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ABSTRACT

Emotions, formed in the process of perceiving external environment,
directly affect human daily life, such as social interaction, work
efficiency, physical wellness, and mental health. In recent decades,
emotion recognition has become a promising research direction
with significant application values. Taking the advantages of
electroencephalogram (EEG) signals (i.e., high time resolution) and
video-based external emotion evoking (i.e., rich media information),
video-triggered emotion recognition with EEG signals has been
proven as a useful tool to conduct emotion-related studies in a
laboratory environment, which provides constructive technical
supports for establishing real-time emotion interaction systems. In
this paper, we will focus on video-triggered EEG-based emotion
recognition and present a systematical introduction of the current
available video-triggered EEG-based emotion databases with the
corresponding analysis methods. First, current video-triggered EEG
databases for emotion recognition (e.g., DEAP, MAHNOB-HCI,
SEED series databases) will be presented with full details. Then, the
commonly used EEG feature extraction, feature selection, and
modeling methods in video-triggered EEG-based emotion
recognition will be systematically summarized and a brief review of
current situation about video-triggered EEG-based emotion studies
will be provided. Finally, the limitations and possible prospects of
the existing video-triggered EEG-emotion databases will be fully
discussed.

1 Introduction

interacting with the external stimuli like
environmental changes. Emotions reflect the

Emotions are the psychological and mental states ~ underlying motivation and consciousness of
formed in the process of perceiving and human behaviors and have a direct impact on the
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establishment and maintenance of interpersonal
relationships, cognition, decision-making, work
efficiency, and other interactive activities [1].
Previous studies found that many diseases, such
as depression, autism, gaming disorder,
Alzheimer’s, and coronary artery disease are
closely accompanied by cognitive and emotional
disorders [2—4]. Disrupted by uncoordinated fast
pace of life and high pressure of social
competition, increasing number of people have
difficulty regulating their affective balance. Being
under negative emotions for a long period will
eventually affect our physical and mental health,
resulting in a sharp decline in the quality of life
and happiness index. Therefore, the study of
affective computing is of great significance and
real-time emotion recognition has become one of
the research hotspots.

With rich media information on both visual
and auditory stimuli, video-based emotion
triggering approach offers a favorable technical
support for realizing real-time emotion evoking
and recognition in a laboratory environment.
Similarly, due to the benefits from the
outstanding characteristics of its high time
resolution and fast transmission speed, electro-
encephalogram (EEG) signals have been proven
to be a useful tool for human emotion decoding
in the field of affective computing. Due to the
EEG

video-based emotion triggering, our paper will

numerous benefits of signals and

mainly focus on video-triggered emotion
recognition using EEG signals. We will first
introduce the background of emotion recognition
in Section 2. Then, more details about the current
available video-triggered EEG-emotion databases
will be introduced in Section 3. Next, the
commonly used methods in EEG signals analysis
and emotion recognition modeling will be
presented in Section 4 and Section 5, respectively.
In Section 6, current limitations and future trends
of video-triggered EEG-based emotion studies

will be fully discussed.

Brain Sci. Adv.

2 Basic information about emotion recog-
nition

2.1 Emotion model

In the existing researches, emotions are usually
characterized by two types of models: discrete
and dimensional emotion models.

In the discrete emotion model, researchers
assume that all types of emotions can be well
described by a specific subset of basic
emotional states. For example, Plutchik et al. [5]
claimed that there were eight basic emotions,
namely anger, fear, sadness, disgust, surprise,
happiness, trust, and expectation as shown in
Fig. 1(A). Ekman et al. [8] also claimed that
there were only six basic emotions, namely
anger, disgust, fear, happiness, sadness, and
surprise. However, the defined basic emotions
may fail to reflect the complexity and diversity
of emotional states due to its limited numbers.
Also, it was found that discrete emotion model
has many limitations in practical applications
when quantifying the emotional type and
intensity [7, 9]. On the other hand, dimensional
emotion model provides a more effective way
to quantify and characterize the type and
intensity of emotions from multiple dimensions
(e.g., valence, arousal, and dominance). Here,
valence refers to the emotional type of
pleasantness or unpleasantness. Arousal mea-
sures the intensity of evoked emotions, where
excitement is characterized as a high arousal
value while boredom with a low one.
Dominance reflects the controlling or sub-
missive nature of emotion. In current studies,
the most frequently used dimensional model is
the Russell’s valence-arousal (VA) dimensional
model [10] shown in Fig. 1(B). In this model, fear
could be characterized as an emotion of engative
valence and high arousal; joy could be described

as an emotion with positive
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Fig. 1 Emotion models. (A) Plutchik’'s Wheel of Emotions. Reproduced with permission from Ref. [6], ©Springer Nature. (B)

Valence-arousal dimensional model. Reproduced with permission from Ref. [7], ©MDPL

valence and high arousal. Valence-Arousal-
Dominance model is another popular dimen-
sional model obtained by adding dominance
dimension into VA model [9, 11]. It is evident
that dimensional emotion model provides a
quantitative expression of emotions, thereby,
presenting the emotion information in a more
objective and accurate way and providing

benefits to emotion recognition modeling.
2.2 Emotion evoking methods

Various emotion evoking methods have been
exploited in emotion recognition studies. A
properly selected emotion-evoking method
directly affects the quality of the collected data.
The selection of appropriate stimulation
materials for conducting suitable and effective
emotion evoking experiments is one of the key
points in emotion recognition. According to the
sources of emotion evoking materials, emotion-
evoking methods can be roughly divided into
internal and external stimuli [12, 13]. Table 1
introduces different evoking methods used in
emotion recognition studies with their correspon-
ding experimental designs.

Internal stimuli refer to self-recall of personal
experiences or self-imagination under the
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guidance of experimental instructions. For
example, Kothe et al. [24] carried out a 3-5 min
scene imagination emotion-inducted experiment.
Twelve subjects (25 + 5 years old) were in a state
of deep relaxation with their eyes closed. Under
the guidance of verbal instruction, they were
instructed to operate scene recall or imagination
to induce 12 specified types of negative emotions
(e.g., anger, jealousy, depression, fear, sadness,
and worry) and positive emotions (e.g., love,
happiness, relief, satisfaction, and awe). Based on
a sparse feature-selecting classifier, Kothe et al.
achieved the recognition accuracy of 71.3% for
binary valence classification. Different from other
experimental designs that only relied on
self-induction, Zhuang et al. [15] incorporated
external video stimuli into self-recall experiments
to enhance the efficiency of self-induced emotion
responses. Specifically, 30 subjects comprising of
20 males and 10 females between 18 and 35 years
old recalled specific scenes of each film with their
eyes closed after watching emotion-induced
videos. Specific emotions were triggered, such as
happiness, neutral, sadness, disgust, anger, and
fear. Zhuang et al. established a cross-participant
emotion classifier based on support vector
machines (SVM) and achieved mean accuracy
of 54.52% for classification on 6 discrete emotions
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Table1 Experiment protocol of emotion evocation methods.

Trigger Stimuli Experimental protocol Ref.
Internal Recall or imagination Displayed instruction pictures with positive, negative, or neutral [14]
stimuli hints randomly and recalled relevant events within 8 s for

triggering the emotion shown on the hint.

Specific scenes recall Watched a 1-3 min movie clip and recalled specific scenes within 1 [15]
min to evoke specific emotions, such as happiness, neutral,
sadness, disgust, anger, or fear.

External 180 pictures from IAPS Took a 4 s rest before each experiment, and then displayed 1.5 s [16]
stimuli emotional pictures randomly. There was a 0.5 s rest between any
two experiments.

30 pictures from IAPS Displayed emotional pictures for 5 s in a random sequence and [17]
triggered neural, positive, and negative emotions with high
arousal. Valence and arousal ratings were evaluated by self-report
using Self-Assessment Manikin (SAM) scale.

16 original soundtrack music Played 16 soundtrack music for 30 s in a random sequence. [18]

from Oscar movies Participants reported their emotions in terms of valence and
arousal and gave the emotion label, such as joy, anger, sadness,
and pleasure, to the present soundtrack music.

40 movie sound Participants listened to randomly played music for 12 s and [19]

(emotions to be triggered: joy, reported their emotion state by answering 8 random questions

happiness, tenderness, vitality, ~ from Likert.

sadness, fear, anger, and

tension)

40 music videos with 1 min  Participants watched 1-min music videos and reported their [20]

duration for each video emotion level in terms of valence, arousal, dominance, and liking
on SAM.

72 movie clips with 2 min Used 72 movie clips to trigger happy, sad, fearful, and neutral [21]

duration for each video emotions, which were presented randomly. Participants reported
their emotion state in terms of valence and arousal using a 10-point
scale SAM.

18 movie clips: Started with a neutral video as the baseline, and played movie clips [22]

emotions to be triggered are randomly. After each movie, participants reported their emotions

fear, anger, disgust, sadness, N terms of valence, arousal, and dominance using a 5-point scale

calm, joy, excitement, entertain- SAM.

ment, and surprise

15 Chinese movie clips that After watching each 4-min video, participants answered questions [23]

reflect positive, negative, and
neutral emotions

from Philippot questionnaire: 1) how they felt after video
watching; 2) whether they had seen the video before, and 3)
whether the video content was easy to understand.

