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A B S T R A C T

Background: Many sensorimotor functions are intrinsically rhythmic, and are underlined by neural processes
that are functionally distinct from neural responses related to the processing of transient events. EEG frequency
tagging is a technique that is increasingly used in neuroscience to study these processes. It relies on the fact that
perceiving and/or producing rhythms generates periodic neural activity that translates into periodic variations
of the EEG signal. In the EEG spectrum, those variations appear as peaks localized at the frequency of the rhythm
and its harmonics.
New method: Many natural rhythms, such as music or dance, are not strictly periodic and, instead, show fluc-
tuations of their period over time. Here, we introduce a time-warping method to identify non-strictly-periodic
EEG activities in the frequency domain.
Results: EEG time-warping can be used to characterize the sensorimotor activity related to the performance of
self-paced rhythmic finger movements. Furthermore, the EEG time-warping method can disentangle auditory-
and movement-related EEG activity produced when participants perform rhythmic movements synchronized to
an acoustic rhythm. This is possible because the movement-related activity has different period fluctuations than
the auditory-related activity.
Comparison with existing methods: With the classic frequency-tagging approach, rhythm fluctuations result in a
spreading of the peaks to neighboring frequencies, to the point that they cannot be distinguished from back-
ground noise.
Conclusions: The proposed time-warping procedure is as a simple and effective mean to study natural non-
strictly-periodic rhythmic neural processes such as rhythmic movement production, acoustic rhythm perception
and sensorimotor synchronization.

1. Introduction

Many sensorimotor functions are intrinsically rhythmic. This is the
case for the perception of music, the production of gait movements, or
the synchronization of complex motor performance to complex sensory
stimulation as observed in dance or music playing.

It has been suggested that the neural processes underlying these
rhythmic sensorimotor functions may at least partly differ from the
sensorimotor processes underlying the processing and/or production of
discrete transient events (Van Ede et al., 2018; Zoefel et al., 2018). For
example, neural oscillations, which reflect rhythmic variations of ex-
citability within a neural population (Buzsáki and Draguhn, 2004;
Llinás, 1988), can be entrained to the frequency of a rhythmic process.
By reinforcing phase and frequency specific information, this

phenomenon could play a role in sensory selection (Schroeder and
Lakatos, 2009), dynamic attention and temporal anticipation (Large
and Jones, 1999), or the coupling of remote neural oscillators for
multimodal integration (Lakatos et al., 2007).

EEG frequency tagging is a technique that is increasingly used to
study rhythmic brain functions (Nozaradan, 2014). Classically, an event
is repeated at a constant frequency such as to elicit a periodic and
synchronized neural response, which can be measured in the spectrum
of the recorded EEG signals at the frequency of stimulation and its
harmonics. This “frequency-tagged” EEG activity can correspond to the
periodic repetition of transient neural activities related to the proces-
sing of a periodic sequence of transient events. Furthermore, it may
reflect the synchronized activity of neurons having the ability to entrain
their activity to the periodic repetition or modulation of that stimulus,
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i.e. neurons that align the frequency and phase of their activity to the
frequency and phase of the stimulus. A well-known example of this
approach is the so-called “auditory steady-state evoked-potential”,
which refers to the periodic EEG signal elicited by a sound whose in-
tensity is modulated periodically over time (Galambos et al., 1981).

A periodic signal is a signal formed by a unitary waveform repeated

at a regular interval, called the period. Mathematically, this periodic
signal corresponds to the convolution of the unitary waveform with a
periodic train of impulses, or Dirac comb (Fig. 1). The number of im-
pulses per second corresponds to the fundamental frequency of the
signal. When represented in the frequency domain, a pure sine wave
appears as a single “peak”, at the fundamental frequency of the sine
wave. When the unitary waveform is more complex, its spectrum con-
sists of a set of peaks at the fundamental frequency and its harmonics.
Mathematically, the spectrum of a periodic signal corresponds to the
spectrum of the unitary waveform multiplied by the spectrum of the
Dirac comb. Therefore, the amplitude of the peaks obtained at the
different harmonics is determined by the frequency spectrum of the
unitary waveform (Fig. 1; Collura, 1996; Zhou et al., 2016).

Taking advantage of the spectral decomposition of periodic signals,
the EEG frequency-tagging approach is able to isolate EEG signals eli-
cited by periodic stimulation, even if it does not constitute sharp
transients (e.g. EEG activity elicited by progressive sinusoidal mod-
ulation of stimulation amplitude) (Nozaradan et al., 2011). The fre-
quency-tagging approach is also able to identify frequency-specific re-
sponses despite high inter-individual phase variability (Nozaradan
et al., 2018). Importantly, several studies have shown that EEG fre-
quency tagging can be used to tag cortical activity related to high-level
perceptual processes such as the processing of musical rhythms
(Chemin et al., 2014; Nozaradan et al., 2017, 2016a,b, 2013, 2012,
2011), linguistic constituents (Buiatti et al., 2009) and face perception
(Rossion, 2014; Rossion et al., 2015).

