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A New Type of Fuzzy-Rule-Based System With
Chaotic Swarm Intelligence for Multiclassification

of Pain Perception From fMRI
Ahmed M. Anter , Gan Huang, Linling Li, Li Zhang, Zhen Liang, and Zhiguo Zhang

Abstract—Machine learning has been increasingly used in de-
coding brain states from functional magnetic resonance imaging
(fMRI). One important application is to classify the levels of
pain perception from patients’ fMRI for clinical pain assessment.
However, the huge number of fMRI features and the complex
relationships between fMRI and pain levels affect the performance
of pain classification models heavily. In this article, we introduce
a new fuzzy-rule-based hybrid optimization approach for dimen-
sion reduction and multiclassification problems using chaotic map,
crow search optimization (CSO), and self-organizing fuzzy logic
prototype (SOFLP). The approach is named as CCSO–SOFLP. In
the proposed approach, chaotic map-based CSO is employed to
find the optimal features from ultra-high-dimensional fMRI, and
the fuzzy-rule-based SOFLP is employed for multiclassification of
pain levels. In this sense, CSO is provided to avoid being stuck
in local minima and to increase the computational performance.
On the other hand, multilayer SOFLP classifier can continuously
learn from new data and identify prototypes from the observed
data and use them to build fuzzy rules, to define a suitable local
area for each prototype, and to avoid overlapping. The proposed
approach is applied on a pain-evoked fMRI data set to classify
the levels of pain. Results indicate that the proposed approach can
decode levels of pain and identify predictive fMRI patterns with
higher accuracy and convergence speed and shorter execution time.
Therefore, the new type of fuzzy-rule-based system with chaotic
swarm intelligence holds great potential to predict pain perception
in clinical uses.

Index Terms—Crow search optimization (CSO), functional
magnetic resonance imaging (fMRI) decoding, fuzzy rules, pain
prediction, self-organizing fuzzy logic prototype (SOFLP).
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I. INTRODUCTION

PAIN is a highly subjective experience, and pain assess-
ment is crucial in clinical practice. Self-report is the gold

standard for pain assessment, but in some populations, such
as coma patients, children, cognitive impairment patients, and
individuals who are unwilling to communicate their feelings of
pain, it may not be available or reliable [1]–[3]. Inaccurate pain
assessment can lead to insufficient leadership of pain and even
mislead diagnosis and treatment [4]. Therefore, the development
of a neurophysiology-based pain assessment tool is highly nec-
essary in the fundamental pain research and clinical applications
[5]. Recently, the classification of pain level intensity from neu-
roimaging data, such as functional magnetic resonance imaging
(fMRI), has attracted increasing interests and is regarded to
have the ability to provide physiological and quantitative pain
evaluation tools that complement self-reporting [6]–[9].

However, current fMRI-based pain classification models re-
ported in literatures can hardly be used clinically, because the
efficiency of fMRI decoding is hampered by ultra-high dimen-
sion and nonlinear information [10], [11]. Therefore, dimension
reduction techniques should be applied to extract most predictive
patterns or feature sets before prediction. Also, most related
pain-prediction studies only deal with binary classification (high
pain versus low pain) [10]–[13], but clinical pain assessment
requires to classify pain into 11 levels (from 0 to 10). Therefore,
multiclassification of pain levels is highly desired.

Generally, there are two main feature reduction approaches
for fMRI decoding: filter approach (such as Fisher score, re-
lief, mutual information, and information gain) and wrapper
approach (such as sequential backward search, sequential for-
ward search, and sequential random search). Almost all of
these algorithms are computationally expensive and could be
stuck in local minima [14]. To further improve the efficiency of
feature reduction, a global search-based swarm intelligence (SI)
algorithm is required [15]–[17].

The crow search optimization (CSO) is one of the SI algo-
rithms which is a population-based metaheuristic optimization
algorithm and can be utilized for feature reduction problems
[18]. The CSO follows the mechanism of crows’ searching to
store their food in hiding places and to retrieve the food in times
of need. Only with two adjustable parameters [flight length (FL)
and awareness probability (AP)], CSO becomes less computa-
tionally expensive than many other metaheuristic algorithms,
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which need many parameters to adjust and can provide a user-
friendly optimization model for different applications. In defined
number of iterations, the CSO algorithm tries to find the optimal
solution (the best crow position obtained so far) to represent the
optimization problem. The main issue with CSO is the low rate
of convergence due to the trapping in local optima because there
is no clear boundary between exploration and exploitation due
to the stochastic nature of CSO [19]. A lot of exploration leads to
a lot of new solutions, which are time-consuming, and the opti-
mizer may be stuck in local minima with no convergence. Thus,
balancing between exploration (diversification) and exploitation
(intensification) during the optimization process is a difficult
issue. Chaotic map is proposed in this article to balance between
exploration and exploitation rates and to enhance SI efficiency
both in terms of local minima prevention and convergence
speed [20].