(i.e., happiness, neutral, sadness, disgust, anger,
fear). An
classification accuracy of 87.36% was achieved

and increased  cross-participant
for binary emotion recognition (i.e., positive
emotions: happiness; negative emotions: sadness,
disgust, and anger).

However, due to the individual differences in
age, culture, habits, growth experience, person-

ality, and emotional perception, there are still
many limitations of internal stimuli in emotion
evoking. Also, it was found that emotions evoked
by internal stimuli were mostly negative or
mixed emotions [25], hence, it would be difficult
to ensure that a specific emotion was accurately
triggered.

emotion  stimuli

External mainly utilize

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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materials like pictures, music (or sounds), and
videos for emotion evoking. Since pictures or
music can only provide participants with visual
or auditory stimuli, the intensity of evoked
emotion is limited. On the other hand, videos
provide much richer stimulation information
with both visual and auditory stimuli, which
could be more suitable for triggering specific
emotions in a more efficient, accurate, and vivid
approach in a laboratory environment [23, 26].
Ellard et al. [27] verified the effectiveness of
emotion triggering experiments induced by
pictures, music, and movie clips in a laboratory
With the ANOVA results of
Self-
Assessment Manikin (SAM) scale, Positive and
Negative Affect Schedule (PANAS), and Personal
Relevance Scale, Ellard et al. found that video

environment.

different self-evaluation indicators like

stimuli resulted in better performance of emotion
induction in a laboratory environment. Thus,
compared with other evoking materials such as
pictures and music (or sounds), video-based
external stimuli provide useful technical supports
for effective emotion-inducing in the laboratory
and help participants to have a stronger sense of
substitution and

rapidly respond to the

triggering materials.
2.3 Emotional information acquisition

Both and emotion

recognition algorithms could be used to develop

computer technology

an emotional human-computer interaction
system for real-time emotion recognition and
regulation. The decoding of emotion information
in such human—computer interaction system is
mainly based on subjective self-report from
participants (i.e., self-perception of the emotional
state), external expressions (namely tone, volume,
facial expression, gesture, etc.) [28-30], and
internal expression (i.e., spontaneous physiological
signals) [31]. Here, subjective self-report refers to

individual descriptions and ratings. However, it
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is difficult to guarantee the validity and accuracy
of subjective self-report as participants may fail
to accurately describe their subjective feelings
and there may exist individual differences in
perceptions of emotions as well [28, 32]. There
are similar consciously controlled, restrained, or
disguised problems in external behavioral
expressions. Due to their low validity and
authenticity,

provide

external behavioral expressions

conscious and indirect emotional
information [33] and show obvious individual
differences influenced by gender, education level,
and cultural differences [8]. Different from the
weak generalization of subjective experience and
external behavioral data, spontaneous phy-

siological ~signals have relatively higher
consistency across cultures and countries [34],
which

consciously. They could be considered as the

cannot be disguised or restrained

reflection of realistic emotional information.

Therefore, emotion recognition based on
spontaneous physiological signals has become an
important direction in affective computing [35].
Spontaneous physiological signals can be used
to evaluate the activities of the central and
autonomic nervous systems and to provide more
objective and effective detection of emotional
states from the perspective of internal physiology
[36, 37]. For example, electrocardiogram (ECG)
reflects the activity of the myocardial autonomic
nervous system in different emotional states [38].
Galvanic skin response (GSR) measures arousal
of emotion by measuring the changes of skin
electrical property along with the activity of
autonomic nervous systems [39]. Electromyo-
graphy (EMG) is used to measure the degree of
muscle tension in different emotional states by
recording bioelectric changes collected on the
skin surface [12]. Respiratory signals (RSP)
contain a wealth of emotional information and it
rate and

has been shown that breathing

respiratory depth change with different emotions
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[40]. However, due to the problems of low
lack of
quantitative standards and indirect relationship

classification accuracy, reasonable

between emotional states and peripheral
physiological signals, it is very difficult to
accurately quantify emotions using the spontan-
eous physiological signals mentioned above [41,
42].

Among the spontaneous physiological signals,
EEG signals provide a more direct, compreh-
ensive, and objective approach for emotional
recognition from a neurophysiological perspec-
tive by measuring the spontaneous physiological
activities of cerebral cortex under different
emotion states [43—45]. In comparison with other
neuroimaging technologies, such as functional
magnetic resonance imaging (fMRI), magnetoen-
cephalogram (MEG), and positron emission
tomography (PET), EEG signals have better time
resolution, fast data collection and transmission,
which could be easily applied to real-time
[43, 44, 46].
Moreover, EEG acquisition is low cost, non-

emotion recognition system
invasive, and easy to use; there are already
different types EEG

recording devices developed for various practical

of wireless portable
and clinical applications. Thus, EEG signals are

recommended as a useful tool in emotion

Frontal

Brain Sci. Adv.

recognition and online human-computer inter-

action system [47].

24 Emotion-related neurophysiological mecha-
nism

Division of brain regions is shown in Fig. 2(A)
where each brain region has its dedicated
function [49, 50]. Specifically, frontal cortex takes
part in conscious thinking activities, language
expression, and emotional control; it is the
functional area of mental activities. Temporal lobe
is responsible for the sense of smell and hearing; it
also handles complex stimuli, such as facial
recognition, scene recognition, and memory.
Participating in the process of attention, body
language, and skill learning, the parietal lobe
integrates sensory information from various
functional systems and plays an important role in
the manipulation of objects. The occipital lobe is
the visual function area for integration and
processing of visual information; it also
participates in the process of shape, color, and
movement perception. During emotion charac-
terization, particular neural coordination pattern
occurred under different emotional states [51, 52].
Schmidt et al. [53] found that left frontal brain
region was active under the stimulation of
cheerful music, while sad and scary music activated

Fig. 2 Brain neurophysiological mechanisms. (A) Brain regions. Reproduced with permission from Ref. [48], ©Springer Nature. (B)

64-electrode system using international 10-20 standard. Reproduced with permission from http://www.mariusthart.net/downloads/

eeg_electrodes_10-20.svg, ©Marius 't Hart - http://www.beteredingen.nl.
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the activities in the right frontal brain region.
Schutter et al. [54] found that when participants
watched facial expression pictures with angry
emotions, the activities in the right parietal brain
region increased. Therefore, by detecting the
activities in different brain regions, the
corresponding physiological response of brain
activities in different emotional states can be well
characterized.

EEG is a non-invasive monitoring technique for
electrophysiological activity of the brain. Using
multiple electrodes placed on surface of the scalp
[as shown in Fig. 2(B)], the frequency and
amplitude of spontaneous electrical activity of
cerebral cortex are recorded, and the changes in
brain electrophysiology are detected. EEG signals
contain rich brain electrophysiological informa-
tion which are significantly important for the
direct and accurate interpretation of emotion from
the perspective of neurophysiology [55, 56]. The
oscillation characteristics contained in the EEG
signals and the rhythms of brain activities in
specific frequency bands play a guiding role for
better understanding the brain activities such as
emotion induction, thinking, cognition, and
memory formation [57-60].

- Delta (1-4 Hz): Related to subconscious
activities, it mainly occurs during deep sleep (i.e.,
slow-wave sleep) without dreams. Delta waves
can be used for sleep staging. Related studies
have found that cognitive decline in patients with
Alzheimer's disease or epilepsy may be related to
abnormal slow-wave sleep [61, 62].

- Theta (4-7 Hz): This mainly occurs during
subconscious activities (such as sleep, dreaming,
meditation) [63]. Similar to the Delta wave, Theta
wave can also be used for sleep staging, mainly in
the rapid eye movement (REM) sleep period of
the healthy [64]. Also, it contributes to the
processes of learning, cognition, and memory

formation [65].
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- Alpha (8-13 Hz): This is mainly distributed in
the parietal and occipital lobe when people are in
relaxed mental state with clear consciousness [66].
There is an opposite relationship between power
in Alpha band and the intensity of brain activities,
thus, an increase in the activation of the brain
activities results in the decrease in Alpha power
[47]. Studies have shown that the increased
activation of Alpha wave in the right frontal lobe
is related to the appearance of negative emotions,
such as fear and disgust, while the activation of
Alpha band in the left frontal lobe is related to the
induction of positive emotions, such as joy and
happiness. Researchers have demonstrated that
emotions could be effectively recognized using
the asymmetry features of the prefrontal Alpha
band [67, 68].

- Beta (13-30 Hz): This is related to the active
mental state that can be used to evaluate cognitive
[58]. When
participant is in a state of concentration and

activities and emotional states
thinking, the activities of Beta wave in frontal and
occipital cortex will be activated [69, 70].

- Gamma (> 30 Hz): This is associated with
active brain states and cognitive activities, such as
memory, attention, and perception, and occurs in
the process of information integration. The
asymmetry of Gamma band in temporal lobe and
parietal lobe has also been found to be useful in
identifying emotional states. When in a negative
emotion, the powers of Gamma band in the left
temporal lobe are activated, whereas the powers
of Gamma band in the right temporal lobe are
activated when in a positive emotion [71-73].

