The rostral ventromedial medulla control of cutaneous vasomotion of paws and tail in the rat: implication for pain studies


Thermal neutrality in rodents is achieved by large cyclic variations of the sympathetic drive of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Given the pivotal functional role of rostral ventromedial medulla (RVM) in nociception and rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, we aimed at circumscribing the brainstem regions that are the source of premotor afferents to sympathetic preganglionic neurons that control the vasomotor tone of the tail and hind paws. A thermometric infrared camera recorded indirectly the vasomotor tone of the tail and hind paws. During the control period, the rat was maintained in vasoconstriction by preserving a stable, homogeneous, and constant surrounding temperature, slightly below the core temperature. The functional blockade of the RVM/rMR by the GABAA receptor agonist muscimol (0.5 nmol, 50 nl) elicited an extensive increase of the temperature of the paws and tail, associated with a slight decrease of blood pressure and heart rate. Both the increased heat loss through vasodilatation and the decrease heart-induced heat production elicited a remarkable reduction of the central temperature. The effective zones were circumscribed to the parts of the RVM/rMR facing the facial nucleus. They match very exactly the brain regions often described as specifically devoted to the control of nociception. Our data support and urge on the highest cautiousness regarding the interpretation of results aimed at studying the effects of any pharmacological manipulations of RVM/rMR with the usual tests of pain.

Journal of neurophysiology
Gan Huang
Gan Huang

My research interests include Neural Modulation, Brain Computer Interface and Neural Prosthetics.