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A B S T R A C T   

Background: Dynamic functional connectivity (dFC) based on resting-state fMRI has attracted interest in the field 
of bipolar disorder (BD), because dFC can better capture the evolving processes of emotion and cognition, which 
are typically impaired in BD. However, previous dFC studies of BD have typically focused on specific seed brain 
regions or specific functional brain networks, and they have ignored global dynamic information interaction in 
the whole brain. This study is aimed to reveal aberrant and interpretable whole-brain dFC patterns of BD. 
Methods: The resting-state fMRI data collected from 35 euthymic BD patients and 30 healthy people. We 
developed a new dFC inference pipeline, including the sliding-window method, k-means clustering, a new 
permutation with zero-inflated Poisson regression method, and a similarity analysis for interpretable states, to 
examine the different patterns of dFC states between BD patients and healthy participants. 
Results: BD patients had significantly more frequent transitions between two specific dFC states, which were 
respectively close to high-level cognitive networks and low-level sensory networks, than healthy controls (p <
0.05, FDR). 
Limitations: The size of samples and other BD types need to be expanded to validate the results of this study. 
Possible confounding effect of medication. 
Conclusions: This study detected aberrant dFC pattern of BD, which indicated the increased lability of the pro
cesses of cognition and emotion in BD, and this finding could improve our understanding of the neuropatho
logical mechanism of BD.   

1. Introduction 

Bipolar disorder (BD) is a chronic and fluctuating mental disorder 
characterized by nonspecific symptoms, mood lability or depressive 
episodes. BD affects more than 1% of the global population and has a 
high incidence of morbidity and self-harm (Vieta et al., 2018). 
BD-related abnormalities in both neuroanatomical and functional or
ganizations have been documented in previous studies (DelBello et al., 
2004; Hajek et al., 2005; Malhi et al., 2005; Monks et al., 2004). BD does 
not only affect the functional activities in local brain regions, but also 
alters the functional interaction between multiple brain regions 

(Blumberg et al., 2003; Townsend and Altshuler, 2012; Vargas et al., 
2013; Yurgelun-Todd et al., 2000). A growing number of researches 
show that exploring the functional brain connectivity in BD can provide 
insights into the neurological and pathological mechanisms of this 
disease. 

Functional connectivity (FC) based on resting-state functional mag
netic resonance imaging (fMRI) has been widely used to study mental 
disorders, such as BD, autism spectrum disorder, Parkinson’s disease and 
schizophrenia (Fiorenzato et al., 2019; Fu et al., 2018; Fu et al., 2019b; 
Syan et al., 2018). FC is commonly inferred as the statistical interde
pendence between fMRI blood oxygen level dependent (BOLD) signals of 
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two brain regions (Biswal et al., 1995; Fox and Greicius, 2010; Greicius, 
2008). However, FC is conventionally estimated from the whole fMRI 
scan and the resultant static FC (sFC) ignores the spontaneous fluctua
tion of the information interaction of the brain (Calhoun et al., 2014; 
Hutchison et al., 2013; Preti et al., 2017). Therefore, dynamic functional 
connectivity (dFC) has attracted more attention as an effective tool to 
reveal variable and evolving functional interconnections of the brain. 
Many studies have shown that dFC can provide extra and meaningful 
information about the aberrant neural activities and underlying mech
anisms of mental disorders than sFC. In the BD research field, Fateh et al. 
found that abnormal dFC was identified in the right amygdala of BD 
(Fateh et al., 2020), and Nguyen et al. reported that the dFC between the 
medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) 
was altered in BD (Nguyen et al., 2017). BD-related dFC abnormalities 
did not only occur between local brain regions, but also existed between 
specific functional networks, which consist of a set of functionally 
correlated regions. Specifically, Long et al. reported an increase in 
temporal variability of dFC between the thalamus and the sensorimotor 
network (Long et al., 2020). Wang et al. found that a decreased vari
ability of dFC between posterior default mode network (DMN) and right 
central executive network (CEN) in BD (Wang et al., 2020a). However, 
most of these dFC studies concerning BD patients were based on 
pre-selected seed regions or between specific brain networks, but these 
may entail a risk of overlooking meaningful dFC features whose nodes 
are not included in these pre-selected regions or networks. Recently, a 
whole-brain study on dFC abnormality of BD patients is still lacking. It is 
important to perform a whole-brain dFC analysis on BD patients, 
because BD-related brain abnormalities are not limited to several spe
cific regions but are spread throughout the whole brain (Sha et al., 2019; 
Wang et al., 2020b; Wang et al., 2017). Particularly, the whole-brain 
dFC can define a set of recurring “states”, which exhibit consistent 
patterns of spontaneous brain activities and functional connections. 
Many studies have linked aberrant features of whole-brain dFC states to 
mental disorders (Damaraju et al., 2014; Fiorenzato et al., 2019; Fu 
et al., 2019a; Rabany et al., 2019). For example, Fiorenzato et al. found 
that abnormal dwell time of states and number of transitions between 
dFC states are linked to the presence of dementia in Parkinson’s disease 
(Fiorenzato et al., 2019). Therefore, exploring the whole-brain dFC state 
abnormalities of BD patients may lead to new findings in brain pathol
ogy of BD. 