3 Video-triggered emotion recognition with
EEG signals

3.1 Available video-triggered EEG-based data-
bases for emotion recognition

With the rapid development of emotion recogni-
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tion, a series of standardized emotion-triggering
databases with pictures and music materials
have been established with the corresponding
emotion labels provided by psychologists. They
include the International Affective Picture
System (IAPS) [74], Nencki Affective Picture
System (NAPS) [75] and International Affective
Digital Sound System (IADS) [76]. However,
current studies with the video-based emotion-
evoking approach are still limited without a
generally accepted standard. In this paper, a
survey on the available video-triggered EEG-
based databases for emotion recognition will be
conducted to provide instructive guidance on
the establishment
databases as well as choosing a proper dataset

of video-based emotion

for future emotion recognition researches.

In order to promote the progress of emotion
recognition, a number of video-triggered EEG-
emotion databases have been developed. As
benefits of these publicly available databases,
the emotion classification performances using
different algorithms or classified models could
be verified in a more standard approach. Here, a
brief summary of available video-triggered
EEG-emotion databases is presented in Table 2,
including details of the number of participants,
video duration, self-assessment method, and
triggering emotion types. Currently, the most
commonly used video-triggered EEG-emotion
databases are Database for Emotion Analysis
using Physiological Signals (DEAP), MAHNOB-
HCI, and SJTU Emotion EEG Dataset (SEED)
series EEG databases (i.e., SEED, SEED-IV,
SEED-VIG).

- DEAP database: This is a publicly available
EEG-based and peripheral physiological signals-
based emotion recognition database established
by Professor Ioannis Patras’s research team. This
database simultaneously recorded EEG signals
and peripheral physiological signals (e.g., ECG,
EMG, GSR) when 32 participants were watching

Brain Sci. Adv.

40 one-minute music videos. SAM scale was
used to collect self-assessment of emotion in
valence, arousal, dominance, and liking
dimensions [20].

- MAHNOB-HCI database: Soleymani et al.
collected a total of 27 participants” EEG signals
and other peripheral physiological signals when
they were watching 20 emotion-inducing movie
clips. Self-assessment information of arousal,
valence, dominance, predictability, and emotion
labels were recorded by SAM scale [77].

- SEED series database: This public EEG
series dataset was established by the team led by
Professor Lu Baoliang from Shanghai Jiao Tong
University, which contains 3 sub-databases:
SEED, SEED-1V, and SEED-VIG.

(1) SEED database: Emotion-related EEG
signals from 15 participants were recorded. 15
Chinese movie clips were used for positive,
neutral, and negative emotions triggering [82].

(2) SEED-IV database: This database contains
simultaneously recorded EEG signals and eye
gaze data for emotion decoding. This database
used a 6-electrode wearable wireless Emotion
Meter hardware to record the EEG signals from
15 subjects when watching movie clips. The
evoked emotions include happiness, neutrality,
sadness, and fear. The simultaneously recorded
eye gaze data can be used to interpret the
emotion state from external searching behavior.
Moreover, combining EEG and eye movement
signals with different modality fusion strategies
will be of great value for emotion recognition
[83].

(3) SEED-VIG database: This experiment
recruited 23 participants and asked them to
monotonously repeat straight road driving tasks
in a simulated driving system, which could
easily induct fatigue and change their vigilance
[84]. Then, the vigilance level of each partici-
pants was evaluated based on the simul-
taneously collected EEG signals, EOG signals,

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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Subjects No. of videos

EEG equipment

Database (M)  (duration) Self-assessment ~ Evoked emotions (No. of electrodes) Recorded signals
DEAP! [71] 32 40 SAM [9-point scale]: LALV, HALYV, Biosemi ActiveTwo EEG (sampling rate: 512
(16/16) (1 min) valence, arousal, LAHYV, and system (32) Hz, downsampled to 256
dominance, and liking HAHV Hz), EOG, EMG, GSR,
BVP, temperature, respira-
tion, and face video from
22 participants
SEED? [23] 15 15 Philippot positive, neutral, ESI NeuroScan EEG (sampling rate: 1000
(8/7) (~ 4 min) questionnaire: and negative (62) Hz, downsampled to 200
emotion state, emotions Hz), EOG, and face video
familiarity,
understandable level
SEED-IV2[72] 15 72 PANAS [10-point happiness, EmotionMeter EEG and Eye Gaze Data
(8/7) (~ 2 min) scale]: sadness, fear, hardware (SMI ETG eye-tracking
valence and arousal  and neutral (6 electrodes: FT7, glasses)
FT8, T7, T8, TP7,
and TP8)
DREAMER [73] 23 18 SAM [5-point scale]: amusement, Emotiv EPOC EEG (sampling rate: 128
(9/14) (~1995s) valence, arousal, and SUTPrise, excite- (16 electrodes) Hz), ECG (SHIMMER™
dominance ment, happiness, wireless sensor)
calmness, anger,
disgust, fear, and
sadness
MAHNOB-HCPE 27 20 SAM [9-point scale]: amusement, joy, Biosemi ActiveTwo EEG (sampling rate: 256
[77] (16/11)  (~ 81.4s) emotion label/tag, neutral, sadness, system Hz), ECG, GSR, skin
arousal, valence, fear, and disgust (32) temperature, respiration
dominance, and amplitude, Eye Gaze Data
predictability (Tobii X120), and facial
expressions
HR-EEG4EMO* 27 13 Valence: tenderness, EGI system EEG (sampling rate: 1000
[78] (5/22) (40 s-6 min) negative (1), neutral amusement, (257) Hz, downsampled to 250
(0), positive (1) anger, sadness, Hz), ECG, GSR, 5pO2,
disgust, fear, and respiration, and pulse
neutral rate
RCLS® [79] 14 15 — happy, sad, and ESI NeuroScan EEG (sampling rate: 1000
(8/6) neutral (64) Hz) and EOG
MPED [80] 23 28 PANAS [5-point scale] joy, funny, anger, ESI NeuroScan EEG (sampling rate: 1000
(13/10)  (122-295s)  and SAM [9-point fear, sadness, (62) Hz), ECG, GSR, RSP
scale]: arousal and disgust, and
valence neutral
DES [9-point scale]: 10
basic emotions
CAS-THUS® [81] 30 16 PANAS [5-point amusement, Emotiv EPOC EEG (sampling rate: 128
(0/30)  (60-139s)  scale]: positive, tenderness, joy, (14 electrodes) Hz)

negative

SAM [9-point scale]:
arousal and valence
DES [9-point scale]

neutral, sadness,
disgust, anger,
and fear
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1. http://www.eecs.qmul.ac.uk/mmv/data sets/deap/
2. http://bemi.sjtu.edu.cn/~seed/index.html
3. http://mahnob-db.eu

Brain Sci. Adv.

(Continued)

4. http://www.technicolor.com/en/innovation/scientificcommunity/scientific-data-sharing/eeg4emo-dataset

5. http://aip.seu.edu.cn
6. http://enginpsych.psych.ac.cn/indexen.php

LALV, low arousal low valence; HALV, high arousal low valence; LAHV, low arousal high valence; HAHV, high arousal high
valence; EEG, electroencephalogram; ECG, electrocardiogram; EOG, electrooculogram; GSR, galvanic skin response; EMG,
electromyogram; RSP, respiration; SpO2, pulse oxygen saturation; BVP, blood volume pressure.

and eye gaze data.

Due to the benefits of these publicly available
emotion databases, video-triggered emotion
recognition has received extensive attention. For
example, Tripathi et al. [85] compared the
performance differences between simple deep
neural networks and convolutional neural
networks in emotion classification based on the
EEG from DEAP database. The

recognition accuracies of simple deep neutral

signals

network were 75.78% for valence and 73.13% for
arousal. Whereas, the corresponding accuracies
of valence and arousal increased to 81.41% and
73.36% respectively when the convolutional
neural network was adopted. Liang et al. [86]
proposed an EEG-based emotion decoding
system using the hypergraph theory and verified
the effectiveness of emotion recognition on DEAP
database. More, it's an unsupervised learning
method for emotion-related EEG features

extraction and multi-dimensional emotion
recognition. In addition, Chai et al. [87] proposed

a new unsupervised learning method, known as

Subspace Alignment Auto-encoder (SAAE), and
verified the emotion recognition performance on
SEED emotion database by comparing with other
classification algorithms, such as SVM, logistic
regression (LR), Geodesic Flow Kernel (GFK),
Sparse  Coding (TSC),
Component Analysis (TCA), Auto-encoder (AE),
and Subspace Alignment without Auto-encoder

Transfer Transfer

(SA). In cross-subject emotion classification,
SAAE algorithm obtained the best accuracy (i.e.,
77.88%) for positive, neutral, and negative
emotions recognition. The recognition accuracies
of SVM, LR, GFK, TSC, TCA, AE, and SA
algorithms were respectively 53.06%, 55.64%,
45.19%, 69.69%, 73.82%, 60.46%, and 74.74%.