However, an important limitation of the EEG frequency-tagging
approach comes from the fact that natural rhythms are not strictly
periodic, i.e. their periodicity fluctuates over time (Chen et al., 1997;
Goodwin, 1997; Repp, 2005). For example, when performing self-paced
hand tapping movements, the variations in period duration reach ap-
proximately 4% of the average period (Semjen et al., 2000). Similarly,
the subjective experience of a musical pulse is robust to period fluc-
tuations, within a range of anisochrony evaluated to 8.6% of the mean
period (Madison and Merker, 2002). The frequency-tagging approach
implies to perform a Fourier transform on relatively long sequences of
EEG signals, which is only valid under the assumption that the signal of
interest is stationary, i.e., that its distribution parameters such as mean
and variance do not change over time (Chatfield, 1989). As compared
to the sharp peaks observed in the Fourier transform of a signal that is
strictly periodic, the peaks observed in the Fourier transform of a
fluctuating signal have lower amplitudes because each peak spreads out
to neighboring frequencies (Fig. 1). In the case of EEG where the non-
strictly-periodic signal is embedded within large-amplitude background
activity, this reduction in peak amplitude and sharpness often renders
their identification impossible.

In this paper, we propose a simple time-warping method to “render
periodic” EEG signals related to activities that are not strictly periodic
and, thereby, make it possible to “concentrate” non-strictly-periodic
neural responses in the frequency domain. In other words, we propose
to transform the signal in order to meet the assumption of stationarity
that is necessary for the frequency-tagging approach.

The proposed time-warping method consists in stretching, i.e. con-
tracting and dilating, the EEG signal such as to “accelerate” or “de-
celerate” it when the time interval between two events is respectively
greater or smaller than the mean period of the non-strictly-periodic
events. This time-warping procedure is fundamentally different from
another method referred to as EEG “false-sequencing”, consisting in
reconstructing a periodic signal by concatenating non-warped segments
of the EEG signal having a constant length corresponding to the mean
period (Quek and Rossion, 2017). The superiority of one approach over
the other is actually dependent on the nature of the frequency-tagged
EEG signal. If the waveform of the periodic EEG signal is independent of
the period fluctuations, EEG false-sequencing should be superior to EEG
time-warping, as compressing and dilating the EEG signal would distort
the unitary waveform. Conversely, if the waveform of the periodic EEG

Fig. 1. Time and frequency domain representation of periodic and non-
strictly-periodic signals. A. Time domain and frequency domain representa-
tions of a unitary waveform W t( ), a periodic train of impulses (Dirac comb;
D t( )), and a periodic signal corresponding to the convolution of W t( ) and D t( )
in the time domain, and the multiplication of W jω( ) and D jω( ) in the frequency
domain. Note that the Fourier transform of the periodic signal has a spectrum
that concentrates on the fundamental frequency and harmonics determined by
the periodicity of the Dirac comb, with a relative amplitude distribution that is
determined by the shape of the spectrum of the unitary waveform. B. Time
domain and frequency domain representations of a non-strictly-periodic signal
corresponding to the convolution of W t( ) with a non-strictly-periodic train of
impulses N t( ). In contrast to the spectrum of the strictly-periodic Dirac comb
D jω( ), the frequency spectrum of the non-strictly-periodic train of impulses
N jω( ) is not constituted of isolated peaks at the fundamental frequency and
harmonics. Instead, the energy of the signal spreads to surrounding frequencies,
and the spectrum will become more and more random if the non-periodicity is
increased. The spectrum of the non-strictly-periodic signal obtained by multi-
plying the spectrum W jω( ) of the unitary waveform with the spectrum N jω( ) of
the non-strictly-periodic train of impulses, contains peaks having a lower am-
plitude as compared to the strictly-periodic signal.
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signal is not invariant but is contracted or dilated as a function of the
periodic fluctuations, EEG time warping could be superior to EEG false-
sequencing, because compressing and dilating the EEG signal could
actually enhance the unitary waveform similarity across repetitions.

To assess our time-warping method, we applied it to EEG signals
recorded while participants performed self-paced and acoustic-paced
periodic tapping movements of the hand, as well as simulated EEG data.

2. Methods

2.1. Participants

Nine right-handed healthy volunteers (6 females, 3 males; all right-
handed; mean age=28 years, SD= 4) took part in the experiment
after providing written informed consent. All participants were familiar
with EEG, but had no prior experience with the experimental setting.
They had no history of hearing, neurological, or psychiatric disorder,
and none were taking any medication at the time of the experiment.
The experiment was approved by the local ethics committee.

2.2. Experimental design

The experiment contained three conditions, corresponding to three
different tasks: (1) finger tapping synchronized to an acoustic beat, (2)
finger tapping alone, and (3) passive listening to the acoustic beat
(Fig. 2). The three conditions were presented in separate blocks, whose
order of presentation was randomized across participants.

2.2.1. Finger tapping synchronized to an acoustic beat
The task consisted in tapping the right index finger against the table,

in synchrony with an acoustic beat. The acoustic beat consisted in a 96 s
sequence of 120 isochronous 990 Hz pure tones lasting 150ms (7.5 ms
rise time, 142.5 ms fall time), occurring with a period of 800ms. The
tapping consisted in a flexion of the metacarpophalangeal articulation
of the right index, until the fingertip touched the table, followed by
finger extension. Participants were instructed to synchronize their
tapping to the acoustic rhythm such that the tapping of the index with
the table coincided with the acoustic beats. A sequence of 96 s com-
posed one trial, and the trial was repeated seven times to form one
block.

2.2.2. Finger tapping alone
The task consisted in tapping the right index against the table, at a

rate as constant as possible. A short 6.4 s pacing acoustic sequence of
eight isochronous beats occurring with a period of 800ms was pre-
sented before each trial. Participants were instructed to synchronize

their tapping to this acoustic pacer, and to continue the tapping
movements after the acoustic pacer stopped, keeping the tapping
rhythm as constant as possible. The end of the trial was indicated by
presenting a single tone. One trial lasted 96 s and was repeated 7 times
to form one block.