In the present study, we aimed to investigate the differences of 
whole-brain dFC states between healthy people and BD patients based 
on the hypothesis that the dFC states are altered in BD patients and these 
abnormalities in dFC states are associated with BD symptoms. To this 
end, we recorded resting-state fMRI data of 35 euthymic BD patients and 
30 matched healthy controls. To infer distinguishable and interpretable 
dFC state patterns, a new dFC inference pipeline was proposed, which 
included the following four steps. First, we parceled the whole brain into 
a group of regions of interest (ROI), and then used the sliding window 
approach to calculate dFC and used k-means clustering to identify a 
small number of distinct dFC states. Second, the temporal properties of 
dFC states, which included the number of transitions, mean dwell time 
and occurrence frequency, were extracted. Third, because the temporal 
features of dFC states typically had a large number of zeros, which vi
olates the assumption of conventional statistical tests, we proposed a 
new permutation with zero-inflated Poisson regression (PERM-ZIP) 
method to assess the statistical difference of dFC features between two 
groups. Lastly, we provided an interpretation about the identified 
aberrant dFC pattern according to their similarity with resting-state 
networks from sFC. We found that BD patients had significantly 
frequent transitions between two specific dFC states, which were 
respectively close to high-level and low-level functional networks. 

2. Materials and Methods 

2.1. Participants 

The participants in this study comprised 35 euthymic and medicated 
BD type I patients (13 males, 22 females, age: 31.49±8.17 years) and 30 
healthy controls (HC: 15 males, 15 females, age: 28.87±7.25 years). All 
BD patients were recruited from outpatient and inpatient departments at 
Shenzhen Mental Health Centre, and HC were recruited by advertise
ment. The procedures of this experiment were approved by the Human 
Research Ethics Committee of Shenzhen Mental Health Center, and all 
participants in this experiment signed an informed consent form. 

The diagnostic assessment of BD was made according to the criteria 
of Structured Clinical Interview for DSM-IV (SCID) (Lobbestael et al., 
2011), and the patients met the DSM-IV criteria for bipolar I disorder. 
During the experiment, the BD patients took lithium and valproate, two 
widely used mood stabilizer, but there was no change in psychotropic 
drugs or emotional state within 3 months before or during the experi
ment. All the patients were assessed using the Young Mania Rating Scale 
(YMARS) (Young et al., 1978) and Hamilton Depression Scale (HAMD) 
(Hamilton, 1967) before the scanning. BD patients included in this study 
met the following inclusion criteria: (1) all patients had ability to give 
voluntary informed consent; (2) the scores of YMARS and HAMD were 
both less than 6; (3) satisfying the criteria for undergoing MRI scanning; 
(4) no current depressive, manic or hypomanic episode according to 
SCID; (5) no history of hospitalization within 6 months. In addition, 30 
HC in this work passed the following inclusion criteria: (1) no organic 
brain disease; (2) no history of head trauma leading to loss of con
sciousness for more than 10 minutes; (3) no first-degree family history of 
illness, which including major psychiatric illness, dementia, or mental 
retardation; (4) no history of alcohol or substance dependence within 12 
months prior to assessment; (5) no history of psychosis or neuropathy. 
The non-patient version of SCID was also used to guarantee that HCs had 
no history of psychosis or neuropathy illness (First and Gibbon, 2004). 