3.2 A general video-triggered emotion recogni-
tion process

Generally, a video-triggered EEG-based emotion
recognition pipeline mainly includes four parts
(as shown in Fig. 3).

(1) Emotion evoking and simultaneous EEG
signals recording. A proper selection of evoking

EEG-Emotion
Simultaneous |Artifact Removal Preprocessin Characterization | Emotion-Relevant EEG
EEG Signals P g Feature Extraction
Internal
Characterization
Vid Triggering N Emotion Dimension
c0s Response Reduction
A
: Feedback & Regulation
|
Emoti . Modeling .
Recrggntali(t)ilcl)n Classifier Feature Selection

Fig.3 A standard processing pipeline for video-triggered emotion recognition using EEG signals.
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materials will directly affect the quality of
evoked emotions and the collected EEG signals.
In this paper, we compare the experimental
effects with different emotion evoking methods
and find that video-based emotion evoking
could achieve the best performance; it can
effectively trigger accurate and specific emotion
responses in the laboratory environment.
Following, we focus on video-triggered based
emotion recognition and introduce the details of
available public video-triggered EEG-emotion
databases with full discussions.

(2) EEG signals preprocessing. The ampli-
tude of EEG signal measured from adult scalp is
in the range of 10-100 uV [88], which is very
susceptible to physiological signals such as ECG,
EMG, and EOG. Also, slight body movements,
power-line interference, and baseline drift could
bring serious artifact into the recorded EEG
signals, resulting in bad signal to noise ratio.
Therefore, it is necessary to preprocess the
collected signals for artifact removal.

(3) Emotion-related EEG feature extraction
and selection. In Section 4, we will introduce
the commonly used EEG features in video-
triggered EEG-based
Generally, EEG features are extracted from time

emotion recognition.
domain, frequency domain, and time-frequency
domain along with pair-wise electrodes features
and connectivity features. By characterizing EEG
information in multiple dimensions, emotion-
related brain activities can be accurately
captured. Then, EEG feature selection based on
supervised or unsupervised methods should be
applied to further select highly relevant EEG
features for emotion recognition modeling.

(4) Classifier building for emotion recogni-
tion. The emotion classifier is established based
on the EEG features after feature extraction and
selection. In Section 5, we will mainly introduce
the commonly used supervised, unsupervised,
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and semi-supervised learning classifiers in
emotion recognition with public video-triggered
EEG-based databases.

Therefore, commonly used feature extraction,
feature selection, and modeling methods in
video-triggered emotion recognition system
with EEG signals will be presented with full
details, providing a brief review of the current
situation about video-triggered EEG-based
emotion studies. Then, the shortcomings and
future possible improvements of the existing
EEG-based

emotion recognition will be discussed.

video-triggered databases for

4 EEG feature extraction and selection methods

In this section, more details about typical EEG
feature extraction and selection methods used in
emotion recognition will be reported (as shown
in Table 3 and Fig. 4).

4.1 EEG feature extraction

EEG features are commonly extracted from time
domain, frequency domain, and time-frequency
domain. By computing the asymmetrical brain
activity distribution of pair-wise electrodes,
interconnections between brain regions are used
to represent the spatial characteristics of brain
activity under different emotions. Recently,
researchers also found that connectivity features
showed promising performance in emotion
decoding. A list of the typical EEG signal feature
extraction methods in video-triggered emotion

recognition research are exhibited in Fig. 4.
4.1.1 Time domain feature extraction

Time-domain EEG features represent the
amplitude changes over time. Here, the pre-
processed EEG signals are denoted as x(n),

n=1,2,, N,where N isthe total number
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Table 3 Commonly used EEG feature extraction and selection methods for video-triggered emotion recognition.

Ref. DaFabasje EEG features Estimation of Electrodes Feature selection
(stimuli) frequency power
Koelstra DEAP Spectrum power and DASM ~ Welch’s method with 32 LDA (supervised)
et al. [20] (music videos) windows of 256 samples
Soleymani ~ MAHNOB-HCI  Spectrum power and DASM — 32 —
etal. [77] (movie clips)
Zheng SEED DE, DASM, and RASM of DE  STFT method with 62 linear dynamic
et al. [23] (Chinese movie  and PSD non-overlapping 1s system
clips) Hanning windows of 256 (unsupervised)
samples
Zheng SEED-IV PSD and DE STFT method with 8 =
et al. [21] (movie clips) non-overlapping
windows of 4 s
Kroupi Koelstra et al. PSD, normalized 1st Welch’s method with 32 —
et al. [89] database difference, and NSI windows of 128 samples
(music videos)
Liu DEAP Time domain: mean, — 32 mRMR
et al. [90] (music videos) standard deviation, 1st (supervised)
difference, 2nd difference, PCA
HOC, FD, Hjorth features, (unsupervised)
NSI, etc.
Frequency domain: PSD
Time-Frequency domain:
energy, root mean square,
and entropy
Electrodes features: DASM,
RASM, magnitude-squared
coherence estimate, MI, and
PCC
Atkinson DEAP Statistical features (such as Band pass frequency 32 mRMR
etal. [91] (music videos) median, standard deviation, filter (supervised)
kurtosis symmetry), band
power, Hjorth features, FD
Liang DEAP Time domain: power, mean, = Hamming window with 32 KPCA,
et al. [86] (music videos) standard deviation, 1st 50% overlap unsupervised
difference, 2nd difference, discriminative

Hjorth features, FD, etc.
Frequency domain: PSD
Time-Frequency domain:
energy and Shannon entropy
extracted from the detail
coefficients of level 4 to 7

feature selection
(unsupervised)

DASM, differential asymmetry; LDA, linear discriminant analysis; DE, differential entropy; RASM, rational asymmetry; STFT, short time

fourier transform; PSD, power spectral density; NSI, non-stationary index; HOC, higher order crossings: FD, fractal dimension; MI,

mutual information; PCC, Pearson correlation coefficient; mRMR, maximum relevance minimum redundancy; PCA, principal

components analysis; KPCA, kernel principal component analysis.

of EEG samples. The commonly used time-
domain based feature extraction methods are
listed as follows.

(1) Event
the
potentials over time, ERPs have good time resolu-

related potentials (ERPs): By

recording changes of brain response

tion and provide the time-locked relationship
with the stimulation events [92]. ERPs have been
used to decode the process of emotion inducing
and cognition [92, 93]. Martini et al. [94] found
that both P300 and late positive potential
increased when participants were stimulated by
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Preprocessed EEG signals

EEG Feature Extraction

Time Domain Frequency Domain || Time-Frequency Domain | | Electrode Features
— Mean — Energy
- Standard Deviation - Power - Spectrum Power
. . - PSD - STFT - DASM
- 1st Difference - Hjorth features
. . - DE - WT - RASM
— Normalized 1st Difference - NSI
~ 2nd Difference -FD - HOS
|| — Normalized 2nd Difference ~ ~ HOC
Supervised Unsupervised
~ LDA - PCA
— mRMR - KPCA

EEG Feature Selection

Classifier for Emotion Recognition

Supervised Learning
- Naive Bayesian
- PNN
- SWM
- KNN

Unsupervised Learning

- CNN

- DGCNN

Semi-supervised Learning

- DBN

Fig.4 Commonly used EEG analysis methods in video-triggered emotion recognition.

negative pictures compared to when they were

stimulated by neutral pictures. Soroush et al. [95]

used pictures from IAPS database for positive
and negative emotion evoking. Their experi-
ment found that the P200 and P300 components
collected at parietal and occipital lobe could
effectively decode emotions in valence
dimension.

However, in the video-triggered emotion
recognition, it is difficult to determine and
control the emotion-inducing time point because
of individual differences. Thus, the ERPs feature
is not suitable for video-triggered emotion
recognition.