2.2.3. Passive listening to the acoustic beat
In this condition, participants were requested to listen passively to

the 800ms periodic acoustic beat. Such as in the other blocks, each trial
had a duration of 96 s and was repeated 7 times.

During the whole experiment, participants were seated comfortably
in a chair, with their arms resting on a table and the right elbow placed
on a cushion at wrist height. The right hand was attached to an orthosis
used to record the movements performed in the finger tapping tasks
(Fig. 3). The tapping hand was hidden from participants with a sheet of
fabrics. Before the beginning of the experiment, participants could fa-
miliarize with the orthosis. Furthermore, each block was preceded by
up to five dummy trials of 16 s in order to allow the participant to
become familiar with the task. Before starting the actual EEG recording,
the experimenter witnessed that the task was performed adequately.

In all conditions, the onset of each trial was initiated by the parti-
cipant pressing a button. A random 1.5–3 s delay separated the button
press from the onset of the trial. In order to encourage the participants
to focus their attention to the task, at the end of each trial, they were
asked to “rate” how much they paid attention to the task and how
“precise” their tapping was. The instructions and questions were dis-
played on a computer screen, using MATLAB 2014a (The MathWorks,
Natick, MA). The acoustic stimuli were presented binaurally using
pneumatic earphone inserts (Etymotic ER1, Etymotic Research, Elk
Grove, IL), and played using an externally-triggered zero latency audio
stimulus generator (AUDIOFile, Cambridge Research System,
Rochester, United Kingdom).

2.3. EEG recording

During the EEG recording, participants were instructed to relax,
avoid any unnecessary head or body movement, and keep their eyes
fixated on a point marked on a white surface in front of them. To avoid
any visual feedback, the tapping hand was hidden from the participant
using a sheet of fabric. The experimenter remained in the recording
room with the participant at all times to monitor compliance to the
procedure and instructions, as well as to monitor the EEG signals and,
eventually, provide feedback to the participant in case of important eye
or movement artifacts.

The EEG was recorded using 64 Ag-AgCl electrodes placed on the
scalp according to the international 10–10 system (Waveguard64 cap,

Fig. 2. Experimental design of the EEG experiment. The experiment was composed of three experimental conditions, presented in separate blocks, whose order
was counterbalanced across participants. Each block started with up to five dummy trials of 16 s to allow the participant to become familiar with the task. Then, trials
of 96 s (T) were repeated seven times, forming one block. The finger tapping synchronized to an acoustic beat task consisted in tapping the index finger in synchrony
with an acoustic beat. The acoustic beat consisted in a 96 s sequence of 120 isochronous pure tones presented at an 800ms inter beat interval. The finger tapping alone
task consisted in tapping the right index against the table, at a rate as constant as possible. A short 6.4 s pacing acoustic sequence of eight isochronous beats (800ms
inter beat interval) was presented before each trial. The passive listening to the acoustic beat task consisted in listening to the 96 s sequence of 120 isochronous pure
tones occurring at an 800ms inter beat interval.
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Cephalon A/S, Norresundby, Denmark). Electrode impedances were
kept below 10 kΩ. The signals were amplified, low-pass filtered at
500 Hz, digitized using a sampling rate of 1000 Hz, and referenced to an
average reference (64-channel high-speed amplifier, Advanced Neuro
Technologies, Enschede, The Netherlands). A trigger, produced by the
audio stimulus generator was sent to the EEG amplifier at the beginning
of each trial.

2.4. Finger-movements recording

Movements of the finger were recorded using a galvanometer
(OSST8062, Sintec Optronics Pte Ltd, Singapore) mounted on an or-
thosis placed around the first two phalanges of participant’s right index,
and a touch sensor (Makey Makey, MIT Media Lab's Lifelong
Kindergarten, USA) placed on the table, in regard to the tapping finger
(Fig. 3). The galvanometer generated a continuous signal proportional
to the speed of the finger movement (range:± 0.5 V; positive and ne-
gative values corresponding to finger flexion and extension, respec-
tively) and the touch sensor measured the impedance between the
finger and the touch pad. The signals generated by the galvanometer
and the touch sensor were digitized at a sampling rate of 1000 Hz using
two auxiliary channels of the EEG system. Both signals were normalized
such that, for the galvanometer signal, the unit corresponded to the
maximal speed of the finger flexion, and for the touch sensor signal, the
unit corresponded to the value at contact of the finger with the sensor.

For each movement (indexed by k) of the finger tapping trials, the
onset of finger flexion movement (latency of finger flexion: LFF k) was
arbitrarily defined as the moment when the normalized galvanometer
signal became>0.05, and the time at which the fingertip came in
contact with the table (latency of finger contact: LFC k) was defined as
the moment when the touch signal passed from 0 to 1.

The two measures were used to compute, for each movement k, the
duration of each finger flexion ( = −D L LFF k FC k FF k) and the duration
between the finger tap and the preceding finger tap (inter-tap-interval:

= −
−

ITI L Lk FC k FC k 1).

2.5. EEG preprocessing

The continuous EEG signals recorded in each condition were seg-
mented in epochs lasting 96 s, extending between 0–96 s relative to the
onset of each task. A 50 Hz notch filter and a 0.1 Hz high-pass
Butterworth zero-phase filter were applied to remove artifacts due to
environmental noise as well as slow signal drifts. Artifacts produced by
eye blinks or eye movements were removed from the EEG signal using a
validated method based on an independent component analysis (Jung
et al., 2000), using the runica algorithm (Bell and Sejnowski, 1995;
Makeig, 2002). Those artifacts were identified visually based on their
spatio-temporal distribution (waveform features typical of eye blinks,

topographical distribution maximal at frontal electrodes).

