (Pz) 0.54 < 10 −12 0.74 < 10 −12 0.84 < 10 −12 

Fig. 5. The test-retest reliability analysis for simulated ERP. (A) The grand average waveform of simulated ERP for a given set of system parameters. (B) Pointwise 

test-retest reliability analysis along with the simulated ERP time course. (C) The variance of observation matrix with the size of the subject by experiment was 

decomposed into three parts: 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) , 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) , and 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) by a two-way random effects model along with the simulated ERP time-course. Scatter plots of 

82 subjects’ amplitudes of AEP at electrode Cz in two experiments were compared between 134 and 164 ms in (D) and between 134 and 229 ms in (E). 
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elationships of reliability with the group-level measures (abs( t -value)

nd Hilbert envelope) and individual-level measure (between-subject

ariance). For group-level measures, it was observed that the Hilbert

nvelope showed a larger correlation coefficient with reliability than

he abs( t -value) except for VEP. This result suggested an oscillation per-

pective on ERP reliability should be considered. For individual-level

easure, Spearman’s 𝜌 between between-subject variance and reliabil-

ty was greatly improved ( Table 3 ). 

.2. Reliability of simulated data 

.2.1. Simulation results 

To further understand the internal factor influencing the reliability

n ERP analysis, a dynamic model in Eq. (3) was used for the simula-

ion. The simulation results in Fig. 5 were consistent with the results
8 
rom real ERP data in Fig. 4 . Specifically, the grand average waveform

f the simulated ERP is shown in Fig. 5 A, with a peak of 134 ms and

ubsequent zero crossings appearing at 164 and 229 ms. The reliability

urve across time is shown in Fig. 5 B, and the corresponding variance

ecomposition is shown in Fig. 5 C. In the simulation, the correlation

etween 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) and the amplitude of the ERP was more obvious.

 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) was close to 0 because the systematic differences between

he two sessions were not considered in this simulation. Hence, the re-

iability at the peak latency was the local minimum, and the reliability

t the zero-crossing point was the local maximum. Similarly, the scatter

lots in Figs. 5 D and 5 E show that the larger amplitude of the ERP may

ot necessarily lead to greater reliability, which was determined by the

atio of 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) to 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) . 
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Fig. 6. The influence of increasing the variability of inter-subject latency jitter of the dynamic system at the subject-level on (A) Grand average waveform of simulated 

ERP. (B) Pointwise test-retest reliability along the time-course of simulated ERP. (C) 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) along the time-course of simulated ERP. (D) 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) along the 

time-course of simulated ERP. (E) Comparisons between peak-based reliability and pointwise reliability at group-level peak latencies. (F) Comparisons between the 

maximum value of pointwise reliability and peak-based reliability. 
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.2.2. The influence of the variability of jitter: 𝜏sub 

As a tangential disturbance in the phase portrait of Eq. (3) shown in

ig. 2 , an increase in 𝜏𝑠𝑢𝑏 did not make a large difference in the wave-

orm of the grand average ERP in the simulation, but it made the peak of

1 and N2 smoother. As 𝜏𝑠𝑢𝑏 increased from 0 to 20, the amplitude of the

eak P1 reduced slightly, as shown in Fig. 6 A. As illustrated in Fig. 6 B,

he reliability of the peaks at 134 and 194 ms remained around 0.7,

hile the reliability of the zero-crossing points at 164 and 229 ms in-

reased greatly. As inter-subject latency jitter increased, the ICC values

t 134 and 194 ms, which corresponded to the peaks of the grand aver-

ge waveform, gradually shifted from the peaks of the ICC temporal pro-

les to their local minimum. The ICC values at 164 and 229 ms, which

orresponded to the zero-crossing point, behaved conversely. The corre-

ponding variance decomposition is shown with different values of 𝜏𝑠𝑢𝑏 
n Fig. 6 (D–E). 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) at the zero-crossing point (164 and 229 ms) of

he grand average waveform increased as inter-subject latency jitter in-

reased, while 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) fluctuated randomly. In comparison with the

eliability of the peak amplitude, there was a greater difference between

he maximum values of the ICC temporal profiles and the reliability of

he peak amplitude. 