On the other hand, machine learning (ML) has gained pop-
ularity in the community of brain science and engineering for
decoding stimuli, mental states, behaviors, and other interesting
variables from neuroimaging data. Many ML algorithms, how-
ever, have some prevalent disadvantages. First, they cannot be in-
crementally learned, which does not allow to correct errors of the
recognition dynamically. Second, they do not coverage well to
optimal solution and are easily stuck in local minima. Third, they
have a large quantity of parameters and need prior knowledge of
the problem, which makes it hard to adjust their performance,
such as radius, learning rate, decay rates, and size of the network
[21], [22].

During the last four decades, the fuzzy sets and fuzzy-rule-
based (FRB) systems have been emerged and are commonly
accepted as a dominant mechanism and framework for capturing
and representing intelligent systems [23]–[25]. As it has the
benefits of high transparency and interpretability of outcomes,
FRB systems have become one of the alternative frameworks
for ML design. Two famous FRB systems are commonly used—
Mamdani and Takagi–Sugeno (TS). Both Mamdani and TS types
share the exact same antecedent (if) part and only (although
significantly) differ by the consequent (then) part. They are
distinguishable by their consequent part, which is crisp for
the TS type whereas fuzzy sets based for the Mamdani type
[26]–[28].

There are a number of issues with such an FRB approach [29],
[30], including the following.

1) The degree of activation of a fuzzy rule is determined as
an aggregation of the degrees of memberships of a data
sample to each of the fuzzy sets.

2) Membership functions are determined by experts and
needs parameterization to determine the center and
left/right boundaries or spread.

3) Membership functions are often differ significantly from
the real data distribution.

4) Fuzzy clustering memberships ignore or approximate all
data forming the cluster.

Motivated by the abovementioned discussions, this study
proposes a novel dynamic approach based on chaotic map,
binary CSO algorithm, and self-organizing fuzzy logic proto-
type (SOFLP) algorithm to the complex and nonlinear prob-
lem of fMRI-based multiclassification of pain intensity. More

specifically, the hybrid chaotic map and binary CSO (CCSO)
approach is adopted in this study to select the optimal subset
of features from the ultra-high-dimensional fMRI data. The
CCSO approach uses the strong ability of the global optimizing
of the CSO with a smaller number of iterations, less time
consumption, and avoids the sensitivity to local optimization.
Furthermore, the chaotic map handles the lack of convergence
of the CSO algorithm, which transferred the random variables
from Gaussian distribution to chaotic behavior. Moreover, the
SOFLP approach is based on AnYa-type FRB, which keeps the
advantages of traditional FRB systems and avoids the problems
related to membership functions, identification, and update.
SOFLP is a nonparametric data-driven, memory efficient system
structure that can learn from the newly arrived data samples,
adapt with nonstationary environment by updating metaparam-
eters recursively, and change continuously its structure. The
proposed CCSO–SOFLP approach is computationally efficient
and validated against the ML methods with respect to different
measures.

Moreover, this article is aimed to quantitatively analyze the
pain prediction from pain-evoked fMRI, and more specifically,
to identify cortical regions that are affected by pain stimuli. Us-
ing a laser-evoked pain experiment, fMRI data and pain ratings
are collected to achieve this aim. To the best of our knowledge,
there is no fuzzy logic and metaheuristic optimization work on
the topic of pain prediction. The proposed CCSO–SOFLP ap-
proach is very useful because it allows the relationships between
behavior responses and brain activities to be implicitly modeled.
Due to the complicated neurovascular mechanism, a clear hy-
pothesis to model the connection between behavioral reactions
and brain activities is often hard to formulate. Therefore, the
proposed approach holds great potential in basic research and
clinical applications for pain prediction. Overall, the novelty of
the proposed approach is threefold.