2.6. Non-time-warped EEG signals

The 96 s preprocessed EEG epochs were further segmented to only
keep the 2nd to the 106th event (i.e. from the second beat in the finger
tapping synchronized on an acoustic beat task and the passive beat
listening task, and the second finger tap in the finger tapping alone
task). The EEG signal recorded during the first event was discarded to
avoid contamination by the transient evoked potentials related to the
onset of the task (e.g. Nozaradan et al., 2011). Especially in the finger
tapping alone task, the number of tapping events varied from trial-to-
trial. Across all trials, conditions and participants, the minimum
number of tapping events was 106. Therefore, to perform the analyses
on epochs having the same number of events across trials, conditions
and participants, the EEG signals were segmented such as to include up
to the 106th event. On average, we thus discarded 10% of the 120
original events per trial. To ensure that the Fourier transform of these
signals would yield discrete spectra with a frequency resolution re-
specting the alignment of the bins corresponding to the beat frequency
and its harmonics, the final length of the epochs was set to a multiple of
the beat period. In the tapping synchronized to the beat task and the
passive beat listening task, this corresponded to 0.8 s x 105 events=
84 s. In the tapping alone task, the length of the different segments of
105 taps was not consistent across the epochs, because of the fluctua-
tions of the tapping rate. The range of lengths spanned from 68.0 to
88.8 s.

2.7. Time-warped EEG signals

The 96 s EEG epochs recorded in the two finger tapping tasks were
warped in the time domain to remove the fluctuations of the ITIs. The
warping was performed by dilating or compressing each ITI segment of
the EEG signals, using a linear interpolation, such as to obtain a con-
stant number of bins for each ITI segment (800 bins corresponding to
0.8 s at a 1000 Hz sampling rate). This procedure resulted in “accel-
erating” the EEG signals when the time interval between two touch
onsets exceeded the 0.8 s target period, and in “decelerating” the EEG
signal when the time interval between two touch onsets was shorter
than the 0.8 s target period (Fig. 4, see Supplementary material for
algorithm and technical details). Such as for the original signals, the
time-warped EEG signals were then segmented to only keep 105 events
starting from the second event following the actual performance of the
task. In all the conditions, the length of the epochs corresponded to
0.8 s x 105 events= 84 s.

Fig. 3. Finger movement recording.
Movements of the finger were recorded using
an orthosis placed around the first two pha-
langes of participant’s right index (left panel).
A movement sensor was mounted on the or-
thosis and a touch sensor was embedded in the
surface onto which the finger tapped. The right
panel shows the normalized amplitude of the
two sensor signals, averaged across partici-
pants, conditions and taps. The point LFF cor-
responds to the initiation of the finger flexion.
LFC corresponds to the time at which the fin-
gertip touches the table. LFE corresponds to the
initiation of finger extension. LFD corresponds
to the time at which the finger returns to the

default position. Note that the dynamics of finger flexion, measured by the time interval between LFF and LFC , was quite constant across participants and taps,
whereas the dynamics of finger extension, measured by the time between LFE and LFD, was more variable. Those results are consistent with the fact that participants
were requested to synchronize the tapping of the finger against the touch sensor.
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2.8. Frequency-domain analysis

The non-time-warped and time-warped EEG epochs were trans-
formed in the frequency domain using a discrete Fourier transform
(Frigo and Johnson, 1998). In the tapping synchronized to the beat and
the passive beat listening conditions, the discrete Fourier transform
yielded a frequency spectrum of signal amplitude (μV) ranging from 0
to 500 Hz with a frequency resolution of 0.0119 Hz (Bach and Meigen,
1999). In the tapping alone task, the frequency resolution ranged be-
tween 0.0113 Hz and 0.0147 Hz, because of the variations in epoch
duration. Therefore, these frequency spectra were resampled using the
nearest interpolation method such as to obtain a resampled resolution
of 0.0119 Hz.

The periodic EEG activity related to beat perception and finger
tapping can be expected to generate peaks in the EEG frequency spectra
at the fundamental frequency (F=1.25 Hz) and harmonics
(2F= 2.5 Hz, 2F= 3.75 Hz, etc.). To quantify these responses, the
contribution of background noise was removed by subtracting, at each
bin of the frequency spectra, the average amplitude measured at
neighboring frequency bins (eight frequency bins ranging from −0.14
to −0.05 Hz and from +0.05 to +0.14 Hz relative to each frequency
bin). The validity of this subtraction procedure relies on the assumption
that, in the absence of a strong periodic signal, the signal amplitude at
any given frequency bin should be similar to the signal amplitude of the
mean of the surrounding frequency bins (Mouraux et al., 2011; Retter
and Rossion, 2016). This subtraction procedure using neighboring

frequency bins is important because background EEG noise is not
equally distributed across scalp channels and, most importantly, is
greater at lower frequencies as compared to higher frequencies (the
power spectrum of background EEG typically follows a 1/f function;
Freeman et al., 2003).