.2.3. The influence of the variability of input power: 𝜎trial 

For normal perturbation in the phase portrait of Eq. (3) in Fig. 2 ,

t is shown in Fig. 6 B that the overall magnitude of the ICC temporal

rofiles dropped because of increasing inter-trial variability in the dy-

amic systems’ input, while the reliability in the response amplitude at

34 and 194 ms, which corresponded to the peak latencies of the grand

verage waveform, dropped more quickly compared with the reliabil-

ty of the response amplitude at 164 and 229 ms, exhibiting an unbal-

nced influence. The above observations were further investigated by
9 
ointwise variance decomposition, in which the within-subject varia-

ion ( 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) ) increased systematically in proportion to the signal

mplitude of the grand average waveform with increasing inter-trial

ariability, while the between-subject variation fluctuated randomly,

hus explaining why the reliability of the signal with larger amplitude

ecreased more. Interestingly, it can be noted from Fig. 6 F that there

as a larger difference between the maximum values of the ICC tem-

oral profiles and the reliability of the peak amplitude as the inter-trial

ariability increased. 

. Discussion 

The purpose of this study was to investigate the relationships be-

ween group effects and individual reliability across different types of

RPs. By performing pointwise reliability analysis and rigorous simula-

ion, we found inconsistency between individual reliability and group

ffects and provided potential explanations from the perspective of os-

illations of ERP. The findings have implications for a series of questions

hat are of theoretical and practical relevance for ERP researchers, which

ill be discussed sequentially. 

.1. Peak-based analysis versus pointwise analysis 

By briefly reviewing the ERP reliability research in the past decade

n Table 4 , we think it is necessary to re-emphasize that we should not

estrict analysis in narrow time windows around peaks, especially for

esearch about the individual difference. Until now, peak-related fea-

ure extraction (i.e., peak amplitude, area under the curve, mean am-

litude) has been a dominant approach for examining the reliability

f ERPs ( Huffmeijer et al., 2014 ; Munsters et al., 2019 ; Devos et al.,
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Table 4 

Literature review on ERP reliability from 2011 to 2021. 

ERP reliability research 

Gaspar et al., 2011 Grand average ERPs can be misleading because it does NOT reflect individual dynamics. 

Not only around the peak, but also entire temporal windows are reliable. 

Cassidy et al., 2012 Reliability of peak and latency for a selected range of ERP components were evaluated. 

Leue et al., 2013 Intra-individual N2 variability incorporated systematic variance. 

Huffmeijer et al., 2014 ERP amplitudes generally showed adequate to excellent test-retest reliability. 

Averaging across several electrodes or trials improved the reliability of P3 amplitude. 

Ip et al., 2018 ERP measures exhibited more variation and are less stable compared to continuous EEG. 

Munsters et al., 2019 The face-sensitive ERP components (i.e. N290, P400, and Nc) in infants show adequate test-retest reliability 

Our research 

• The peak-based analysis may not be sufficiently reliable to capture the individual difference. 

• A perspective of neural oscillations is more peak-based analysis to explain the inconsistency between group effects and individual reliability. 

• A simulation model is applied to investigate underlying factors of modulating the consistency between the group effect and individual reliability. 
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020 ). For the peak-based approach, researchers have found that the

eliability of ERPs is influenced by the number of trials, channel se-

ection, and various preprocessing strategies ( Huffmeijer et al., 2014 ;

eue et al., 2013 ). The basic hypothesis behind the peak-based anal-

sis is that the peak of the ERP indicates a higher signal-to-noise ra-

io, which produces results with a higher confidence level because of

he relatively small interference from background EEG noise, yet this

oncept of signal-to-noise ratio may not generalize to the research area

nterested in individual difference, in which between-subject variance

s treated as the signal, within-subject variance is treated as noise, as

entioned by ( Brandmaier et al., 2018 ). Another limitation of the peak-

ased analysis is that the latency and amplitude of ERP peaks, as well

s the entire ERP shapes, are physiologically meaningful and important

 Gaspar et al., 2011 ). 

