
  

  

Abstract— Brain-Computer Interfaces (BCIs) allow users to 

make use of brain activity to control external devices directly for 

rehabilitation and enhancement of human functions. However, 

the inefficiency problem that a typical BCI system is unable to 

effectively decode EEG signals in some users, prevents BCI 

technology from benefitting all users. The proportion of 

inefficiency varies in the major BCI paradigms, among which 

Motor Imagery (MI)-based BCI achieves highest (10%-50%). 

Hence, the question arises as to whether other BCI paradigms, 

such as P300, could be substitutes for users who cannot be served 

by certain paradigm. In this work, a cross-paradigms BCI 

experiment, in which 93 healthy subjects executed BCI tasks 

including real movement and P300 for two sessions on separated 

days, was performed to answer the above question. Firstly, the 

highly correlation between the recognition accuracy in two 

sessions within subjects for both Sensory Motor Rhythm (SMR) 

features ( p = 4.47×10
-11

) and P300 features ( p = 2.17×10
-3

) 

indicated the reproducibility of the subject-level BCI inefficiency 

in the two paradigms. Further analysis demonstrated no 

significant correlation between the decoding performance of the 

SMR and P300 features (p = 0.604). The results verified the 

feasibility of improving BCI decoding performance by replacing 

certain BCI paradigm with another one when users encounter 

the problem of BCI inefficiency. 

I. INTRODUCTION 

Brain-Computer Interfaces (BCIs) create a direct 
communication access between the human brain and the 
computer[1], which might serve as an auxiliary control tool for 
patients with dyskinesia by translating the brain activity into 
command or control signals[2]. Due to higher security and 
lower cost compared with invasive BCIs, non-invasive BCIs 
based on the measurement of scalp electroencephalography 
(EEG) have been widely used for recording brain signals[3], 
primarily including Motor Imagery (MI), P300 and Steady-
State Visual Evoked Potential (SSVEP). MI-based BCIs 
require users to imagine limb movement to spontaneously 
generate Event-Related Desynchronization/Synchronization 
(ERD/ERS)[4] in the mu (8-13Hz) and beta (18-24Hz) 
frequency ranges of EEG[5], while P300-based BCIs or 
SSVEP-based BCIs require users to gaze attentively at visual 
targets that induce the P300 component[6] or oscillations[7] in 
the EEG.  

However, across the three major BCI paradigms 
mentioned above, there is an inevitable problem called BCI 
inefficiency that a typical BCI system cannot work for all users 
due to its ineffectiveness for some users whose EEG signals 
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are unable to be effectively decoded to attain control[8][9]. In 
a previous research, about 72.8% of 81 subjects showed a 
control with the P300 speller in 100% accuracy, while only 
11.1% were below 80%[10]. Similarly, about 86.7% of 53 
subjects reached an accuracy above 90%, and nobody was 
below 60% in SSVEP-based BCIs (four classes)[11]. 
Nonetheless, the problem of inefficiency might be more 
prominent in MI-based BCIs compared to other BCIs. In a 
study concerning MI-based BCI (two classes) inefficiency, a 
high accuracy of above 90% could be achieved by only 6.2% 
of 99 subjects, while 78.8% were below 80%[12]. Though 
there were some meaningful studies for the recognition of 
BCI-inefficient users using physiological or psychological 
features[13][14], the appropriate solution to the problem of 
BCI inefficiency is still being exploited. 

The previous studies implied that P300-based BCIs or 
SSVEP-based BCIs might provide users who encounter the 
problem of inefficiency in certain BCI paradigms, such as MI-
based BCIs, with viable alternatives. However, this hypothesis 
needs to be verified by a broad within-subjects and cross-
paradigms research in which each subject is required to 
perform at least two BCI paradigms. In this work, the problem 
of BCI inefficiency was investigated in a large-scale BCI 
dataset (93 subjects) in which subjects executed experiments 
including real movement and P300 for two sessions on 
separated days. Cross-sessions correlation analysis was 
performed to verify the reproducibility of the BCI inefficiency 
in the two paradigms, and cross-paradigms correlation analysis 
was performed to explore the relationship of BCI inefficiency 
between the two types of paradigms. 