(2) Statistical features:

1st difference:

1 N-1
5x:ﬁ;‘x(n+l)—x(n)‘ (1)

Normalized 1st difference: This is also known as
normalized length density, which can measure
EEG [89].
Specifically, when the standard deviation is

i[x(n)—,ux]z , where

n=1

the self-similarity of signals

defined as o, = \/i
N
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N
M= %;x(n) . Then,
5 =2 @
GX
2nd difference:
1 N=-2
= 2)— 3
V. N—2;‘x(n+ ) x(n)‘ 3)
Normalized 2nd difference:
o=t )
O_X
Energy:
N 2
E, =Y |x(n) (5)
n=1
Power:
E 1 il 2
B=y = vl ©

(3) Hjorth features: Hjorth et al. [96]
introduced features of Activity, Mobility, and
Complexity to characterize time domain pattern
of EEG signals from the aspects of amplitude,
time scale, and complexity. Specifically, Activity
measures the deviation of EEG time series from
its mathematical expectation and reflects the
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dispersion degree of EEG signal amplitude.
Thus,

Activity = %ﬁ[x(n)— U, ]2 (7
n=1

Mobility calculates the ratio between the
standard deviation of slope and the standard

deviation of EEG time series. x'(n) stands for

the first derivative of EEG signals, which is
numerically equal to the first difference while

G[x’(n)] represents the variance of the first

O'[X’(n)]
o[x(n)] ®

Complexity, in the other hand, measures the

derivative. Thus,

Mobility =

number of standard slopes that occur within the
time required for a standard amplitude to be
generated. Hence,
Mobility [x’ (n)]
Mobility[x(n)]
(4) Non-stationary index (NSI) evaluates the
transformation of the local average over time.
NSI reflects the non-stationarity and complexity
of EEG signals by measuring the consistency of
local average values [89, 97]. The higher value of

NSI signifies higher complexity of the given
EEG signals. The specific calculation process is

as follows. Firstly, divide the EEG signal x(n)
into k
calculate the mean of each segment S(m) ,
m=1,2,....,k . Then, NSI is defined as

NSI:\/%Zk:[S(m)—,uS:IZ (10)

m=1

Complexity =

©)

segments with equal length and

k
where y = lZs(m)

m=1
(5) Fractal (FD)
complexity of EEG signals [98, 99] by measuring
variations of reconstructed EEG series with
fixed time interval, which is expressed as

X! :{x(m),x(m+k),x(m+2k),...,x[m+ﬂoor

dimension quantifies

(%) k}}, m=1,2,---,k, where k represents the
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reconstructed time interval. The curve length of

each reconstructed EEG series X, s

calculated as

L, (k):;{zj‘j°f(1v2m)\x(m+ik)-x[m+(i-1)k]\}

N -1
ﬂoor(N_m)k
k
(11)

Then, calculate the averaged curve length
<L(k)> over k subset EEG series. When curve

is fractal-like with dimension satisfying
<L(k)>ock7FD*‘, fractal dimension FD_ of the

given EEG series can be defined as

D, :_10g<L(k)> a2)
logk

4.1.2 Frequency domain feature extraction

EEG

rhythmic nerve potential activity of the brain.

signals record the spontaneous and
Frequency domain feature extraction can obtain
more rhythm information about brain neural
activity. In many researches of affective
computing and neuroscience, it has been found
that changes in physiological and psychological
states would cause corresponding changes in
EEG data at different frequency bands: Delta
(1-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta
(13-30 Hz), and Gamma (30-45 Hz).

(1) Power spectral density (PSD) reflects the
change of EEG spectral power with frequency.
Welch’s

method uses smoothing window for noise

Since spectral density estimation
reduction, it has become one of the most
commonly used spectrum-based estimation
methods in video-triggered EEG-based emotion
recognition [73, 100].

Frequency domain features not only reflect
the rthythm of brain activities but also correlate

with self-assessment of valence, arousal, and
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dominance. Liu et al. [11] found that when
participants are in a state of high dominance, the
power ratio of Beta band to Alpha band
collected from frontal lobe increased. Mean-
while, the power of Beta band recorded in the
parietal lobe also increased.

(2) Differential entropy (DE): This is the
extension of the Shannon entropy of discrete
random variables to calculate the entropy of
continuous random variables. It is expressed as

DE=—Jf(x)10g[f(x)]dx (13)

Shi et al. [101] found that the EEG signals
preprocessed by bandpass filtering obeyed
Gaussian distribution N ( 75 0'2). Therefore, the
calculation formula of DE can be simplified as

(x-n)’ el
T ;e
DE=-| log e 2 |dx

—c
\2no? \2no?
1
=Elog(2neaz) (14)

Their study proved that for a fixed-length
EEG signal, DE was approximately equal to the
logarithmic value of spectral spectrum in a
certain frequency band [102]. Generally, the
power of low frequency band is much higher
than that of high frequency band. DE can
balance such difference by taking logarithm into
consideration. Hence, DE feature has the ability
to distinguish EEG patterns between low
frequency band and high frequency band, thus,
improving the recognition accuracy [28]. Duan
et al. [101] used DE in emotion recognition
research for the first time and found that DE
features had a better emotion classification
accuracy (of 84.22%) than the tradition spectral
feature (with accuracy of 76.56%). Zheng et al.
[72] compared the performance of DE and PSD
features in recognizing happy, sad, scared, and
neutral emotions based on SEED-IV database.
Using SVM with linear kernel, it was found that
the recognition accuracy was much better when
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the classifier was modeled by DE feature, with
accuracy of 70.58%, than that modeled by PSD
feature, with accuracy of 56.34%.

(3) High-order spectrum: This represents the
higher order moments or cumulants of EEG
signals, which has been widely utilized in phase
information extraction for emotion distinguish-
ing. Third order spectrum analysis, namely
quadratic phase

coupling, has promising

characteristic of recognizing the nonlinear

coupling between phases f, and f,.
Bis(f,. /1) = E[X (A)X (%) X" (fi+4)](3)
where E (-) represents the expectation calcula-

tion. X ( f ) is the Fourier transform of EEG

*

series X (n) . * represents the complex conjugate

operation.
4.1.3 Time-frequency domain feature extraction

EEG is a non-stationary signal and it is very
difficult to accurately describe the changes of
frequency over time using only single time
domain or frequency domain information.
Joint time-frequency domain analysis can
dynamically reflect the changing characteristics
of EEG signals over time and has been
successfully used for emotion-related EEG
features extraction.

(1) Short time Fourier transform (STFT): The
sliding time window a)(n—r) with  fixed
length L is utilized for dynamically processing
the EEG data within the time range of
[t—L/2,7+L/2]. Fourier transform is per-
formed on the data extracted by the sliding time
window for local information analysis of
non-stationary signals. Thus,

+0
STFT(7,0) = Iw(n —7)x(n)e”’"dr  (16)
The length of the sliding time window in STFT
typically affects the resolution in time domains
and frequency domains. Information overload is
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caused when the sliding window is too long,
resulting in low time resolution. On the contrary,
low frequency resolution occurs when the
sliding time window is too short to fully
maintain information. In essence, it is very
important to select an appropriate window size
for STFT.

(2) Wavelet transform: Once the sliding time
window function is determined, its length and
shape are fixed without adaptability and cannot
be adjusted according to changes in the
frequency. For non-stationary and slow-
changing low-frequency signals, a long sliding
window needs to be selected to improve the
time resolution; however, for fast-changing
high-frequency signals, selecting a short sliding

window improves the frequency resolution.

Using the function l//aqb(t):%t//(t_bj ,

a
wavelet transform can perform time translation
and scale expansion to adjust the length and
shape of the sliding window according to the
frequency change of EEG Thus,
time-frequency resolution can be improved
adaptively.

signals.

Wavelet transform is an effective method that
describes the underlying frequency changes
over time for emotion recognition [103]. Candra
et al. [104] used discrete wavelet transform to
DEAP
Their research revealed that the

extract wavelet entropy from the
database.
wavelet entropy extracted from 3-12 s sliding
time window yielded a recognition accuracy of
65% in the classification of valence and arousal
using SVM classifier. Related research found
that Daubechies fourth-order wavelet transform
(db4) had the property of feature smoothing and
time-frequency positioning, which was suitable
for detecting changes in EEG signals [104].
Mohammadi et al. [105] applied the db4 mother
wave function to discrete wavelet transform on

the five pair-wise data (i.e, F3-F4, F7-F§,

Brain Sci. Adv.

FC1-FC2, FC5-FC6, and FP1-FP2) collected from
DEAP database. They fed entropy and energy of
Theta (4-8 Hz), Alpha (8-16 Hz), Beta (16—
32 Hz), and Gamma (32-64 Hz) bands into SVM
(KNN)
Classification results showed that EEG signals

and k-nearest neighbor models.
extracted from high frequency bands, such as
Beta and Gamma bands, could better classify

valence and arousal.
4.1.4 Pair-wise electrodes features

Pair-wise electrode features can be used to
interpret the underlying spatial distribution
pattern in different emotional states [28, 82, 90].
For example, the asymmetric spatial pattern of
Alpha band between left and right hemispheres
of the brain is related to emotion. Negative
emotions, such as fear, disgust, and sadness,
produce withdrawal stimuli that activate the
right prefrontal lobe and cause the decrease of
Alpha band power. Positive emotions, such as
happiness and excitement, produce approaching
stimuli that activate the left frontal lobe and
cause the decrease on the power of Alpha band
[106]. Therefore, the asymmetry of power in
Alpha band can be used to evaluate the emotion
changes [12, 69]. Similarly, the power changes of
other
asymmetric pattern under different emotional
states [46, 107].
According to the

frequency bands also show similar

spatial symmetry of

electrode distribution, pair-wise electrode
features can be extracted by calculating the
differences and ratio features of spatial paired
electrodes.

Differential asymmetry (DASM):

DASM = F(C,)-F(Cy) (17)
Differential caudality (DCAU):
DCAU = F (Cfromal ) - F (Cposterior ) (1 8)
Rational asymmetry (RASM):
rasm - £ (G) (19)
F(Cy)
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where C; and C; represent the symmetrically
pair-wise electrodes of the left and right
hemisphere, while C; ., and C

postenor

represent
symmetrically pair-wise electrodes of the frontal
F (-) is the
specified feature of the selected electrode for

and posterior hemisphere.

further calculation.
4.1.5 Connectivity features

As a complex and dynamic cognition process,
emotion has been further investigated with
globally coordinated information transmitting
as well as functional connections and inter-
actions within specific brain regions [108, 109].
Connectivity features from EEG signals offer a
deeper insight into emotion-related decoding of
neural activities, which demonstrated the
outstanding performance in emotion recognition.