The noise-subtracted spectra were then averaged across epochs, for
each condition and each individual. Within these averaged spectra and
for each condition, we identified the frequencies at which the periodic
EEG activity generated a significant increase in amplitude across in-
dividuals, by performing a t-test against zero of the amplitudes mea-
sured at the fundamental frequency (F=1.25 Hz) and the 23 first
harmonics (from 2F=2.5 to 23F= 30Hz), averaged across all scalp
channels (Fig. 5). The significance level was set at p < 0.05, corrected
for multiple comparisons (Bonferroni). Finally, a summary measure of
the amplitude of the periodic EEG response was computed by summing
the noise-subtracted amplitudes at the fundamental frequency and
harmonics that were significantly greater than zero (t-test against zero),
and hemispheric lateralization was assessed by performing a paired-
sample t-test between the average of the signals measured over the left
and the right hemisphere.

2.9. Time-domain analysis

The non-time-warped and time-warped EEG signals of the tapping
alone condition were segmented from −0.3 to +0.5 s relative to the
latency of each contact of the fingertip with the table (LFC). The ob-
tained segments were averaged across trials and across participants, in
order to visualize and compare the shape of the unitary waveform in
both the non-time-warped and the time-warped signals.

Additionally, the segments were categorized in two equal groups
according to the length of the ITI. For each trial, segments were as-
signed to the short or long ITI group depending on whether the trial ITI
was shorter or longer than the trial median ITI. Categorized segments
were then averaged across trials and participants, in order to visualize
and compare the shape of the unitary waveforms for long and short
ITIs.

Estimation of similarity between non-time-warped and time-warped
unitary waveforms, as well as short-ITI and long-ITI related waveforms,
was made by computing, for each participant, the correlation coeffi-
cient between the two signals.

All EEG processing steps including the time warping procedure were
carried out using Letswave 6 (Institute of Neuroscience, University of
Louvain; www.letswave.org), an open-source MATLAB (The
MathWorks, Natick, MA) toolbox. The EEG time-warping algorithm is
available as Supplementary material, and can be downloaded on the
Github repository: github.com/BaptisteChemin/EEG-Time-Warping.

2.10. Control experiment: resting EEG signals

To examine whether the time-warping procedure could generate an
artefactual enhancement of amplitude at the frequencies of interest due
to the periodic compression or dilation of successive EEG segments, we
conducted a control experiment in which resting EEG was recorded in
nine healthy volunteers. During the experiment, participants were in-
structed to remain still, with their eyes open, during seven trials of 96 s.
The signals were then processed using the same procedures as for the
main experiment. Time-warping of the resting EEG signals was per-
formed using the tapping latencies of the nine participants in the finger-
tapping alone task.

2.11. Control analysis using simulated data

Time warping is likely to generate a certain quantity of signal dis-
tortion. Its ability to recover non-strictly-periodic EEG signals is likely
to depend on the period duration, the amount of period fluctuation, and
the shape of the unitary waveform. Most importantly, its depends on

Fig. 4. EEG time-warping procedure. A. As shown in this representative trial
of the finger-tapping to the beat task, the inter-tap interval (ITI) fluctuated from
tap to tap, with a mean ITI of 800ms. B. The time-warping procedure consists
in compressing or dilating the EEG signals recorded within each ITI such as to
scale it to a fixed target ITI of 800ms. The compression and dilation of the EEG
segments was computed by linear interpolation of the non-time-warped signals.
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whether decreases/increases in period duration are associated with
compression/dilation of the unitary EEG waveform, as would be ex-
pected if the period fluctuations are determined by neural processes
reflected in the unitary waveform (Large and Jones, 1999).

To assess the influence of these factors, we generated simulated EEG
data using as unitary waveform the group-level average unitary EEG
waveform recorded at electrode Cz in the tapping alone condition. First,
we generated a strictly-periodic 1.25 Hz signal by concatenating 105
unitary waveforms having a length of 0.684 s. Second, we generated a
series of 1000 non-strictly-periodic signals using the same unitary wa-
veform separated by a fluctuating interval (normal distribution, mean
interval= 0.8 s, controlled coefficient of variation (CV)). In this da-
taset, the shape of the unitary waveform was invariant. When the in-
terval was greater than the length of the unitary waveform, the empty
gap was replaced by a segment of ongoing EEG randomly taken from
the resting EEG signals recorded in the control experiment. Conversely,
when the interval was smaller than the length of the unitary waveform,
the overlapping portions of the two consecutive unitary signals were
summed. Third, we generated another series of 1000 non-strictly-peri-
odic signals in which the unitary waveform was contracted or dilated
such as to adjust their length to the period duration, as could be ex-
pected if period fluctuations are determined by the temporal dynamics
of the neural processes underlying the unitary waveform. All signals
were band-passed using a 0.1–60 Hz Butterworth filter. Various
amounts of period CV were tested, ranging between 0–30%, in steps of
0.5%. After FFT transform, a measure of the amplitude of the periodic
signal was obtained by summing the peaks at 1.25 Hz and the 9

following harmonics in the frequency spectrum of each signal. Finally,
for both non-strictly-periodic datasets, an amplitude ratio was com-
puted by dividing the amplitude of the periodic signal measured in the
non-strictly-periodic dataset (averaged across the 1000 signals) by the
amplitude of the periodic signal measured in the strictly-periodic signal.
The Matlab toolbox developed to run these simulations is available on
the GitHub repository.

3. Results

3.1. Finger tapping latencies

The ITIs between finger taps were normally distributed, with a
narrower dispersion in the finger tapping synchronized to the acoustic
beat condition (800 ± 46ms; coefficient of variation: 5.7%) as com-
pared to the finger tapping alone condition (779 ± 65ms; coefficient
of variation: 8.4%). The greater variability in ITI in the tapping alone
task was expected, as in that condition, participants could not use the
external acoustic pacer to improve their performance (Repp, 2005).