2.2. Data acquisition and preprocessing 

The imaging data were performed on a Siemens 3T Trio scanner with 
a 12-channel head coil. Resting-state fMRI data were acquired using a 
standard gradient-echo EPI sequence with 31 oblique slices, time of 
repetition (TR) = 2000 ms, time of echo (TE) = 30 ms, field of view 
(FOV)= 240 × 240 mm2, flip angle = 90◦, size of matrix = 64 × 64, 
voxel size = 3 × 3 × 5 mm3, total volume = 246. During the whole scan, 
all participants were requested to keep their eyes open and stay awake. 

Data preprocessing procedure were carried out by using the DPABI 
(http://rfmri.org/dpabi/) (Yan et al., 2016) and SPM8 (https://www.fil. 
ion.ucl.ac.uk/spm/) toolboxes in MATLAB-R2018b (Mathworks, Sher
born, MA, US). For each subject, the first 5 volumes of resting-state fMRI 
data were removed, leaving 241 volumes. The middle slice was used as 
the reference slice for slice timing correction. Then, fMRI data were 
realigned to correct the head motion and obtained the 6 rigid body 
motion parameters. T1 images were co-registered to functional images 
and segmented into grey matter (GM), white matter (WM) and cere
brospinal fluid (CSF). In order to decrease the effects of head motion, the 
Friston 24-parameter model (6 head motion parameters, 6 head motion 
parameters one time point before, and the 12 corresponding squared 
items (Friston et al., 1996)) was used to regress out the head motion 
parameters. Time points with the head motion parameters larger than 
0.2 were scrubbed, and they were modeled as a separate covariable for 
regression to decrease their influence on the continuity of time. More
over, the WM and CFS were regressed out as the covariates, and the 
segmented WM and CSF images with a threshold p > 0.99 were used to 
define WM and CSF masks for each participant. The functional images 
were then normalized into standard Montreal Neurological Institute 
(MNI) space, resampled to a 3 × 3 × 3 mm3 voxel, and smoothed with a 
6 mm FWHM Gaussian kernel. Finally, a bandpass filter with a frequency 
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window of 0.01-0.1 Hz was used to improve the signal-to-noise ratio of 
signals. 

2.3. Brain parcellation 

We used the Dosenbach atlas to defined 160 ROIs in 6 different 
intrinsic connectivity networks (ICNs) (Dosenbach et al., 2010). In 
addition, four ROIs from bilateral amygdala and parahippocampal gyrus 
were added as an additional network. Therefore, a total of 7 ICNs were 
defined in the whole brain, and they were: cerebellum network (CER), 
cingulo-opercular network (CON), default mode network (DMN), 
fronto-parietal network (FPN), occipital network (OCC), sensorimotor 
network (SMN), and addition network (ADD). Then, according to the 
standard MNI spatial coordinates of the 164 ROIs, the radius with 8 mm 
was used to average the BOLD response of all voxels in the sphere, and 
the BOLD time courses of each ROI were extracted. 

2.4. dFC estimation 

The sliding window method was used to split BOLD time courses into 
several short segments and to calculate the whole-brain FC matrix of 
each segment. A tapered window with a length of 30 TR and a step of 1 
TR was used to split the data, and it was obtained by convolving a 
rectangle window with a Gaussian window (σ = 3 TR). In each window 
(or say, at each time point), we calculated the Pearson’s correlation 
coefficients between BOLD time courses of each pair of ROIs. The cor
relation coefficients were then transformed to z-scores by using Fisher-Z 
transformation. The resultant dFC matrix is the Fisher-Z-transformed 
correlation coefficient matrices of all time points, and it has a dimen
sionality of 164 × 164 × 211, where 164 was the number of ROIs and 
211 was the number of time points. 