Typically, connectivity features are calculated
using the multi-electrode EEG signals from time
and frequency domains, namely Pearson
correlation connectivity (PCC), mutual informa-
tion (MI), and phase locking value (PLV).

(1) Pearson correlation connectivity: This
measures the linear correlation between two
EEG signals from different electrodes, ranging
from -1 to 1. PCC shows negative and positive
connectivity relationship, where a PCC value of
0 means no linear correlation between two
separated EEG time series S; and §; from
different electrodes or brain regions. The PCC

between EEG signals S, and S is calculated as
N — —
S Zkl(s _S)(S _S-/)
\/Zkl s B \/Zkl s B

(20)
(2) Mutual information: This quantifies the

PCC(S,.S,)

information interaction between two different
electrodes EEG signals in term of entropy,
defined as
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S.S.

1(S.8;)=>"pu ' log L S 1)

pa pb
pfl"f’ is the joint probability of p(Sl. =57,
S ;= S;’ ) When there is no correlation between

EEG time series S, and S, mutual information

value is zero corresponding to pfl‘;s’ = p> p;”' .

(3) Phase locking value (PLV): This describes
the phase synchronization of different frequency
bands. PLV is a nonlinear measure of phase
correlation used to characterize specific brain
rhythms and couplings. PLV value is between 0
and 1, where 0 represents no phase coupling
between two time series within 0 and 7, while
1 represents identical phase synchronization.
Thus,

PLV(S,.S, ) ‘— 0l (29
t=1

Here, ¢X(t) is the Hilbert phase of §, and

calculated as the ratio of Hilbert transform of the
S.(1)

S.(1)

Recently, increasing number of researches
EEG
connectivity features for emotion recognition.
Chen et al. [110] extracted PCC, MI, and phase
coherence connectivity for emotion recognition
using the DEAP database. A binary SVM
classification was performed and the results
showed that the best accuracies of 76.2% for
valence and 73.6% for arousal were obtained

signal S, toitself: ¢, (¢)=arctan

have proven the effectiveness of

using mutual information with all frequency
bands. Moon et al. [111] fed brain connectivity
features into convolutional neural networks for
emotion recognition. Based on PCC, PLV, and
transfer entropy extracted from DEAP database,
an outstanding recognition accuracy of 80.7%
for valence was obtained when convolution
kernel sizes was 5 and connectivity matrix of
PLV was used as the input data. In order to
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explore the dynamic emotion-related neural
mechanism, Liu et al. [112] proposed a dynamic
functional connectivity method by separately
sorting the static networks constructed from
phase lag index and then feeding them into
temporal brain network. They validated the
effectiveness of this dynamic functional
connectivity analysis on SEED database and
achieved recognition accuracy of 87.0% in Beta

band.
4.2 EEG feature selection

High dimension EEG features may contain large
numbers of unnecessary features. In order to
avoid the curse of dimensionality and improve
classification performance, it is necessary to
select out emotion-related EEG features prior to
emotion classifier modeling.

According to whether label information is
used, feature selection can be simply classified
into supervised and unsupervised based feature
selection.

4.2.1  Supervised feature selection

(1) Linear discriminant analysis (LDA) is a
supervised linear dimensionality reduction and
feature selection method. The main idea of LDA
is to find a suitable projection direction based on
the class discriminatory information. Projection
direction is determined when minimal intra-
class variance and maximal inter-class variance
[20]. Thus,
projection points from the same class should be

are simultaneously achieved
as close as possible and the distance of points
from different classes should be as far as
possible.

The ratio of the intra-class variance to the
inter-class variance is recorded as a Fisher score.
The higher the Fisher score, the higher the
discrimination between two groups of features.
LDA selects out the feature subset with the
largest Fisher score to achieve the purpose of
feature selecting.

Brain Sci. Adv.

(2) Maximum relevance minimum redun-
dancy (mRMR) adopts MI to
emotion-related EEG features that satisfy both

select out

maximum correlation and minimum redundancy
[91].

Selecting the feature subset in high relevance
with labels can reduce information redundancy.
First, the correlation between EEG features F
and emotional label c¢ is calculated with the

help of ML
I(F,c):”p(F,c)log%dch 23)

The maximum correlation is obtained first by
calculating the average mutual information
between features in each
feature subset S [82]. The feature subset § has
high correlation with class c.Itis calculated as:

1
MFZSJ(E,c) (24)

selected by the maximum

F, and class ¢

max[D(S,c)], where D =

The features
correlation may have redundant information.
Therefore, the dependence between features is
large. When the correlation and dependence of
feature F, and F; is large, removing one of
them will not affect the recognition performance
[113].

Therefore, the features with low dependency
can be further filtered using the minimum
redundancy calculation, which can effectively
reduce the redundancy and dimensionality of
features. Thus,

min[R(S)], where R :Lz Z I(Fl.,Fj) (25)
| F,F;eS
The purpose of mRMR feature selection is to
find the feature subset that simultaneously
satisfies maximum relevance and minimum
redundancy. Hence,

max[@(D,R)], where® =D —-R (26)
or

max[@(D,R)], where @ :% (27)
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Here, feature subset S, , that satisfy the
objective function mentioned above is filtered
first. Then, forward search method [113] is used
for next feature searching from the remaining
feature set {F —Sk_l} .
finally selected as follows:

me S i) e

T FeS,

Feature subset S, is

max
Fe{F=Si.}

4.2.2  Unsupervised feature selection

(1) Principal components analysis (PCA) is one
of the commonly used unsupervised feature
selection methods. Orthogonal transformation is
used for linear transformation. By projecting
samples into a low-dimension space, a series of
linearly independent principal components are
obtained. PCA preserves as much data
information as possible by minimizing the
reconstruction error during feature selection.

(2) Kernel principal component analysis
(KPCA) is a nonlinear extension of PCA.
Nonlinear mapping function I' is used to map
the data to a higher dimensional Hilbert space to
make them linearly separable. Then, PCA is
applied for further dimension reduction. The
process of KPCA calculation is as follows:

a) Feature dataset X 1is mapped to the

high-dimensional space F(X) = [F(Xl ), e
F(Xn )] using the nonlinear mapping function
r

b) The kernel matrix K is calculated as
follows: K =T(X) I'(X).

¢) The transformation matrix A that satisfies
max tr(ATKHKTA) is determined, where E

A"4=E
is the identity matrix; the centering matrix is

calculated as H =E ——1, where I isa nxn
n

matrix of ones.

d) Finally, feature subset is selected
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as Z=A"K .

5 EEG-based emotion classifiers

Modeling is one of the significant processes in
affective computing, where machine learning
algorithms can effectively learn the underlying
relationship between different emotional states
and EEG features. The
supervised learning, unsupervised learning, and

commonly used

semi-supervised learning classifiers on video-
triggered EEG-based databases for emotion
recognition are reported in Table 4.

5.1 Supervised learning classifiers

Supervised learning classifiers establish the
feature-label mapping relationship and modify
the parameters of classification model under the
guidance of label information. Generally, higher
recognition accuracy can be obtained by using
supervised learning-based classification models.
Emotion classification with supervised learning
algorithms such as naive Bayes, Probabilistic
neural networks (PNNs), SVM, and KNN have
been widely verified on the publicly available
video-triggered EEG-emotion databases.

5.1.1 Naive Bayes

Naive Bayes is a probabilistic classification
model for supervised learning. This algorithm
learns the joint probability distribution between
features of the training set and labels by
assuming that the feature data are independent
from each other. Test data are fed into the
then
predicted labels are obtained according to

probability  distribution model and

posterior probability. The advantages of naive

Bayes include its simple algorithm, high
computational efficiency, high accuracy, and less
sensitivity to missing data [120]. Considering

the outstanding performance of naive Bayes on
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Table 4 Emotion classifiers and recognition accuracies in databases for video-triggered EEG-based emotion recognition.