1) First, a new chaotic CSO (CCSO) method is proposed
to select the optimal subset of pain-related features from
high-dimensional neuroimaging data. The new CCSO
method is a binary version of CSO, and it jointly incor-
porates a sigmoid transfer function, k-nearest neighbor
(KNN), and chaotic map to make the conventional CSO
suitable for feature selection. More precisely, the sigmoid
transfer function is used to transfer agents from continuous
to binary space to fit the feature selection problem. The
chaotic sequence map is utilized to replace the random
behavior to a random chaotic motion in CSO, and it can
achieve balance between the exploration and exploitation
rates. The KNN method is used as a cost function and
works as a part of the optimizer to assess every crow
position in the search space.

2) Second, it may be the first attempt to solve the prob-
lem of imbalanced pain-evoked fMRI data. Although
it is well known that the levels of pain perception are
highly imbalanced in pain-related data samples, there are
few studies aiming to solve this problem using oversam-
pling/undersampling techniques. In this article, we apply
the synthetic minority oversampling technique (SMOTE)
method to generate synthetic data, which can adjust the
class distribution of the pain data set.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 12,2021 at 17:40:57 UTC from IEEE Xplore.  Restrictions apply. 



1098 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 6, JUNE 2020

3) Third, the whole CCSO–SOFLP approach is a new and
effective pipeline for fMRI-based pain prediction. In this
approach, CCSO is used for feature selection, and SOFLP
is used for multiclass classification. The multilayer FRB
SOFLP method based on AnYa-type FRB is a recently
proposed memory- and computation-efficient classifica-
tion method. The CCSO–SOFLP approach is free from
prior assumptions and problem-specific parameters, while
its training process is highly parallelizable.

The rest of this article is structured as follows. Section II
introduces preliminary concepts of the CSO algorithm, imbal-
anced fMRI data, and SOFLP approach. Section III provides
the experimental materials and data acquisition and presents
the proposed CCSO–SOFLP approach for multiclassification of
pain intensity. In Section IV, experimental results are presented.
Finally, Section V concludes this article.

II. BACKGROUND OF METHODS INVOLVED

In this section, all methods utilized in the proposed approach
are introduced. Some traditional methods, such as augmentation
of imbalanced fMRI data, some basic theories of the CSO
algorithm and chaotic map for tuning CSO parameters, and the
SOFLP method based on AnYa-type FRB, are presented.

A. Augmentation of Imbalanced fMRI Data

The issue of imbalanced information appears when class sam-
ples have a majority class that outnumbering the other (minority
class) samples considerably. Hence, learning from a minority
class is hard for the classifier. Therefore, most of the learning
algorithms consider balanced training data, but the minority
samples are misclassified frequently. This is because the use of
global assessment methods to evaluate the learning algorithm,
such as accuracy rate, can be benefit for the majority class.
SMOTE [32] is one of the best methods to solve the imbalanced
data problem.

SMOTE is used to generate and augment data based on the
similarities between the existing minority samples. For each data
sample xk in the minority class xk ∈ Cmin, the k-nearest neigh-
bors/samples are selected. A synthetic sample can be created as
follow:

xnew = xk + fkl · γ = xk +
(
x

∧
kl − xk

)
· γ (1)

where xk is one of the minority class samples, x
∧
kl is one of the

nearest neighbors for xk, γ ∈ [0, 1] is a random value, xnew is
the point/sample along the line joining xk and x

∧
kl. This implies

that a synthetic sample is generated randomly by choosing one of
the k-nearest neighbors, x

∧
kl, then multiplying a random number

γ with the corresponding feature vector difference fkl, and then
adding this vector to xk [33].

Fig. 1 demonstrates a typical imbalanced data distribution
where the red and blue circles represent samples of the majority
and minority classes, respectively. A green circle shape high-
lights the samples produced along with the line segment between
xk and x

∧
kl. These synthetic samples boost the amount of minor-

ity samples and thus significantly enhancing the effectiveness of
predictions.

Fig. 1. Example of the SMOT method for binary class. (a) Before applying
SMOT. (b) After applying SMOT.

The computational complexity of the proposed SMOTE
technique is based on the distances between all instances of
the minority class that calculated (k). Then, the instances
of the majority class that have the smallest distances to those
in the minority class are selected (r). The overall computational
complexity is O(kr).

B. New CCSO

The CSO algorithm is a recently developed metaheuristic
framework that is based on the intelligent behavior of crows
to store their food in a secret place for the purpose of retrieval
whenever they need. Crows are regarded as the smartest birds.
There is plenty of evidence of crows’ cleverness. Crows can
remember faces and warn each other when approaching an un-
friendly one. They can also use tools, communicate in advanced
ways, and remember the hiding place of their food up to several
months later.