3.2. Frequency-domain analysis

3.2.1. Periodic EEG responses observed in the non-time-warped signals
The group-level average frequency spectra obtained in the finger

tapping synchronized to an acoustic beat, the finger tapping alone and
the passive beat listening conditions are shown in Fig. 5.

In the finger tapping synchronized to the acoustic beat condition,

Fig. 5. Frequency-domain analysis of the non-time-warped EEG signals obtained in each of the three conditions (finger tapping synchronized to the
acoustic beat, finger tapping alone, and passive listening to the acoustic beat). A. Frequency spectrum of the EEG signals, averaged across participants and
across the 64 EEG channels. Note the clear peaks at beat frequency and harmonics in each of the EEG spectra, except for the EEG signals recorded in the finger
tapping alone condition. B. Peak amplitude at the fundamental frequency and harmonics, across participants (median, lower/upper quartile and minimum/maximum
values). C. Scalp topography and hemispheric lateralization of the periodic EEG response (sum of the spectrum amplitude at beat frequency and harmonics sig-
nificantly greater than zero). The non-time-warped signals obtained in the finger taping synchronized to the acoustic beat and the passive listening conditions show
similar scalp topographies, maximal over fronto-central electrodes, and symmetrically distributed over the two hemispheres (L: left; R: right). No significant activity
is identified in the finger tapping alone condition.
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clear peaks were observed in the EEG spectra at 1.25 Hz and harmonics.
The noise-subtracted amplitudes at the beat frequency (1.25 Hz) and at
the harmonic frequencies 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5,
15, 18.75, 20, 22.5, 28.75 and 30 Hz were significantly greater than
zero. The scalp topography of this periodic EEG response was maximal
at fronto-central electrodes, and did not show any clear hemispheric
lateralization relative to the tapping hand. This absence of lateraliza-
tion was confirmed by the fact that the average of the signals measured
over the left hemisphere (M=0.8461 μV, SD=0.2246 μV) was not
significantly different from the average of the signals measured over the
right hemisphere (M=0.778 μV, SD=0.197 μV); t(8)= 2.30,
p=0.0506.

In the finger tapping alone condition, no clear peaks were observed
in the EEG frequency spectra, and only the noise-subtracted amplitude
at 15 Hz was marginally greater than 0, amongst the 24 tested fre-
quencies (t= 2.53, p= 0.035, uncorrected for multiple comparisons).

In the passive listening to the acoustic beat condition, clear peaks
were observed in the EEG spectra, whose amplitudes were significantly
greater than zero at 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5,
13.75, 15, 16.25, 17.5, 21.25, 22.5, 25, 26.25, and 27.5 Hz. The scalp
topography of the response obtained during passive beat listening re-
sembled closely the scalp topography of the response obtained in the
finger tapping synchronized to the acoustic beat condition, being
maximal at fronto-central electrodes and symmetrically distributed
over the two hemispheres. The average of the signals measured over the
left hemisphere (M=0.677 μV, SD=0.245 μV) was not significantly
different from the average of the signals measured over the right
hemisphere (M=0.703 μV, SD=0.229 μV; t(8)=−0.64,
p=0.5424).

3.2.2. Periodic EEG responses observed in the time-warped signals
The group-level average frequency spectra of the time-warped EEG

signals obtained in the tapping synchronized to the acoustic beat and
tapping alone conditions are shown in Fig. 6.

In the tapping synchronized to the beat condition, clear peaks were
observed in the EEG spectra at 1.25 Hz and harmonics. The noise-sub-
tracted amplitudes at the beat frequency (1.25 Hz) and at the harmonic
frequencies 2.5, 3.75, 5, 6.25, 7.5, 16.25, and 17.5 Hz were significantly

greater than zero. The scalp topography of this periodic EEG response
was maximal over left central and parietal electrodes, and was thus
clearly different from the scalp topography of the response observed in
the non-time-warped EEG signals, which was symmetrical and maximal
over fronto-central electrodes. This was confirmed by the fact that the
average of the signals measured over the left hemisphere
(M=0.798 μV, SD=0.261 μV) was significantly greater than the
average of the signals measured over the right hemisphere
(M=0.569 μV, SD=0.184 μV; t(8)= 7.72, p < 0.001).

In the tapping alone condition, clear peaks were observed in the
EEG spectra of the time-warped signals at 1.25 Hz and harmonics. This
was in striking contrast with the lack of any clear response in the EEG
spectra of the non-time-warped signals of the same condition. The
noise-subtracted amplitudes at the beat frequency (1.25 Hz) and at the
harmonic frequencies 2.5, 3.75, 5, 6.25, 12.5, 13.75, 15, and 28.75 Hz
were significantly greater than zero. The scalp topography of this per-
iodic EEG response resembled closely the periodic EEG response ob-
tained in the time-warped signals of the tapping synchronized to the
acoustic beat condition, both being maximal over left central and par-
ietal electrodes. The average of the signals measured over the left
hemisphere (M=0.638 μV, SD=0.203 μV) was significantly greater
than the average of the signals measured over the right hemisphere
(M=0.385 μV, SD=0.119 μV); t(8)= 7.53, p < 0.001).