Classifier
Ref. Da‘tabas.e EEG (Supervised/ Emotion Accuracy
(stimuli) Features Unsupervised) Types
Miiller etal. DEAP PSD and DASM Naive Bayes LALV,HALV, Valence: 57.6%
[71] (music videos) (supervised) LAHYV, and Arousal: 62.0%
HAHV Liking: 55.4%
Nakisa etal. DEAP Time domain: power, PNN HA-P, LA-P, DEAP: 67.5%
[114] (music videos) mean, Hjorth features, FD, (supervised) HA-N, and MAHNOB-HCI: 97.0%
MAHNOB-HCI etc. LA-N Nakisa et al. database: 65%
(movie clips)  Frequency domain: PSD,
Nakisa et al. mean
database Time-frequency domain:
(movie clips)  power and root mean
square
Soleymani et — PSD and DASM SVM with RBF Positive, neutral, Valence: 50.5%
al. [113] (20 movie clips) kernel and negative Arousal: 62.1%
(supervised)
Katsigiannis DREAMER PSD SVM with RBF Valence, arousal, Valence: 62.5%
etal. [22] (movie clips) kernel and dominance Arousal: 62.2%
(supervised) Dominance: 61.8%
Zheng etal. SEED-IV PSD and DE SVM with linear ~ Happy, sad, Happy: 80.0%
(21] (movie clips) kernel fear, and neutral Sad: 63.0%
(supervised) Fear: 65.0%
Neutral: 78.0%
Mohammadi DEAP Energy and entropy of KNN (k=3) LALV, HALV, Valence: 86.8%
etal. [105] (music videos) extracted frequency bands  (supervised) LAHYV, and Arousal: 84.1%
HAHV
Hwang etal. SEED DE CNN Positive, neutral, Positive: 96.0%
[116] (Chinese movie (unsupervised) and negative Neutral:92.0%
clips) Negative:83.0%
Jang et al. DEAP Energy and entropy of GCNN — 65.27%
[117] (music video)  extracted frequency bands  (unsupervised)
Song et al. SEED DE, PSD, DASM, and DGCNN SEED SEED
(118] (Chinese movie RASM (unsupervised) positive, neutral, subject-dependent: 90.4%
clips) and negative subject-independent: 80.0%
DREAMER DREAMER DREAMER
(movie clip) valence, arousal, Valence: 86.2%
and dominance Arousal: 84.5%
Dominance: 85.0%
Liang etal. =~ DEAP Time domain: power, Hypergraph Valence, arousal, Valence: 56.3%
[86] (music video)  mean, standard deviation, Theory dominance, and Arousal: 62.3%
Hjorth features, FD, etc. (unsupervised) liking Dominance: 64.2%

Frequency domain: PSD
Time-Frequency domain:
energy and Shannon entropy
extracted from the detail
coefficients of level 4 to 7

Liking: 66.1%
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(Continued)
Database EEG Class@er Emotion
Ref. L (Supervised/ Accuracy
(stimuli) Features . Types
Unsupervised)
Zhengetal. SEED DE DBN Positive, neutral, 86.08%
(23] (Chinese (semi-supervised) and negative
movie clips)
Xu et al. DEAP PSD Stacked LALV, HALV, Stacked denoising
[119] (music video) denoising auto- ~ LAHV, and auto-encoder
encoder HAHV Valence: 82.4%

Arousal: 81.5%
Liking: 81.1%
DBN

Valence: 87.1%
Arousal: 86.7%
Liking: 86.7%

(semi-supervised)
DBN

(semi-supervised)

PSD, power spectral density; DASM, differential asymmetry; FD, fractal dimension; PNN, probabilistic neural networks; HA-P,
high arousal-positive emotions; LA-P, low arousal-positive emotions; HA-N, high arousal-negative emotions; LA-N, low
arousal-negative emotions; SVM, support vector machines; RBF, radial basis function; DE, differential entropy; KNN, k-nearest
neighbor; CNN, convolutional neural networks; GCNN, graph convolutional neural networks; DGCNN, dynamical graph

convolutional neural networks; DBN, deep belief networks.

imbalanced data size within categories in small
datasets, Koelstra et al. [100] used naive Bayes
classifier to train emotion recognition model
using DEAP database they established. The
recognition accuracies of valence, arousal, and
liking were respectively 57.6%, 62.0%, and 55.4%.

5.1.2 Probabilistic neural network

Based on the Bayesian decision-making rules of
Bayesian network, Specht proposed a super-
vised learning algorithm known as the PNN
[121]. PNN is a feedforward network consisting
of input layer, pattern layer, summation layer,
and output layer with great characteristics of
better generalization and fault tolerance for
outliers [114]. Using radial basis function kernel
as the activation function of pattern layer, PNN
is closely equivalent to Bayesian optimal
classification. Thus, PNN are often applied to
emotion decoding on EEG signals from different
modalities [114]. In addition, PNN, simple in
structure and fast in training, is very suitable for
real-time emotion recognition [122]. Based on
EEG signals from MAHNOB-HCI, DEAP, and
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their own emotion database, Nakisa et al. [114]
used PNN to verify the effectiveness of
evolutionary computation algorithm for EEG
feature selection. Zhang et al. [122] compared
the performance of PNN and SVM in emotion
recognition on the DEAP dataset. Their research
results showed that PNN reached a comparable
classification accuracy of SVM, but has much
simpler network structure and faster training
process.

5.1.3  Support vector machine

SVM classifier is less sensitive to outliers and
can also achieve considerable performance on
small-sample training sets. With better robust-
ness and generalization, SVM is one of the most
efficient and alternative classifiers for emotion
recognition [41, 123]. Katsigiannis and Ramzan
[22] adopted SVM with radial basis function
(RBF) kernel for emotion recognition on data
from the DREAMER database, which were
EEG
recording devices. The classification results of
DEAP (with accuracy of 57.6% for valence and

collected by wireless and portable
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accuracy of 62.0% for arousal)) MAHNOB-HCI
(with accuracy of 57.0% for valence and
accuracy of 52.4% for arousal), and DECAF (a
MEG-based multimodal dataset for decoding
user physiological responses to affective
multimedia content, with accuracy of 59.0% for
valence and accuracy of 62.0% for arousal)
databases collected by non-portable devices
were applied for comparison. In conclusion,
their

significant classification difference of EEG

results revealed that there was no
signals collected by wireless and portable
devices in emotion recognition (with accuracy of
62.5% for valence and accuracy of 62.2% for
arousal). To verify the effectiveness of portable
EEG recording devices in emotion recognition
experiment, this research explored the appli-
cation prospects of wireless portable devices for
emotion recognition and provided supportive
guidance for the construction of portable

emotion-based human-computer interface systems.
5.1.4 K-nearest neighbor

K-nearest neighbor is a non-parametric supervised
learning classifier, and often used as a baseline
method for evaluating the performance of other
classifiers. Mohammadi et al. [105] utilized SVM
and KNN to build the emotion recognition
model using the EEG signals from DEAP
database. When k = 3, KNN classifier reached
the highest recognition accuracy of 86.75% for
valence, and 84.05% for arousal. Similarly, Li et
al. [124] applied KNN (k = 3) for valence and
arousal classification on DEAP database. Their
that
recognition result was achieved when using

research  result showed promising
EEG features extracted from Gamma band (with
recognition accuracy of 95.70% for valence and
95.69% for arousal). Thus, they inferred that
Gamma band may contain more emotion-related

information comparing to other frequency

Brain Sci. Adv.

bands of EEG signals.
5.2 Unsupervised learning classifiers

Contrary to supervised learning, no label

information is available in unsupervised
learning. By adopting clustering or feature
analysis methods for unlabeled data, unsu-
pervised learning classifiers detect and learn the
underlying connections and regulation among
EEG features, and then infer possible category
information from these unlabeled EEG features.
Thus, it

differences in cross-subjects classifier building

can better adapt to individual
[125]. Unsupervised learning model is specifi-
cally designed for unlabeled data classification,
which is of great significance in solving practical
problems, such as classification of EEG signals
with missing labels, difficulties in obtaining

label set, and time-consuming manual labeling.
5.2.1 Convolutional neural networks

Convolutional neural networks (CNN) is a
feedforward network with convolutional layers
and deep structure. Excellent in fault tolerance,
self-adaptability, and generalization, CNN can
detect the underlying mapping relation between
category and raw data and extract class-related
deep features from large numbers of unlabeled
raw data. It has been widely used in image
recognition and achieved remarkable results.
Researchers seldom directly feed multi-
dimensional EEG data into CNN model for
emotion classification due to the limitation that
EEG
temporally non-stationary. Hwang et al. [112]

signals are spatially discrete and
innovatively proposed a topology-preserving
DE feature-based CNN classifier for emotion
recognition. The new proposed method was
evaluated on SEED database. Firstly, topology-
reserving DE images were generated while
keeping  the information

spatial among
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electrodes. Specifically, Hwang et al. first
calculated DE features of each electrode in the
Delta, Theta, Alpha, Beta, and Gamma bands
from SEED database. Then, Azimuthal Equidis-
tant Projection (AEP) [126] was performed to
generate an EEG topology map that represented
DE features. Finally, the generated topology
map was fed into CNN for emotion recognition
to learn the spatial information within multiple
electrodes. The EEG topology map generated by
AEP can well preserve the spatial information of
EEG signals, thus, solving the problem of low
spatial resolution and achieving a promising
the SEED database. The

accuracies for positive, neutral, and negative

classification on

emotions were 96%, 92%, and 83% respectively.
5.2.2  Graph convolutional neural networks

Graph convolutional neural networks (GCNN)
is a deep learning network that combines CNN
and spectrogram theory to find the relationship
within different nodes from graph signals.
GCNN is an effective method to extract features
from discrete spatial signals [127, 128], which
can be used to explore the spatial connection of
multi-dimensional EEG signals for emotion
recognition [118]. Jang et al. [117] utilized
GCNN for emotion recognition based on DEAP
database. First of all, intra-band graphs for each
electrode were created by calculating the power
and entropy of Delta (0-3 Hz), Theta (4-7 Hz),
low Alpha (8-10 Hz), high Alpha (10-12 Hz),
low Beta (13-16 Hz), middle Beta (17-20 Hz),
and high Beta (21-29 Hz) while considering the
relationship between electrodes. Then, they
merged all intra-band graphs into a larger graph
and fed this larger graph into the GCNN
classifier for emotion recognition. Compared
with traditional algorithms of KNN (with
highest recognition accuracy of 48.5%) and
forest (with highest

random recognition
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accuracy of 51.3%), GCNN obtained the higher
recognition accuracy of 65.27%.