Further, we also observed the phenomenon that ERP shapes in dif-

erent sessions for the same subject were quite similar, while ERP shapes

or different subjects were largely different, which may reflect that the

nformation processing underlying ERP is unique to each subject. We be-

ieve future ERP research should not restrict its analysis in narrow time

indows around peaks, but develop analysis techniques to characterize

he ERP shape, which is useful in translational neuroscience. 

.2. Inconsistency between group effects and individual reliability 

Stronger group effects do not guarantee higher individual reliability.

n reliability analysis, the group effects are commonly used as prior in-

ormation ( Plichta et al., 2012 ; Aron et al., 2006 ; Fliessbach et al., 2010 ),

hich assumes that experimental manipulation eliciting greater activa-

ion at the group level should also show reliable between-subject vari-

tion. This conventional approach has been questioned in recent years,

specially in the fMRI community ( Fröhner et al., 2019 ; Infantolino et al.,

018 ; Yarkoni and Braver, 2010 ; Li et al., 2019 ). In line with these stud-

es, our results also revealed inconsistency between group effects and

ndividual reliability in ERP analysis. More specifically, concerning the

emporal domain discrepancies illustrated in Fig. 3 , the most reliable

oints in the four types of ERPs (Cz for AEP, SEP, Oz for VEP, and Pz

or P300) did not all correspond to maximum or minimum points of

roup-level activations. For AEP, the most reliable point appeared at

he zero-crossing point of ERP. The spatial domain discrepancies are il-

ustrated in Fig. 4 for AEP, in which we did not find the topography of

he AEP response corresponding to the topography of the reliability at

33 and 350 ms. Further analysis, presented in Table 1 , indicated that,

s an individual-level measure, the between-subject variance showed

 higher correlation coefficient than the group-level measure (abs( t -

alue)) across all four types of ERPs. All these evidences suggest that it

s not advisable to select peak-related features at the electrode showing

he strongest group effects without carefully examining their reliability.

Intuitively, the spatial-temporal distribution of group-level analyses

nd individual-level analyses should tend to converge. In other words,

ncreased activation by experimental manipulation at the group level
10 
hould relate to individual-level analysis, given a large enough sam-

le size and no confounding factors. However, few empirical pieces

f evidence support this idea ( Lee et al., 2006 ); more often, individ-

al difference analyses simply fail to reveal any significant effects in

egions that show a robust within-subject effect ( Vetter et al., 2017 ;

aemaekers et al., 2007 ). In this research, the simulation results indi-

ate that the consistency between group-level effects and individual re-

iability may be dynamically modulated by inter-subject latency jitter

nd inter-trial variability of dynamic system input, providing a dynamic

iew of the relationships between the two types of analysis in ERP anal-

sis. 

Spatiotemporal evaluation and decomposition of reliability are good

or identifying the reproducible individual difference. In this research,

t was found that the high signal-to-noise ratio assumption for the peak

f ERP did not hold when considering individual difference research,

hich was also mentioned by Brandmaier et al. (2018) . As illustrated in

ig. 4 , the variance of the noise (blue curve in Fig. 4 C) was highly cor-

elated with the magnitude of the AEP response (absolute value of the

lack curve in Fig. 4 A). Considering that the essence of EEG is neural

scillation, the peak in the ERP is just a certain phase (0 or 𝜋) dur-

ng the oscillation. There is nothing more special about it compared to

ther phases. Hence, there is no reason why reliability analysis should

e limited to peak-based features; pointwise analysis can bring us more

omprehensive results. As compared with t -test or ANOVA, the point-

ise analysis of test-retest reliability did not have the family-wise er-

or rate problem, as we calculated the ICC values but did not judge

hether there was a significant difference. Compared with peak-based

nalysis, the results from the pointwise analysis always had significantly

igher ICC values at the time point of the peaks for all four types of ERP

nalysis in our investigation. In the test-retest reliability of AEP, SEP,

EP, and P300, the pointwise analysis consistently showed that the ICC

alue increased greatly after the stimulation, and after maintaining it

or a while, decreased slowly to the baseline ( Fig. 4 ). Hence, the peak

f ERP may not relate to a higher ICC value. Even in AEP, the two lo-

al maximum points of the ICC value corresponded to the two zero-

rossing points of the AEP. The findings suggest that reliability analysis

estricted by the narrow time windows around the peaks is questionable.

y performing pointwise analysis, dynamic changes in reliability in the

patial-temporal domain can be traced, given enough sample size, thus

roviding a new angle of ERP reliability analysis in a data-driven man-

er. Also, agreeing with the opinions of Gaspar et al. (2011) , we believe

hat shape-based metrics rather than peak-based metrics may be more

eliable for individual difference research. 