After the estimation of dFC, k-means clustering was applied to 
identify a set of dFC states, which are recurring dFC patterns. In clus
tering analysis, we estimated the similarity between two dFC matrices 
by using the L1 distance (Manhattan distance), as it is an effective 
similarity measure for high-dimensional data (Aggarwal et al., 2001). In 
order to determine the optimal number of clusters, the elbow method 
was used. Specifically, the upper triangle of all participants’ dFC 
matrices were first extracted, because of the symmetry of the matrices. 
Then, the k-means clustering was performed in two steps. In the first 
step, a subset of windows that was composed of the windows with local 
maxima in FC variance was used as the exemplars of all participants to 
reduce the redundancy between windows and the computational de
mands. After that, the initial points of the cluster were randomly 
selected, which was repeated 100 times, and the result with the centroid 
position of the cluster was retained. In the second step, the k-means 
clustering was carried out on the exemplars of all participants. The 
centroids of the first step clustering were set as the initial points, and the 
number of iterations for k-means was set to 1000. Finally, all dFC 
matrices of all participants were clustered into 4 states according to the 
elbow method. 

Next, a number of temporal features of these dFC states, including 
the number of transitions, mean dwell time, and occurrence frequency, 
were calculated for each participant. The number of transitions between 
each pair of dFC states was calculated as the number of transitions from 
a specific state to another state, and its value represents the lability of 
dFC over time. The mean dwell time and the occurrence frequency were 
respectively calculated as the number of continuous time point 
belonging to one dFC state and the percentage of one dFC state among 
all the time points. 

2.5. Statistical analysis (PERM-ZIP) 

The demographics (age and education) of BD and HC were compared 
using two-sample t-test. Gender difference was evaluated by the Pearson 
Chi-square test. The temporal features (the number of transitions, mean 

dwell time, and occurrence frequency) extracted from dFC states were 
count data containing a high proportion of zeros (i.e., zero-inflated). So, 
the commonly used two-sample t-test or the Wilcoxon rank-sum test are 
not suitable for the comparison of these dFC state features. To address 
this problem, we developed a new statistical comparison method, named 
permutation with zero-inflated Poisson regression (PERM-ZIP), which 
can deal with zero-inflation in count data (Chen et al., 2019; Farhadi 
Hassankiadeh et al., 2018; Hofmans, 2017; Lukusa and Phoa, 2020; Pew 
et al., 2020; Yusuf et al., 2017). 

The proposed PERM-ZIP method was based on the zero-inflated 
Poisson regression (ZIP) model in statistics. The ZIP is a hybrid model, 
which consists of two models to handle a binomial process and a count 
process (Lambert, 1992; Yang, 2014). The probability distribution of ZIP 
model is as follows: 

P(Y = yi) =

{
pi + (1 − pi)exp− λ, for yi = 0,
(1 − pi)λyi exp− λ/yi!, for yi > 0.

In this model, pi is coefficient of zero-inflated and it represents the 
probability of observed 0, while 1 − pi is the probability of observed 
Poisson(λ) random variable. If 0 < pi < 1, there is zero-inflated in data. 
The ZIP model reduces to the Poisson model when pi vanishes, and the 
parameter λ is the mean and variance of the Poisson distribution. If the 
random variable Y obeys the distribution of ZIP, then its expectation and 
variance can be estimated as follow: 

E(Y) = (1 − pi)λ  

Var(Y) = E(Y)(1+ λ − E(Y))

A logistic regression model is usually used for the binomial process, 
and a logarithmic linear model is usually used for the regression of the 
count process. Then, the ZIP model produced a set of parameters to 
model the data under study, and these parameters include intercept of 
the logistic regression model, coefficient of zero-inflated pi, expectation 
E(Y) and variance Var(Y). 

Thus, for each type of dFC feature of either BD or HC, we can use the 
ZIP model to fit the data and result in a number of ZIP parameters. 
Subsequently, we used permutation to examine whether the group dif
ference of any ZIP model parameter between BD and HC had statistical 
significance. More precisely, we randomly assigned all participants into 
two groups (one had 35 participants and the other had 30) and such a 
random process was repeated 1000 times. In each permutation, we 
estimated the ZIP parameters for both permutation groups and calcu
lated the differences of ZIP parameters between two permutation 
groups. Then, a probability density distribution of the group difference 
of one ZIP parameter was generated after 1000 permutations. The sig
nificance level of the actual difference of a ZIP parameter was deter
mined by locating the actual value in the corresponding probability 
density contribution generated by permutation. The proposed permu
tation with ZIP (PERM-ZIP) method was applied for each dFC feature 
(the number of transitions, mean dwell time and occurrence frequency). 