The rest of this paper is organized as follows. In Section II, 
the experiment paradigms and the method of signal processing 
and classification are illustrated in detail. The results and 
discussions are arranged in Section III and IV respectively. In 
the end, the conclusion is presented succinctly in Section V. 

II. METHOD 

A. Experimental Procedure 

Ninety-three healthy subjects (71 females; age 21.1 ± 5.3) 
participated in the experiment for two sessions with same 
procedure on separated days. All subjects were naïve BCI 
users and had no neurological diseases affecting experimental 
results. Before the experiment, written informed consent from 
all subjects and ethical approval of the study from the Medical 
Ethics Committee, Health Science Center, Shenzhen 
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University (No. 2019034) were sought and obtained. In each 
experiment session, each subject was seated comfortably in a 
chair in front of a computer screen displaying the visual cue, 
and instructed to execute the experimental task illustrated in 
Fig. 1. 

In real movement task, the subjects performed real 
movements by gripping and relaxing repeatedly their left hand 
(LH) or right hand (RH), or lifting their right foot (RF) as fast 
as they could in response to the given visual cue for 3 s. No 
feedback was provided during the online recording. During 
each session, 240 trials (80 for each movement type) arranged 
in four runs were presented with the inter-stimulus interval 
(ISI) 5.5-6.5 s in a random order. 

In P300 task, the subjects were asked to gaze attentively at 
the center square presenting random color stimulus with the 
red as the target stimulus and white as the nontarget stimulus. 
Each color square lasted 80 ms and the ISI was set to 200 ms. 
During each session, 600 trials of the stimuli in which target 
stimuli came with the possibility of 5%, were arranged in one 
run lasting 2 mins. Flexible rest time after each run would be 
allowed as the subjects wanted. 

B. Signal Acquisition and Pre-processing 

EEG signals were collected by 64 electrodes and 
referenced to electrode FCz, via BrainAmp (Brain Products 
GmbH; Germany) with a sampling rate of 1000 Hz. Band-pass 
filtering between 0.01 and 200 Hz, 50 Hz notch filtering, bad 
channel interpolation, independent component analysis (ICA) 
for artifact removal, re-referencing to the average of electrode 
TP9 and TP10 were applied in sequence to the raw EEG 
signals. 

For movement experiment, 21 electrodes in motor cortex 
region were selected for offline analysis (F-5/3/1/z/2/4/6, C-
5/3/1/z/2/4/6, P-5/3/1/z/2/4/6). The continues EEG signals 
were filtered by a 4th order Butterworth digital filter with 
bandwidth setting 8-30 Hz, and then segmented from 0.5 to 3.0 
s with respect to cue onset. 

For P300 experiment, 8 electrodes were selected for offline 
analysis (Fz, Cz, P-3/z/4, Oz, PO-7/8). The continues EEG 
signals were 0.5-30 Hz band-pass filtered with a 4th order 
Butterworth digital filter, and then segmented from 
corresponding stimulus onset to the next 0.6 s. 

C. Feature Extraction and Classification 

In this study, the Common Spatial Pattern (CSP) 
algorithm[15] and xDAWN algorithm[16] were applied to 
perform spatial filtering and feature extraction for both 
paradigms respectively. 

With the purpose of learning spatial filters that maximize 
the variance of EEG signals from one class while minimizing 
them from the other class, the CSP method is successfully 
employed for detecting ERD and ERS[15]. The spatial filters 
w are optimized by 

 argmax
w

wTΣ1w

wTΣ2w
 (1) 

where Σ1 and Σ2 are normalized spatial covariance matrix 
estimated by averaging all training trials respectively from two 
different classes (e.g., LH vs. RH). By solving the generalized 
eigenvalue problem,  

 Σ1 w = λ Σ2 w (2) 

the m pairs of w corresponding to the largest and lowest 
eigenvalues are optimal for spatial filtering to discriminate two 
classes of EEG measurements. In this study, we set m = 3 and 
the logarithm of the EEG signal variance after spatial 
projection was extracted as Sensory Motor Rhythm (SMR) 
features and then fed to train a linear discriminant analysis 
(LDA) classifier for the offline data analysis.  