To translate group effects into individual difference research, some

ssues must be reconsidered in ERP data analysis. ERP analysis focusing

n individual difference often implicitly or explicitly uses prior informa-

ion from group effects. For reliability analysis, electrodes showing the

trongest stimulus-related activity by group-level analysis are often cho-

en for test-retest reliability analysis of ERPs ( Gaspar et al., 2011 ). For

onstructing single-subject predictive models, it has been done in trans-
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Fig. 7. The influence of increasing the variability of input power of the dynamic system at the trial-level on (A) Grand average waveform of simulated ERP. (B) 

Pointwise test-retest reliability along the time-course of simulated ERP. (C) 𝑉 𝑎𝑟 ( 𝑇 𝑟𝑎𝑖𝑡 ) along the time-course of simulated ERP. (D) 𝑉 𝑎𝑟 ( 𝑁𝑜𝑖𝑠𝑒 ) along the time-course 

of simulated ERP. (E) Comparisons between peak-based reliability and pointwise reliability at group-level peak latencies. (F) Comparisons between the maximum 

value of pointwise reliability and peak-based reliability. 
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ating findings in group-level statistics of ERPs into a machine learning

ramework ( Boshra et al., 2019 ). Hence, here we discuss some critical

ssues about ERP data analysis concerning the use of group effects in

ndividual difference research. 

• Tracing back to history, the original idea of ERPs was to index spe-

cific cognitive processes rather than distinguishing different individ-

uals (i.e., the research interest was how brain activity responds to

one condition versus the other). Individual differences were treated

as measurement error that could not be explained by experimental

manipulation, as t -test, omnibus ANOVA assumes. From this perspec-

tive, there is no reason to select regions based on strongest group ef-

fects and then feed them into the correlation or reliability analysis,

except that this region also shows greater between-subject variation

and smaller within-subject variation. 

• For the data analysis pipeline of ERPs, it is very common to per-

form the subtraction operation (e.g. ERP difference waves) to mini-

mize the impact of baseline individual differences. Such operations

forcibly promote the activity of the baseline period at a constant rate

across individuals, and the goal is to obtain a reliable experimental

effect at the group level. This pervasive practice was inherited from

research focusing on experimental effects, but few studies have no-

ticed whether this approach is reasonable for individual difference

analysis. Recently, the fMRI and psychology communities have ar-

gued that difference scores often exhibit a robust group-level effect

but lower reliability ( Infantolino et al., 2018 ; Onie and Most, 2017 ).

Considering statistical analysis, typically, ERP data are averaged

ithin conditions and participants after preprocessing and then ana-

yzed for the mean difference between conditions using paired t -test

r repeated-measures ANOVA. This traditional approach implicitly as-
11 
umes that experimental manipulation yields uniform effects across all

articipants. The random variance of individual difference in effect sizes

s not taken into account. By adopting linear mixed-effect models, in

hich random effects are used to capture individual variability as a form

f random slopes or random intercepts, fixed effects are estimated by the

rand mean across all participants. Such an approach has been adopted

o simultaneously capture both group effects and individual difference

 Frömer et al., 2018 ; Tibon and Levy, 2015 ). 