2.6. Similarity analysis for interpretation of dFC states 

The dFC states were identified in a data-driven manner by using 
unsupervised clustering based on dFC matrices of all subjects (including 
both patients and controls). As a result, the physiological meanings of 
these states were not straightforward. In order to better interpret the 
identified aberrant dFC states, we compared each dFC state with the 
well-established ICNs as revealed by the sFC, which has been well 
studied and have relatively clear meanings and interpretations. This 
comparison was achieved by calculating the similarity (in terms of L1 
distance) between the dFC state and sFC. If a dFC state and sFC had a 
smaller L1 distance, the higher similarity they had. We used ANOVA and 
post-hoc test to detect whether there were significant differences in the 
similarity between each of the four dFC states and sFC. We further 
checked the similarity between dFC states and sFC for each pair of ICN. 
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Because there were 7 ICNs, we had 7 within-network pairs and 21 inter- 
network pairs. Similarly, ANOVA and post-hoc test was used to examine 
whether there were significant differences in the similarity between 
each dFC state and sFC for each network-pair. The false discovery rate 
(FDR) (Benjamini and Hochberg, 1995) was applied to address the 
problem of multiple comparisons. 

3. Results 

3.1. Demographic characteristics 

The demographic characteristics of all participants in this analysis 
are shown in Table 1. There were no significant differences in gender, 
age, and education between 35 BD patients and 30 HC. 

3.2. dFC states 

Fig. 1A shows the sFC pattern estimated from the whole scan and 
averaged from all participants. Through the sliding window and group- 
level k-means clustering analysis, we determined four states of dFC, of 
which the centroids were displayed in Fig. 1B. The proportions of states 
1-4 in all time points of all participants are 9%, 19%, 26%, and 46%, 
respectively. 

3.3. Comparisons of dFC state features between BD and HC 

We used PERM-ZIP to analyze the group differences of dFC state 
features (the number of transitions, the mean dwell time, and the 
occurrence frequency) between BD and HC. We found expectation, the 
ZIP parameter representing the weighted mean of the variable, of the 
number of transitions between state 3 and state 4 had significant dif
ferences between two groups. The greater expectation of the BD group 
means the transitions between state 3 and state 4 in BD were signifi
cantly more frequent than those in HC. Results displayed in Fig. 2A show 
that the number of transitions from state 3 to state 4 and the number of 
transitions from state 4 to state 3 in BD (state 3 to state 4: 1.49±1.07; 
state 4 to state 3: 1.51±1.15) were significantly higher than those in HC 
(state 3 to state 4: 0.83±0.99; state 4 to state 3: 0.83±0.95) (p < 0.05, 
FDR corr.). For the other two features (the mean dwell time and the 
occurrence frequency), there were no significant differences between BD 
and HC, as shown in Fig. 2B and C. The state transitions of two examples 
were shown in Fig. 2D. 

3.4. Characteristics of dFC states 

With the aim to better interpret dFC states, we further explored the 
similarity between dFC states and sFC by calculating the L1 distance 
between them at the whole-brain level and at the network level for all 
subjects in both HC and BD groups. The results were displayed in Fig. 3. 
It can be seen from Fig. 3A that the L1 distance between state 3 and sFC 
is the smallest, followed by that between state 4 and sFC, suggesting that 
state 3 and state 4 are the most and the second most similar states to sFC 
at the whole-brain level. To further check the similarity between sFC and 
these two similar states (state 3 and state 4) at the block network level, 
we estimated the L1 distance between state 3 or state 4 and sFC in 28 
network pairs (7 within-network pairs and 21 between-network pairs). 
The results were shown in Fig. 3B, which indicated that state 3 and sFC 
had significantly higher similarity in high-level network-pairs, such as 
DMN-CON, within-DMN, DMN-FPN, FPN-CON and within-FPN (p <
0.05, FDR), which are mainly involved in high-level cognitive functions. 
On the other hand, state 4 and sFC had significantly higher similarity in 
low-level network pairs, such as SMN-OCC, SMN-DMN, and within-SMN 
(p < 0.05, FDR), which mainly subserve low-level sensory functions. 
Thus, state 3 could be interpreted as a sFC-like high-level state, while 
state 4 could be interpreted as a sFC-like low-level state. 