3.3. Time-domain analysis

3.3.1. Comparison of non-time-warped and time-warped EEG signals
The unitary waveforms obtained by averaging non-time-warped and

time-warped EEG segments across ITIs are shown in Fig. 7A. Visual
inspection of those waveforms showed very little differences between
the non-time-warped and time-warped signals. The differences were
mostly characterized by a smoothing of high-frequency components in
the time-warped signals. The correlation coefficient between the two
signals confirmed the high similarity between the two waveforms,
across participants (R= 0.971+− 0.034).

3.3.2. Comparison of long and short ITI related EEG signals
The unitary waveforms obtained by averaging EEG segments

Fig. 6. Frequency-domain analysis of the time-warped EEG signals in the frequency domain obtained in two of the three conditions (finger tapping
synchronized to the acoustic beat and finger tapping alone conditions). A. Frequency spectrum of the EEG signals, averaged across participants and across the
64 EEG channels. Note the clear peaks in both spectra. B. Peak amplitudes at the fundamental frequency and its harmonics, across participants (median, lower/upper
quartile and minimum/maximum values). C. Scalp topography and hemispheric lateralization of the periodic EEG response (sum of the spectrum amplitudes at beat
frequency harmonics significantly greater than zero). The time-warped EEG signals recorded in the finger tapping synchronized to the acoustic beat and finger
tapping alone conditions show similar topographies, lateralized onto the (left) hemisphere contra-lateral to the tapping hand (L: left; R: right).
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separately for short and long ITIs are shown in Fig. 7B. The unitary
waveforms obtained by averaging short ITI segments tended to differ
from the unitary waveforms obtained by averaging long ITI segments
(R= 0.902+−0.062). Specifically, for long ITI segments, the period
preceding contact onset was more negative and, most importantly, the
negative peak concomitant to the finger contact was broader. Further-
more, the baseline preceding the negative peak was more negative for
short ITIs.

3.4. Control experiment: time-warping of resting EEG signals

As shown in Fig. 8, the frequency spectra of the time-warped resting
EEG signals recorded in the control experiment showed no significant
enhancement of amplitude at 1.25 Hz and harmonics, indicating that
the time-warping procedure did not introduce any artefactual en-
hancement of signal amplitude at the frequencies of interest.

3.5. Control analysis using simulated data

In both the invariant unitary waveform dataset and the adaptive
unitary waveform dataset, increasing the period fluctuations led to a
rapid decrease of the amplitude ratio when no time-warping was ap-
plied. When time-warping was applied to the non-strictly-periodic da-
taset constructed using an invariant unitary waveform, a slow decrease
in amplitude ratio was observed, reaching 0.95 at a coefficient of var-
iation of 5.5%. Expectedly, the amplitude ratio remained 1 in-
dependently of period fluctuations when the time-warping was applied
to the non-strictly-periodic dataset constructed by contracting/dilating
the unitary waveforms. The results are displayed in Fig. 9.

4. Discussion

Our results show that time-warping EEG signals is a simple and
efficient method to concentrate non-strictly-periodic EEG signals in the
frequency domain, such as the EEG activity elicited while performing
self-paced periodic movements of the hand. Importantly, our results
also show that the time-warping procedure does not generate any ar-
tefactual periodic response when it is applied to resting EEG signals.

Without time-warping, the EEG signals recorded when participants
regularly tapped their right index against a table without any external
synchronization cue showed almost no response in the frequency do-
main. In striking contrast, the same EEG signals showed clear responses
in the frequency domain when they were time-warped using the tap-
ping latencies. The scalp topography of these responses was maximal
over the hemisphere contralateral to the tapping finger, compatible
with activity originating predominantly from primary sensorimotor
cortices. Most interestingly, when participants performed the hand
tapping synchronized with an acoustic beat, the time-warping proce-
dure was able to disambiguate, in the frequency domain, the periodic
EEG signals related to processing the acoustic rhythm from the periodic
EEG signals related to the performance of the finger tapping movement.
In the non-time-warped EEG signals, the topography of the response
was maximal over fronto-central electrodes, resembling closely the to-
pography of the response recorded when participants listened passively
to the acoustic beat, compatible with activity originating pre-
dominantly from auditory areas bilaterally (Nozaradan et al., 2011). In
contrast, in the time-warped EEG signals, the topography of the re-
sponse was maximal over the hemisphere contralateral to the tapping
finger, resembling closely the response obtained in the tapping alone
condition. This selective concentration of auditory- and movement-re-
lated activities was possible because each signal had a unique pattern of

Fig. 7. Time-domain analysis of the
unitary EEG waveforms obtained in
the tapping alone condition. The
average waveforms (electrode Cz) were
obtained by aligning EEG segments to
the onsets of the contact of the fingertip
with the table. The finger tap dynamics
recorded by the movement sensor are
shown in the lower part of the figure,
also averaged relative to contact onset.
A. Average waveform of the non-time-
warped EEG signal (grey) and the time-
warped EEG signal (black). In both non-
time-warped and time-warped signals, a
clear EEG response is observed, time-
locked to the contact onset, and con-
sisting of a negative peak concomitant

to the tapping, followed by a positive peak maximal approximately 110ms after tapping. The non-time-warped and time-warped waveforms are highly similar,
except for a slight smoothing of rapid activities in the time-warped signal. B. Waveforms obtained by averaging EEG segments separately for short ITIs (grey) and
long ITIs (black). The period preceding contact onset was more negative for long ITIs as compared to short ITIs. Furthermore, the negative peak concomitant to the
finger contact was broader.