.3. A neural oscillation perspective on ERP reliability 

Both peak and zero-crossing points of ERPs just represent different

hases of one unified oscillation process. To further understand spatial-

emporal inconsistency between group-level effects and individual re-

iability in ERP analysis, a dynamic model was applied for the simula-

ion. The simulation model was simplified to be a second-order linear at-

ractor with noise to simulate the EEG oscillation. From the perspective

f dynamic system theory ( Jansen and Rit, 1995 ; Youssofzadeh et al.,

015 ), peaks in the EPR are just an observation of EPR from one dimen-

ion of the computational models of neural processes. The phase portrait

f our simulations ( Fig. 2 ) provides a more comprehensive perspective,

n which the peaks are just some special phases during the neural os-

illation. Consider the oscillation of the ERP response as the trajectory

n the 2-dimensional phase portrait as illustrated in Fig. 2 C, the ERP

esponse we observed is the projection of this trajectory on the axis of

 1 . Hence, the peaks, troughs, and zero crossings have no special mean-

ng, but some specific phases when the trajectory rotates along with the

rigin. The value of σtrial will affect the magnitude of the ERP trajec-

ory. Hence σtrial determined the disturbance normal to the trajectory of

he ERP response. While the value of 𝜏 will affect the time of trajec-
𝑠𝑢𝑏 
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ory of the ERP response. Hence 𝜏𝑠𝑢𝑏 determined the disturbance tangent

o the trajectory of the ERP response. Owing to the different directions

nd different levels of the two factors, the simulation result showed that

he changes of these two factors played very different roles in different

hases of ERP, which can be illustrated by Fig. 6 and Fig. 7 , especially at

he peak and zero-crossing points of the ERP, with the changes of these

wo factors. In summary, With the similar wave form of the group-level

RP, the reliability would be determined by several factors. Measuring

he peak-based features would not provide a comprehensive understand-

ng about the oscillations in ERP. 

Considering that stronger group effects do not guarantee higher in-

ividual reliability and the oscillation nature of ERP, the Hilbert trans-

orm was performed on trial-averaged data for each subject. The results

n Table 3 suggest the Hilbert envelope is more consistent with relia-

ility compared with the abs( t -value), which reflects the oscillation na-

ure of ERP. The consistency between the grand averaged envelope of

ilbert transformed data and the reliability of ERP waveform for four

inds of ERPs without Bonferroni correction can be found in Fig. S7 in

he supplementary material. For AEP, SEP, VEP, and P300, compared

ith the grand average ERP waveform, the grand average envelope of

ilbert transformed data is more consistent with individual reliability

nd shows a larger correlation coefficient, especially for AEP and SEP.

hese results further solidify the oscillation nature of ERP. 

.4. Limitations 

Our research on reliability analyses had several limitations. First,

igher reliability does not ensure higher validity. The fact that the re-

ponse amplitude at some time points was more reliable than the peak

mplitude may be explained by sacrificing validity. More specifically,

ach subject’s response amplitude at a given time point may index dif-

erent neurophysiological processes, leading to larger between-subject

ariance. Increasing reliability in this way is not desirable because the

nderlying process of this measure is different across subjects. However,

e cannot verify this potential explanation without behavioral data.

econd, the insufficient section number ( 𝑘 = 2 ) would leads to an in-

ccurate estimation of 𝑉 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) , which make the negative value of

 𝑎𝑟 ( 𝑆𝑡𝑎𝑡𝑒 ) possible in the practical calculation. Third, our analysis was

estricted to univariate features; the relationship between group-level

ffects and individual reliability concerning multivariate analysis war-

ants further investigation in the future. 

. Conclusion 

In summary, the purpose of this research was to investigate the con-

istency between group effects and individual reliability of ERPs. We

erformed spatiotemporal evaluation and decomposition of reliability

n four different ERPs, and the findings indicate that the peak-based

pproach (i.e., selecting regions showing the strongest group-level re-

ponse as individual difference variables) may be inappropriate for re-

iability analysis of ERPs. Without carefully examining reliability, this

pproach based on group-level prior information may fail to reliably

apture individual differences, which is supported by spatiotemporal

issociation between group effects and individual reliability. The disad-

antages of peak-based reliability analysis were illustrated by spatiotem-

oral evaluation and decomposition of reliability, statistical results, and

he phase portrait in the simulation model. Further, the simulation re-

ults highlight the modulation role of inter-subject latency jitter and

nter-trial variability in modulating the consistency between group-level

ffects and individual reliability. To conclude, all these results provide a

ew perspective beyond peak-based analysis in the ERP reliability stud-

es. Furthermore, the findings deepen our understanding of ERP gener-

tion and the reliability of ERPs. 
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