5.2.3  Dynamical graph convolutional neural networks

To further promote the development of GCNN,
Song et al. proposed dynamical graph convolu-
tional neural networks (DGCNN) for multi-
dimensional EEG-based emotion recognition
[118]. On the basics of GCNN, DGCNN
dynamically calculate and update adjacency
matrix of graph nodes according to the changes
of graph signals. Song et al. [118] pointed out
that dynamically learning the inner relationship
of multi-electrode EEG signals would efficiently
improve the emotion recognition accuracy of
EEG signals. Their research results showed that
DGCNN achieved better classification perfor-
mance on DREAMER and SEED databases.
Classification accuracies of valence, arousal, and
dominance were respectively 86.23%, 84.54%,
and 85.02% on DREAMER database. Based on
the DE feature of SEED database, classification
accuracy of 90.4% was achieved in subject-
dependent classification model and the accuracy
of 79.95% for subject-independent validation.
Similarly, based on the EEG signals from SEED
database, Wang et al. [129] compared DGCNN
with SVM (86.08% =+ 8.34%), DBN (83.99% =
9.72%), GCNN (87.40% * 9.20%). Unsurprisingly,
DGCNN achieved better emotion recognition
performance in multi-channels EEG signals with
classification accuracy of 90.40% + 8.49%.

5.3 Semi-supervised learning classifiers

Semi-supervised learning is a classifier that
combines the benefits of both unsupervised
learning and supervised learning. By simultan-
eously feeding in a small amount of labeled data
and large numbers of unlabeled data for model
training, semi-supervised learning classifier can
improve the classification accuracy of unlabeled
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data, and deal with the problem of time-
consuming manual data labeling. At the same
time, semi-supervised learning algorithm makes
up for the poor generalization of supervised
learning classifiers and the low classification
accuracy of unsupervised learning classifiers with
significant practical applications.

Deep belief networks (DBN) is a probabilistic
generation model with deep structure that can
be used to extract high related features from
EEG, and is one of typical and state-of-the-art
DBN
unsupervised pre-training,

semi-supervised learning classifiers.

mainly follows
unsupervised fine-tuning, and supervised fine-
tuning [38, 130]. Firstly, a deep model with a
stacking structure is generated by performing
unsupervised greedy layer-wise pre-training.
Secondly, in the processing of unsupervised
fine-tuning, parameters of n  restricted
Boltzmann machines (RBM) that make up DBN
are updated with backpropagation. The main
purpose of unsupervised fine-tuning is to make
the reconstructed visible unit as close as possible
to the input visible unit by adjusting the
connection weight and bias between each layer.
Finally, label information is added to the highest
layer and the weights will be updated through
error backpropagation to realize supervised
fine-tuning of parameters.

DBN  can

extraction with feature learning to obtain better

efficiently ~combine feature
classification performance and has been widely
applied to the research of EEG-based emotion
recognition [120, 131]. Based on SEED database,
Zheng et al. [23] established positive, neutral,
and negative emotion recognition models using
DBN to explore the critical frequency bands and
crucial channels for improving the performance
of emotion recognition. Their research dis-
covered that Beta and Gamma band might
contain more information that better charac-

terized electrophysiological changes of the brain

Brain Sci. Adv.

under different emotional states. In comparison
with the classification results of SVM (83.99%),
logistic regression (82.70%), and KNN (72.60%),
DBN with accuracy of 86.08% could effectively
recognize neutral,

positive, and negative

emotion from multi-channels EEG signals.

6 Summary and outlook

Based on the current video-triggered EEG-based

paper
mainly summarized EEG-based emotion recog-

emotion recognition databases, this
nition methods in recent years. According to the
typical processing pipeline, different emotion
evoking methods were compared and the
details about publicly available databases for
video-triggered EEG-based emotion recognition
introduced. Moreover, a
EEG
selection, and modeling methods used in the

were systematic

introduction  of features extraction,
existing video-triggered EEG-emotion public
databases was presented.

With the beneficial contributions of these
public video-triggered EEG-emotion databases,
great progresses on emotion recognition using
EEG signals have been made in recent years.
However, there are still several limitations about
the public databases that requires further
improvement.

(1) Low quantity and small size. As shown in
Table 2, the existing public EEG-based emotion
recognition databases merely include DEAP,
MAHNOB-HCI, SEED series databases (i.e.,
SEED, SEED-1V, and SEED-VIG). Meanwhile,
the number of participants in each database is
relatively small, which could lead to both poor
classification performance and weak generaliza-
tion of emotion recognition modeling. The
individual difference could not be properly
examined. Also, the application of deep learning
emotion classification

networks in robust

modeling will be limited.
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(2) Unbalanced classes distribution. In DEAP
database, Koelstra et al. [20] found that, without
consideration of unbalance problem in class
distribution, the classification accuracy would
be much higher (For arousal, accuracy: 62.0%, F1:
58.3%. For valence, accuracy: 57.6%, F1: 56.3%.
For liking, accuracy: 55.4%, F1: 50.2%). The
sample imbalance in the class distribution will
directly affect the credibility of the classification
results, and the robustness and generalization
ability of the trained classification model will be
decreased.

(3) No standard self-assessment methods.
in the

existing databases are not consistent. Currently,

The collected self-assessment results

two self-assessment labeling methods are
mainly adopted in the existing public EEG-
emotion databases. One method is based on
quantitative indicators, such as valence, arousal,
and dominance for labeling (e.g., DEAP and
MAHNOB-HCI database); another self-assess-
ment method is based on discrete emotion labels,
such as happiness, sadness, fear, disgust, and
anger (e.g., SEED and SEED-IV database).
Moreover, most of the existing databases (such
as DEAP and MAHNOB-HCI) used the SAM
scale; the SEED database used the Philippot
questionnaire as self-assessment scale while the
SEED-IV database used the PANAS scale. Due
to these differences, it is a great challenge to
propose a cross-database classification model,
and it is hard to conduct transfer learning by
transferring the data collected under different
labeling conditions of self-assessment.

(4) Lack of long-term emotion triggering.
Existing emotion databases mostly used
short-term videos (i.e., video clips with duration
shorter than 6 min) as the triggering materials.
There is a lack of emotion study triggered by
long-term videos (more than 10 min). However,
to successfully evoke negative emotions, such as
sadness, it continuous

requires a longer
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triggering. Moreover, conducting a long-term
emotion induction experiment helps to better
understand the dynamic process of emotion
responses and the complex regulation mechan-
ism in brain; it further explores the neuro-
physiological mechanisms related to emotions.
In addition, emotion classification from
multi-modal physiological signals is of guiding
proper
siological responses to emotions. Most of the

significance for decoding of phy-
existing databases used the individual self-
assessment as ground truth. However, ratings
from self-assessment have obvious individual
differences. Thus, the reliability cannot be
guaranteed. Multi-modal physiological signals
(such as ECG, and eye gaze data) can be used as
an index to provide more evidences about the
evoked emotions. The development of multi-
modality physiological signals-based emotion
recognition model can improve the classification
performance with promising results.

Promoting the development of emotion
recognition has great application significance.
EEG-based emotion recognition with videos has
attracted wide attentions in many fields
including psychology, cognitive science, medi-
cine, and information technology. However, the
current video-triggered EEG-based emotion
recognition only tackles the recognition problem
with specified emotion states. However, in real
life, human emotion is complex, diverse, and
dynamic. To realize the real-time emotion
recognition with an online emotion monitor
system, the dynamic changes of emotions from
the perspective of neurophyiology should be
further studied, and the underlying neuro-
physiological mechanism of emotion regulation
should be further explored.

Also, the establishment of robust emotion
recognition models is indispensable in affective

computing. However, the existing video-
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triggered EEG-based emotion recognition re-
searches are mainly based on supervised
learning classifiers. The lack of labeled data and
low reliability of self-assessed labeling seriously
affect the classification performance. It is worth
noting that unsupervised learning and semi-
upervised learning have better self-adaptation
and self-learning capabilities in dealing with
such problems as individual differences,
inaccurate label information, and lack of labels.

To sum up, improving and unifying the
construction of video-triggered EEG-based
emotion databases could further promote the
development of emotion recognition, which
benefits the development of emotion classifica-
ion with a more robust and generalized EEG
model. Further, the quality of life and mental
health could be greatly improved with the
application of real-time emotion detection and
regulation.
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