4. Discussion 

In the present study, we investigated BD-related abnormalities in 
whole-brain dFC states. Our main finding is that, the number of transi
tions between two dFC states (state 3 and state 4, which were respec
tively considered as a high-level state and a low-level state), was 
significantly different between BD and HC. Thus, the aberrant transition 
between these two dFC states could be an important neuroimaging 
signature for the neuropathology associated with BD. 

4.1. Recurring dFC states 

dFC can indicate the flexibility and adaptability of the functional 
brain networks, so it has been widely used in the research of mental 
diseases in the past few years. Our findings and other research on psy
chiatric disorders suggest the importance of assessing the transients and 
fluctuations of FC. Previous studies have shown BD-related local 
abnormal dFC is associated with abnormal emotional and cognitive 
processes. However, emotion and cognitive processes are highly com
plex and involve the interaction of multiple brain networks, such as 
sensory, motor, and control networks (Perry et al., 2019; Tononi et al., 
1994). Hence, only considering abnormal dFC between several local 
brain regions and individual networks in BD may ignore valuable in
formation about the abnormal brain’s information communication 
during the processes of emotion and cognition. In addition, dFC state 
analysis is an advanced method to explore the evolution of the whole 
brain network configuration. The whole-brain dFC states can capture the 
transient changes of all functional brain networks and can be used to 
further explore recurring functional brain states based on the highly 
variable interaction in the brain (Allen et al., 2014). So, in the present 
study we finally identified four recurring dFC states, which represented 
similar whole-brain FC configurations among multiple time points and 
participants. In particular, state 3 was the most similar state to sFC in 
network-pairs involving high-level cognitive functions, such as CON, 
DMN and FPN, while state 4 was the most similar state to sFC in 
network-pairs involving low-level sensory functions, such as OCC and 
SMN. More specifically, CON, DMN and FPN play an important role in 
high-level cognition and emotion, and they can coordinate and modu
late low-level sensory and perceptual networks, such as OCC and SMN, 
through top-down modulation (Yuan et al., 2019). Thus, state 3 and 
state 4 were referred to sFC-like high-level state and sFC-like low-level 
state, respectively. In addition, sFC (static FC) is much more extensively 
used to investigate psychiatric disorders than dFC in resting-state fMRI 

Table 1 
Demographic data of the patients with bipolar disorder and healthy controls in 
this experiment   

BD HC P value 

No. of subjects 
(male/female) 

35 (13/22) 30 (15/15) 0.297a  

Mean 
(SD) 

Min− Max Mean 
(SD) 

Min− Max BD vs. 
HC 

Age (years) 31.49 
(8.17) 

18− 54 28.87 
(7.25) 

22− 47 0.180b 

Education (years) 13.40 
(2.93) 

8− 18 14.43 
(2.89) 

8− 18 0.159b 

HAMD 1.11 
(1.32) 

0− 3 − − −

YMRS 0.71 
(0.93) 

0− 4 − − −

Duration of illness 
(years) 

8.51 
(6.46) 

0.25− 24 − − −

No. of manic 
episodes 

2.54 
(1.60) 

1− 6 − − −

No. of depressive 
episodes 

1.60 
(1.50) 

0− 8 − − −

Note: HAMD: Hamilton Depression Scale; YMRS: Young Mania Rating Scale. 
a Pearson Chi-square test 
b independent two-sample t-test 
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studies. We compared the sFC between BD and HC but found no dif
ference, which means that BD patients do not have aberrant static 
functional brain networks. 