Fig. 8. Frequency-domain analysis of non-time-warped and
time-warped resting EEG data. The time-warping procedure was
applied to resting EEG data using the tapping latencies of the nine
participants in the finger-tapping alone task, with an average
800ms ITI. The graphs show the peak amplitudes at the funda-
mental frequency and its harmonics, across participants (median,
lower/upper quartile and minimum/maximum values). Time-
warping did not introduce any artefactual enhancement of peak
amplitude at those frequencies.
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period fluctuations. In the non-time-warped signals, the activity related
to processing the acoustic beat could be expected to be more periodic
than the activity related to the fluctuating hand tapping movement.
Hence, the peaks in the EEG frequency spectrum concentrated activity
related to processing the acoustic beat. Conversely, in the time-warped
signals, the activity related to processing the beat was rendered less
periodic and the activity related to movement was rendered more
periodic, leading to a stronger concentration of movement-related ac-
tivity in the frequency domain.

Therefore, in the case of multiple response streams having the same
average period but distinct period fluctuations, the time-warping
method can be used to tease out different response streams by selec-
tively concentrating the periodic activity of a specific response stream.
The method does not allow to strictly isolate one stream from the other,
but it does allow emphasizing one response stream over the others. An
important advantage of time-warping over EEG false-sequencing, which
concatenate segments of non-warped EEG signals (Quek and Rossion,
2016), is that false-sequencing cannot split coincident responses that
are temporally overlapping. Hence, it cannot disentangle concurrent
streams of sensory- and movement-related neural activities (Besle et al.,
2009; Perez et al., 2013). Provided that the different streams originate
from different brain areas and, therefore, project differently on the
scalp, additional tools such as current source density analysis or blind
source separation methods could be used to further disambiguate dif-
ferent response streams (Cohen and Gulbinaite, 2017; Ding et al.,
2011).

The time-warping method assumes that the unitary waveform re-
lated to not-strictly periodic events dynamically adapts to the fluctu-
ating inter-event-intervals. This seems to be at least partly the case for
the periodic EEG signals elicited by self-paced rhythmic tapping
movements. Indeed, the waveforms obtained by averaging separately
the non-time-warped EEG segments corresponding to short and long
inter-tap-intervals showed some dissimilarity: the negative wave oc-
curring at tapping onset was broader for long ITIs as compared to short
ITIs, indicating that its temporal dynamics are dependent on the period
fluctuations.

The time-warping procedure was applied to nearly-periodic

rhythms that fluctuated with an ecological coefficient of variation of
8.4% of the 0.8 s average period. The time-warping procedure could be
used in future experiments to gain a better understanding of the me-
chanisms underlying neural entrainment to periodic stimuli. In the
context of rhythm perception, Large and Jones (1999) proposed that the
entrainment to a periodic rhythm emerges from the dynamics of neural
systems acting as “internal oscillators” which can be entrained to
nearly-periodic rhythms, and are tolerant to period fluctuations up to a
certain amount (Madison and Merker, 2002). In this view, the neural
processing of rhythms that are strongly non periodic would differ from
the neural processing of periodic and nearly-periodic rhythms (Teki
et al., 2011). Because the time-warping procedure can be used to cancel
out the effects of period fluctuations on the frequency representation of
non-strictly-periodic signals, the approach could be used to compare
EEG responses elicited by rhythms fluctuating within or beyond the
ecological range for rhythm perception. Furthermore, the contrasted
effect of EEG time-warping and EEG false sequencing on the amplitude
recovery of the signal of interest, given its dynamics at the single event
level, could be further exploited in such experimental paradigms.

Finally, the EEG time-warping approach opens new perspectives in
various research areas. For example, it could be used to compare EEG
responses in participants displaying varying abilities to produce syn-
chronized movements such as musicians vs. non-musicians, or healthy
participants vs. motor-impaired patients. The approach could also be
exploited to remove nearly-periodic movement-related artifacts, by
concentrating these artifacts in the frequency domain, and filtering
them out in the frequency domain (also see Gwin et al., 2010; Kline
et al., 2015 for complementary approaches).

However, even after applying time warping, one should be cautious
when comparing non-strictly-periodic EEG signals having different
amounts of period fluctuations. If period fluctuations are associated
with contractions/dilations of the unitary waveform, time warping will
recover all the signal power, regardless of the amount of period fluc-
tuations. In contrast, if the unitary waveform is invariant, the recovery
will depend on the amount of period fluctuations. If the difference in
the amount of periodic fluctuations is relatively small (lower than 5.5%
of CV in our simulated EEG dataset), the difference in recovery will be

Fig. 9. Amplitude recovery of original and tested synthetic signals. A. Amplitude of the peaks measured in the spectra of strictly-periodic simulated EEG signals
(white), non-strictly-periodic simulated EEG signals with a unitary waveform of invariant shape (grey) and time-warped non-strictly-periodic simulated EEG signals
with a unitary waveform of invariant shape (black), for increasing coefficients of variation (CV) of the period fluctuation. B. Amplitude ratio between both time-
warped (black) or non-time-warped (grey) non-strictly periodic signals and the strictly periodic signals, when the unitary waveform dynamically adapts to the period
fluctuations or stays invariant and independent to the period fluctuations.
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negligible. However, if the difference in the amount of periodic fluc-
tuations is very large, this will significantly affect recovery.

In conclusion, EEG time warping procedure is a simple and effective
tool that makes it possible to use EEG frequency-tagging to study non-
strictly-periodic neural processes related to rhythmic movement pro-
duction, acoustic rhythm perception and, more generally, rhythmic
sensorimotor synchronization.
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