The four main concepts of the CSO are defined as follows.
1) Crows live in the flocks.
2) Crows keep their intelligent memory of their hiding places

of foods.
3) Each crow follows others while doing thievery.
4) Crows are very cautious about thievery and protect their

caches by a probability.
Moreover, from the view of optimization, the crows are

searching agents, the environment is the search space, each crow
position in the environment corresponds to the optimal solution,
the quality of food source is an objective (fitness) function,
and the position of the best food source of the environment is
the global solution of the problem. Based on these intelligent
behaviors, a population-based metaheuristic algorithm, CSO, is
developed to find the solution of optimization problems [18].

1) CSO Mathematical Model: Suppose that there are M
crows and j denotes the position of the crow at an iteration t
given by pj,t with tmax being the maximum number of itera-
tions, where j = 1, 2, . . . . . . ..M . Each crow has an intelligent
memory and remembers the hiding place of food for several
months.

Suppose that mj,t is the position of hidden place for crow j.
D is the total number of decision variables. Each crow has an
intelligent memory in which the position of its hiding place is
memorized.

At iteration t, the position of hiding place of crow j is shown
by mj,t. This is the best position that crow j has obtained so
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far. In the memory matrix of each crow, the position of its best
experience has been memorized in each iteration. Crows move
in the environment and search for better food sources (hiding
places).

Now suppose that the crow k at an iteration wish to go to the
hiding place mk,t of the food. The crow j has decided to chase
crow k to find the food storing location of the kth crow. The
following two possibilities cases have the chance to occur.

Case 1: The kth crow does not know the chasing of jth crow
that can lead the jth crow to the food position. The new crow
positionj is determined by the following equation:

pj,t+1 = pj,t + rj · flj,t ·
(
mk,t − pj,t

)
(2)

where rj is the random number generator between [0, 1], and
flj,t is the FL of crow j at iteration t. Observed that small FLs
cause local optima issue, whereas larger flight values provide
global optima.

Case 2: In this case, thekth crow is conscious of the chasing of
crow j and fooling crow j in this situation by heading to another
location in the search space to safeguard the food, which has a
random location in the search space. Case 2 can be expressed as
follows:

pj,t+1 =

{
pj,t + rj · flj,t ·

(
mk,t − pj,t

)
if rk ≥ APk,t

random position otherwise
(3)

where APk,t indicates the probability of awareness of the crow
k at iteration t. The aim of AP is to control intensification and
diversification that occurs due to lower and higher probability
awareness values, respectively.

CSO starts with setting the constraints, D, tmax, n, AP, and
FL. The memory and position p of each crow’s are randomly
initialized at search space. At the beginning, the crow p does not
have an experience to hide their food. Thus, they hide their food
at initial positions m. During the period the algorithm runs, each
crow is evaluated using a predefined fitness/cost function. Then,
the crows update their positions according to the fitness value,
as expressed in (2), and the feasibility of each new position is
verified. The crows are updating their memories as follows:

mj,t+1 =

{
pj,t+1 Fn

(
pj,t+1

)
> Fn

(
mj,t

)

mj,t otherwise
(4)

where Fn(.) is defined as the objective function. The best
position is registered as the optimal solution as soon as the
termination criterion is satisfied.

The CSO provides a good equilibrium between exploitation
and exploration. This is because CSO is mainly controlled by
the only two parameters, FL and AP. By decreasing FL and AP,
CSO tends to conduct the search on a local region where a current
good solution is found in this region. By increasing the FL and
AP, the CSO tends to explore new regions and tends to global
search in the search space.

On the other hand, one of the drawbacks of optimization
algorithms is setting the parameters as it is a time-consuming
task. Therefore, in this work, CSO parameters are tuned in the
iteration process using sequence vector of chaotic map.