The One-Versus-Rest (OVR) strategy for training classifier 
was used to extend CSP algorithm to the three-class case, i.e., 
LH vs. RH vs. RF. Hence, three LDA classifiers, in which the 
class of highest probability was chosen as the final prediction, 
were trained for each binary problem (e.g., RH vs. LH plus 
RF). 

Assumed that the P300 component evoked by target 
stimuli, could be enhanced by spatial filtering from nontarget 
response and noise, xDAWN aims at learning spatial filters 
that maximize signal to signal-plus-noise ratio (SSNR)[16]. 
The spatial filters v are optimized by 

 argmax
v

vTΣPv

vTΣ�v
 (3) 

where ΣP and ΣX are the averaged spatial covariance matrix of 
target trials and all trials, respectively. In the same way as CSP 
does, the spatial filters v could be efficiently estimated by the 
generalized eigenvalue problem such that 

 ΣP v = λ ΣX v (4) 

In this study, the spatial filters v associated with the 4 
largest generalized eigenvalue were obtained for spatial 
filtering. Next, the filtered signals were resampled with a 
factor 25 and then concatenated together to train an LDA 
classier.  

D. Performance Measure 

The performance of both paradigms was validated based 
on two-fold cross validation method from all trials within 
sessions (e.g., half of P300 trials in the first session were 
selected for test, while the other half in the first session were 
used as training set) according to the well-established 
approaches.  

 
Figure 1.  Experimental procedure. For each session, the experiment 
consisted of four runs of real movement task (60 trials for each run), one 
run of P300 task (600 trials). 
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Due to the significant class imbalance in P300 experiment,
we used the balanced classification accuracy as the 
performance measure for both paradigms[17]. The balanced 
accuracy is computed as 

∑  c
i �mi / ni�

c
(5)

where c is the number of classes, ni is the true number of trials 
from ith class and mi is the number of trials that are correctly 
classified from ith class. 

Besides, Pearson’s linear correlation coefficient was 
performed to illustrate the correlation between the decoding 
performance of SMR and P300 features.  

III. RESULTS

A. Statistical Analysis cross Sessions

The session-to-session performance evaluation of each
individual paradigm is illustrated in Fig. 2 in the form of 
scatter plots. The correlation coefficient r = 0.617  with 
p = 4.47×10-11 indicated the repeatability between sessions for 
SMR features. Besides, the average balanced accuracies of the 
movement experiment were 59.4% (± 12.8) and 60.5% (± 
12.5) for the first and second session respectively, while they 
were 87.6% (± 7.8) and 83.6% (± 10.2) for P300 experiment. 
Compared to P300 paradigm, the performance of movement 

paradigm exhibited lower accuracy and higher variance across 
subjects.  

In this study, we defined the threshold for BCI inefficiency 
as 60.0% corresponding to movement paradigm, which 
equivalently represents the subject with balanced accuracy 
below 60.0% would be considered as individual who 
encountered the inefficiency problem of movement paradigm. 
In the same way, the threshold for P300 paradigm was set to 
80.0%. As Table I shows, using interval statistics of balanced 
accuracy results for each paradigm, the proportion of BCI 
inefficiency in both paradigms were 57.5% and 24.7% 
respectively. Moreover, the proportion of subjects that 
achieved balanced accuracy above 80.0% in real movement 
experiment was only 5.9%, while the proportion achieved 
75.3% in P300 experiment. The results indicated the problem 
of inefficiency is more prominent in movement paradigm 
compared to P300 paradigm.  

Figure 2.  Session-to-session performance across all subjects by two-fold cross validation within sessions in each BCI paradigm, i.e., (a) Movement and 
(b) P300. 