4.2. Aberrant transitions of dFC states in BD 

Our findings revealed the aberrant transitions between two distinct 
sFC-like dFC states in BD patients. Normally, dFC analysis assumes that 
the whole-brain’s functional networks vary among several dFC states, 
and dFC transitions describe the patterns of variations in dFC states and 
indicate the stability and volatility of the brain’s functional networks. 
Abnormal patterns of dFC transitions have been related to several types 
of psychiatric disorders (Cao et al., 2019; Fiorenzato et al., 2019; Li 
et al., 2020; Liu et al., 2017). We can see from the literature that, the 
number of transitions between dFC states can reflect the dynamics, 
flexibility, and efficiency of information transmission in the brain’s 
functional networks. Normal brain functions depend on a stable and 
effective transmission of information between brain functional networks 
and abnormal patterns of dFC transitions are often related to psychiatric 
disorders. These results are consistent with our findings. Compared with 
HC, BD patients had significantly larger number of transitions between 
state 3 and state 4, which can be interpreted as follows. BD is charac
terized by emotional dysregulation, fluctuating affections and cognitive 
deficits (Bonsall et al., 2015; Leibenluft, 2011; Vieta et al., 2018), so that 
emotion, affection, and cognition of BD patients fluctuate greatly 
(Renaud et al., 2012). A loss of stability in large-scale brain dynamics 
has be well validated in BD in recent researches. Emotional dysregula
tion of BD patients arises from dynamic lability in interoceptive circuit 
and cognitive control system (Perry et al., 2019). The abnormal tem
poral properties of electroencephalographic (EEG) microstates (Dam
borská et al., 2019) and effective connectivity based on fMRI (de 
Almeida et al., 2009; Radaelli et al., 2015) also support the dysregula
tion of emotion-related networks in BD. In addition, the emotional 
instability of BD patients can be attributed to the emotional and 
cognitive dysfunction (Bilderbeck et al., 2016; Green et al., 2007; Lima 
et al., 2018). Therefore, the instability of dFC states (especially the 
transitions between high-level and low-level sFC networks) identified in 
the present study may be related to emotional and cognitive disorders, 

including but not limited to BD. 
Specifically, state 3 was characterized as an sFC-like high-level 

cognitive state, while state 4 was characterized as an sFC-like low-level 
sensory state. So, the frequency of transitions between state 3 and state 4 
could represent how the brain shifts from sensory processing to cogni
tive functioning. Those dominant networks in state 3 (CON, DMN and 
FPN) are high-level cognitive networks which can coordinate other 
networks (such as OCC and SMN) to process external and internal in
formation (Buckner and Carroll, 2007; Smallwood et al., 2012) and can 
support cognition, perception, emotion and social interactions (Menon, 
2011). More precisely, CON and FPN are considered indispensable for 
cognitive flexibility. For example, during the performance of some 
complex cognitive tasks, both FPN and CON display increased activity 
(Dosenbach et al., 2007; Sheffield et al., 2015). FPN provides informa
tion regarding control and regulation for CON, while CON integrates 
sensory information to evaluate the homeostatic relevance of stimuli 
and affects the information processing of downstream (Dosenbach et al., 
2008). DMN also participates in emotional and cognitive functions and 
inner-thoughts (Martino et al., 2016). FC abnormalities among FPN, 
DMN and CON are often related to emotional and cognitive impairment, 
and have been reported in BD patients (Goya-Maldonado et al., 2016; 
Lois et al., 2014). On the other hand, those dominant networks in state 4 
(SMN and OCC) are typical sensory networks which can perceive the 
stimuli from external or internal environments, activate and contextu
alize the sensory information (Dong et al., 2019; Perry et al., 2019). 

Some studies suggested that the neural modelling of emotion regu
lation is considered as the interaction between bottom-up emotional 
evaluation and top-down cognitive control (Phillips et al., 2008). 
Cognition provides a framework for evaluating internal and external 
stimuli, and the capabilities of cognition can affect the way of emotional 
regulation (Lima et al., 2018; Oatley and Johnson-Laird, 2014). More
over, the way of thinking, feeling and behavior is affected by emotion, 
and they can be regulated in various ways. When emotion regulation is 
scarce, or poorly matched to situational requirements, the emotional 
responses may be inappropriate, insufficient or excessive(Aldao et al., 
2010; Etkin et al., 2015). The whole-brain dFC patterns are widely 
associated with the emotion and cognition, so the low-level sensory and 
high-level cognition should be represented by distinct dFC patterns. The 