2) New Binary CSO: In this work, the binary version of
CSO is performed using sigmoid transfer function for feature
selection. In binary CCSO, the solution pools in a binary form,
where the solutions are limited to the binary values {0, 1}. The
agents are transferred from continues to binary space using the
following equation:

pj,t+1 =

{
1 if

(
s
(
pj,t+1

) ≥ rrand
)

0 otherwise
(5)

where s(pj,t+1) is sigmoid transfer function that limits the
solutions between {0, 1} and can be expressed as follows:

s
(
pj,t+1

)
=

1

1 + e10(pj,t+1−0.5)
. (6)

3) New CSO Based on Chaotic Map: Chaotic map is an
evolution function used to depict chaotic behavior that can be a
discrete or continuous parameter of time. It is provided by chaos
theory to study the random and unpredictable deterministic
behavior of the system. Usually chaos theory offers the solution
to irregular and unpredictable behavior of many nonlinear and
complex systems. The chaotic theory with their topologically
blend, ergodic, and intrinsic stochastic nature can be applied
to balance between diversification and intensification rate [34].
The random variables in CSO are updated by the sequence of
circle chaotic vector that influences the optimal solution and
convergence rate by updating the crow positions in the search
space. Such a combination of chaos with CSO is defined as
CCSO. The circle map supplies a straightforward model of the
phase-locked iteration. It has two parameters a and b, parameter
a is interpreted as the strength of nonlinearity, whereas param-
eter b is interpreted as externally applied frequency. The circle
chaotic map sequence is a one-dimensional map, which can be
expressed as follows:

xi+1 = mod
(
xi + b−

( a

2π

)
sin (2πxk) , 1

)
. (7)

The CSO approach is combined with circle chaotic sequences
and can be expressed in the following equation:

pj,t+1 =

{
pj,t + Cj · flj,t ·

(
mk,t − pj,t

)
if Cz ≥ APk,t

random position otherwise
(8)

where Cj is the obtained value of chaotic map for j crow, and
Cz is the obtained value of chaotic map for z crow.

Algorithm 1 shows the steps of the proposed chaotic CSO for
the optimization problem.

4) Objective/Cost Function: At each iteration, each crow
position is assessed using a defined fitness function Fn. The
data are divided randomly into two different parts, training set
and testing set, using the k-fold approach. In this study, k is
set to 3 to guarantee the efficiency and stability of the obtained
results. The following equation is adopted in this study as fitness
function to evaluate each crow in the search space

Fn = Acc + α ·
(
1− Lf

Lt − 1

)
(9)
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Algorithm 1: Chaotic Crow Search Optimization
Algorithm.

Set initial values of FL, AP, M, and Tmax

Initialize the crow position p randomly
Initialize memory for each crow m
Initialize the circle chaotic map C.
Initialize counter t = 1
Assign fitness value to each crow.
While (t < = Tmax)

For i = 1:M // All M crows of the flock
Chaotically choose one of the crows to follow (z)
If (Cz ≥ AP k,t)

pj,t+1 = pj,t + Cj · flj,t · (mk,t − pj,t)
Else

pj,t+1 = random position in search space
End If
Apply sigmoid transfer Fn. s(pj,t+1). Eq. (5)
Binarize the solution. Eq. (6)
t = t + 1

End For
Check the feasibility of pj,t+1

Evaluate the new position of crow Fn(p
j,t+1). Eq. (9)

Update the crow’s memory mj,t+1

End while //Terminate when criteria satisfied
Produce the best solution m to the problem

where Acc is calculated based on KNN classification accuracy
using K = 5 and Euclidian distance. KNN is used to determine
the goodness of the selected features from the whole data set.Lf

is the length of subset selected feature, Lt is the total number of
features, α is the weighted factor, and in this study α = 0.8. The
main criteria is achieved by maximizing the objective function
that maximizes the classification accuracy.

5) Computational Complexity of the Proposed CCSO
Algorithm: Computational complexity of any algorithm is a
key metric for evaluating its run time, which can be defined
based on the structure and implementation of the algorithm. The
computational complexity of the proposed CCSO approach is
mainly dependent on the number of variables (d), the number
of population (n), and the maximum number of iterations (t).
Since the CCSO utilizes the quicksort mechanism, the com-
putational complexity is O(nlogn) for the best case and O(n2)
for the worst case. The overall computational complexity is
O(tlog(n)(n2 + nd)).

C. Recognition Based on SOFLP

SOFLP is a recently developed powerful multilayer FRB
classifier. SOFLP is a prototype-based approach that defines the
suitable local area of influence for each prototype in order to
increase the descriptive capacity of the fuzzy rules and avoid
overlap. SOFLP is a nonparametric FRB approach that can
immediately derive parameters from the data. Furthermore, the
prototypes are recognized from the observed data by an offline
training method and are used to construct fuzzy rules. This
classifier has a good generalization mode and is able to learn

Fig. 2. SOFLP structure of the proposed AnYa FRB.

from the data continually and pursue the evolving data pattern by
recursively updating the system structure and metaparameters.