TABLE I. BANLANCED ACCURACY(%) INTERVAL STATISTIC IN 
EACH BCI PARADIGM 

Balanced 

Accuracy 

(%) 

Proportion (%) 

in Movement 

Proportion (%) 

in P300 

Ses1 Ses2 Avg Sum Ses1 Ses2 Avg Sum 

80-100 4.3 7.5 5.9 
43.5 

82.8 67.7 75.3 75.3 

60-79 36.6 38.7 37.6 17.2 29.0 23.1 

24.7 
40-59 54.8 51.6 53.2 

56.5 

0.0 3.2 1.6 

20-39 4.3 2.2 3.3 0.0 0.0 0.0 

0-19 0.0 0.0 0.0 0.0 0.0 0.0 
Figure 3.  Paradigm-to-paradigm performance comparison with 
correlation coefficient r and p value of t-test across all subjects.  
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B. Statistical Analysis cross Paradigms 

As Fig. 3 shows, the paradigm-to-paradigm performance 
comparison and the correlation coefficient between both 
paradigms were calculated based on the average balanced 
accuracies in the first and second session. The correlation 
coefficient r was 0.054 and failed the t-test (p = 0.604) with 
the hypothesis of the existence of inefficiency correlation, 
which indicated there is no significant correlation between the 
decoding performance of SMR and P300 features within 
subjects.  

Based on the statistics results on inefficiency category over 
paradigms in Table II, there were almost 41.4% subjects failed 
the movement task but performed the P300 task successfully. 
Meanwhile, about 9.7% subjects presented the opposing 
situation. The results presented that P300 paradigm could 
work for certain subjects whose EEG could not be recognized 
by movement paradigm, and movement paradigm could also 
provide an alternative for a part of subjects who were unable 
to be served by P300 paradigm. 

IV. DISCUSSION 

The proportion of the subjects considered as individuals 
encountering BCI inefficiency problem highly depends on the 
definition of threshold, while there are no acknowledged 
guidelines to determine it. For the purpose of practicability in 
reality, which means users could perform BCI tasks 
successfully with an acceptable tolerance, the thresholds for 
BCI inefficiency were defined as 60.0% and 80.0% 
corresponding to movement paradigm (three classes) and P300 
paradigm (two classes) respectively in this work. Though the 
customized thresholds might lead to higher proportion of BCI 
inefficiency than the results proposed in the literatures[18], the 
results indicated that BCI paradigm based on endogenous 
potentials (i.e., movement) indeed presents more serious 
problem of inefficiency compared to BCI paradigm based on 
exogenous potentials (i.e., P300). 

For the exploration of BCI inefficiency, in this work real 
executed movement is used instead of imagery movement to 
ensure the consistency of the movement and the participant’s 
participation and eliminate the effect of train varied among 
participants. In spite of this, without the involvement of motor 
imagery, the evidence illustrated in this work could not 
directly demonstrate the in-correlation in inefficiency problem 
between MI-based BCIs and P300-based BCIs. However, it 
was previously reported that MI and real movement can 
produce similar SMR activity[4].  

V. CONCLUSION 

To investigate the problem of BCI inefficiency cross 
sessions and paradigms, we performed statistics analysis on a 
large-scale dataset with 93 subjects during two sessions of the 

same experiment procedure of movement and P300 task. 
Cross-sessions analysis indicated the reproducibility of the 
subject-level BCI inefficiency in both paradigms. In addition, 
the results not only showed that P300 features possess higher 
recognition accuracies than SMR features, but also 
demonstrated that the problem of inefficiency is greater in 
movement paradigm (56.5%) compared to P300 paradigm 
(24.7%) with inefficiency thresholds defined as 60.0% and 
80.0% respectively. Cross-paradigms analysis indicated no 
significant correlation (r = 0.054, p = 0.604) between 
decoding performance of the two paradigms. The results also 
presented that P300 paradigm could be a substitute for a part 
of subjects (41.4%) whose EEG signals cannot be decoded 
effectively by movement paradigm, and vice versa (9.1%).  
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TABLE II.  INEFFICIENCY CATEGORY STATISTIC OVER PARADIGMS 

Inefficiency  Proportion (%) 

Movement P300  Ses1 Ses2 Avg 

× ×  36.6 31.2 33.9 

× √  4.3 15.1 9.7 

√ ×  46.2 36.6 41.4 

√ √  12.9 17.1 15.0 
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