Fig. 1. A. sFC was obtained from the whole fMRI scan and averaged across all participants. B. Four dFC states were illustrated by their centroids. The numbers in 
parentheses were the proportions of the four dFC states in all time points of all participants. 
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Fig. 2. Comparisons of dFC state features between BD and HC. A. The number of transitions between states. B. The mean dwell time. C. The occurrence frequency. BD 
is marked in red, and HC is marked in green. On each box plot, the central circle denotes the median; the edges of the box are the 25th and 75th percentiles. * p <
0.05, FDR. D. Examples of state transitions of two participants. A red dot represents a transition from state 3 to state 4, while a blue dot represents a transition from 
state 4 to state 3. There are more transitions between state 3 and state 4 in BD than HC. 

Fig. 3. A. Comparisons of similarity between dFC 
states and sFC, as measured by L1 distance between the 
whole-brain FC matrices (*** p < 0.001, FDR) of all 
subjects in both HC and BD groups. dFC state 3 and 
state 4 are the most and the second most similar states 
to sFC. B. Comparisons of similarity between dFC state 
3 and state 4 in each network-pair of all subjects in 
both HC and BD groups. The similarity between state 3 
or 4 and sFC and the extent of the similarity were 
respectively coded by the color and size of circles. If 
state 3 of one network-pair was more similar to sFC, 
then the corresponding circle had a color closer to red 
and a larger size. On the contrary, if state 4 of one 
network-pair was more similar to sFC, then the corre
sponding circle had a color closer to blue and a larger 
size.   
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number of transitions between these two states in BD was more frequent 
than HC, which indicated the instability of transitions between 
high-level networks and low-level networks in BD. It may also imply a 
loss of stability in the large-scale functional brain network and a less 
efficient transmission of information between high-level and low-level 
networks. So, the patients with BD cannot normally participate in 
top-down cognitive control and bottom-up emotional assessment, and 
then may have insufficient ability to regulate emotion and execute 
cognitive tasks. In addition, one recent EEG study showed that there 
were more frequent transitions between EEG microstates in BD patients, 
which agreed with our findings well (Vellante et al., 2020). 

Taken together, the frequency of transitions between the low-level 
state 3 and the high-level state 4 indicates the lability of the processes 
of cognition and emotion in BD. Failure or insufficiency in the regulation 
and control related brain activities and networks may cause disorders in 
emotion and cognition. 

4.3. Limitations and future work 

There are some issues that may be worth investigating in the future. 
Firstly, although the abnormalities of dFC states were found in BD and 
were considered as the reason of affection lability in BD, it remains 
unclear whether these dFC abnormalities are specific to BD or not. 
Second, the patients recruited in the present study only included BD I 
type, which may limit the extension of our results to other BD subtypes. 
To check the common and specific patterns of dFC in different mental 
disorders with emotional symptoms and other subtypes of BD will be 
interesting. In the future work, expanding the size of samples and the 
including more centers or sites are important to verify or generalize the 
results in this study. Third, mood stabilizers and antipsychotics were 
prescribed for all patients, and anticonvulsants, antidepressants or an
xiolytics were prescribed for a small number of patients. Different 
medications might interact to produce different effects, so medication 
could be a confounding factor of our study. Last but not least, with the 
rapid development of dFC analysis, more meaningful dFC features could 
be available so that more information about BD can be extracted from 
the dynamic patterns of FC, providing effective tools to reveal the neural 
mechanism of BD. 

5. Conclusion 

This study investigated the temporal properties of dFC states in BD 
patients. We found that the number of transitions between an sFC-like 
high-level cognitive state and an sFC-like low-level sensory state was 
significantly higher in BD. These aberrant frequency of transitions be
tween dFC states may potentially be an important and objective neu
roimaging marker for BD. These results suggest that whole-brain dFC 
analysis is a useful tool to reveal abnormal dynamic brain states in BD 
patients and the finding can improve our understanding of the neural 
mechanisms of BD from a new perspective. 
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