The concept of the SOFLP approach touches the very founda-
tions of the complex system identification, and thus its applica-
tion domain ranges from simple clustering-based techniques for
pattern recognition, image segmentation, etc., to more general
modeling, classification, and time-series prediction problems in
various applications [35].

The primary issue in FRB is to define membership functions
per scalar variable and a very high amount of approximation
is required to parameterize all the required real data. Because
the real data distributions are often nonlinear, not smooth nor
easy to describe. To address this important bottleneck of the
FRB systems design, the interpretation of the SOFL approach
is introduced in this work [36].

1) SOFLP Layers: The SOFLP approach is represented by
four-layer feed-forward neural network, as shown in Fig. 2,
which is quite different from the neuro-fuzzy systems, such
as adaptive neuro-fuzzy inference system (ANFIS) [37]. In the
first layer, no scalar parameterized membership functions are
defined; instead, a specified input data sample is compared with
all prior data samples per cluster recursively in a computation-
effective manner, and the local density of each cluster is con-
ducted.

In the second layer, the density of the respective cluster γi is
taken as the inputs, and the standardized firing level of the fuzzy
rule (which is a membership of the ith cluster γi) is given as
the output. The first and second layers depict the antecedent part
of the FRB on a zero-order AnYa FRB introduced recently by
Angelov and Yager [22], which is simpler but more complex in
the structure than Mamdani and TS types of FRB systems [26].

The antecedent (if) portion of AnYa-type fuzzy rules is sim-
plified to a more compact, objective. and nonparametric vector
form compared with the two predecessors without the need to
define membership functions [31]. The form of AnYa-type FRB
system is as follows:

if (x ∼ P1)OR (x ∼ P2)OR . . . . . . . . . .OR (x ∼ PN )

Then (class) (10)

where x is the input vector; “∼” denotes similarity (represents the
fuzzy degree of satisfaction/membership), Pi(i = 12 , . . . , N)
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is the ith prototype of the class, and N is the number of prototypes
identified from the data samples of this class. The strategy of
winner-takes-all is performed to decide the decision of the class
labels. For more details of the AnYa-type FRB system, readers
are referred to [22] and [31].

The third layer collates the antecedent and the consequent part
that represents the local subsystems. Finally, the last layer forms
the FRB streamlined system’s total output is performed using a
weighed summation of local subsystems.

2) SOFLP Phases: The SOFLP approach has three main
phases for real-time prediction (offline training, online/ evolving
training, and validation).

a) Offline training: The SOFLP approach identifies pro-
totypes individually from each class and forms an AnYa-type
FRB on the prototypes recognized per class. These prototypes
are recognized based on the information samples’ densities and
mutual distributions. First, multimodal densities are conducted
on all unique data samples ui, which can be calculated as
follows:

DMM
k (ui) = fi

∑K
l=1 πK (xl)

2KπK (ui)
, i = 1, 2, . . . .., UK (11)

where K is the number of samples, fi is the frequencies of
occurrence of the unique data sample setui, andπk is cumulative
proximity that is acquired from the observed data empirically
without prior knowledge or assumptions and can be calculated
as follows:

πk (xi) =

K∑
j=1

d2 (xi, xj) , i = 1, 2, . . . . . . .,K (12)

where d2(xi, xj) refers to the distance between xi and xj ,
which can be any type of distance measure. In this work, we
concentrate on performing cosine similarity distance. Because
the cosine similarity is free from the “curse of dimensionality,”
and therefore, it is more effective.

Then, the data samples are ranked in a list denoted by {r}
in terms of their distances and multimodal density values by
finding the largest data sample of multimodal density

r1 = arg max
i=1,2,......,Uc

k

(
DMM

K (uc
i )
)
. (13)

Afterward, the second element, r2 is identified as the data
sample with the minimum distance to r1as follows:

r2 = arg min
i=1,2,......,Uc

k−1
d (r1, u

c
i ) . (14)

The third {r} element recognized by r3 based on the minimum
distance to r2. By repeating the process and until all data samples
are chosen, the complete list {r} is created, and the multimodal
densities of unique samples {u} are ranked and denoted by
{DMM

k (r)}.
Afterward, the prototypes p is identified as a local maxima

of the ranked multimodal densities {DMM
k (r)} and can be

expressed as follow:

if
(
DMM

k (ri) > DMM
k (ri+1)

)
and

(
DMM

k (ri)

> DMM
k (ri−1)

)
then (ri ∈ {P}) . (15)

Once all the prototypes are identified, filtering operation is
performed to filter the less representative prototypes within
{p}. After all the data clusters are created around the current
prototypes, one can get the centers of the data clusters, and the
multimodal densities at the centers are calculated.

The level of granularity Lth (L = 1, 2, 3, …M) is obtained in
an offline manner from the cth class, which is a local influential
area around each data sample. Finally, the most representative
prototypes of the cth class denoted by {pc} are selected out from
the centers of the existing data clusters.

b) Online/Evolving training: The SOFLP classifier contin-
ues to update its parameters and structure with a new data during
the online training phase. Similar to the offline training phase, the
fuzzy rules of different classes are updated individually. Also,
recursive calculation of the following expressions with cosine
distance are performed:

μk =
K − 1

K
μK−1 +

1

K
xK , where μ1 = x1 (16)

XK =
K − 1

K
XK−1 +

1

K
xT
KxK , where X1 = xT

1 x1

(17)

∑
K

=
K

K − 1

(
XK − μT

KμK

)
(18)

where the metaparameters
∑

K is a covariance matrix, xK are
the data set samples, and μK is the global mean that can be
updated recursively based on the new data. After updating the
classifier’s metaparameters, the AnYa-type fuzzy rules will be
updated accordingly, and the fuzzy classifier will be ready to
process and classify the next data sample.

c) Validation: In this phase, as shown in Fig. 2, the
fuzzy classifier offers the decision-making. During the vali-
dation phase, for a particular testing data sample, denoted by
x, each AnYa-type fuzzy rule will have a firing strength de-
noted by the local decision-make λc(x), which is determined as
follows:

λc (x) = max
pε{p}

(
e−d2(x,p)

)
, c = 1, 2, . . . . . . .., C. (19)

Accordingly, based on the C firing strengths of the C fuzzy-
rules (one per rule), the overall decision-maker decides the x
label using the winner-takes-all principle as follows:

PCL = arg max
c=1,2,....C

(λc (x)) (20)

where PCL is the prediction class label.
3) Tuning Level of Granularity: Solving a complex problem

involves dividing the problem into information granules and
managing each granule as a whole through a granular com-
puting strategy. The granularity idea was introduced by Yao
et al. [38] to a multilevel view of information granulation,
which permeates human reasoning and has a significant effect in
any field involving both human and machine-oriented problem
solving.

Granular computing has largely contributed to the fuzzy
theory as a paradigm of problem solving and information pro-
cessing inspired by humans [39]. In general, the higher level
of granularity is chosen, the more prototypes (more details)
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Fig. 3. Pipeline and phases of the proposed CCSO–SOFLP approach for multiclassification pain prediction.

are extracted from the data, and the SOFLP approach achieves
a higher performance. At the same time, more computational
and memory resources may be consumed by the SOFLP, and
overfitting may be occurred. On the other hand, with low level
of granularity, the SOFLP only learns the coarse information
from training. Although it will decrease the time consumption,
its performance may be influenced due to the loss of fine infor-
mation from the data.

The derived hierarchical collection of granules can be used to
build a fuzzy model committee, which offers a good equilibrium
between interpretable representation and precise approximation.

4) Computational Complexity of the SOFLP Approach: The
computational complexity of this approach is mainly dependent
on two parts: premise trainable variable part and consequent part
per rule. In the premise trainable variable part, it depends on the
number of input variables (d) which are observed from the CCSO
approach— each input d is partitioned into (p) prototypes—and
the recursive trained variables with local density (m). According
to these variables, the total number of premise trainable part
is (dpm). Similarly, the consequent part per rule is (p + 1)
and number of rules in the system is (cd). According to this,
total number of consequent part is ((p + 1)cd). The overall
computational complexity is O(dpm((d + 1)cd)).

III. PROPOSED CCSO–SOFLP FOR

FMRI-BASED PAIN PREDICTION

A. Experiment and Data

fMRI data were obtained from 31 healthy participants (20 fe-
males, age, 22.1± 2.0, ranging from 19 to 24 years). Participants
reported no history of chronic pain, psychiatric, or neurological
disorders. The local ethics committee endorsed the experimental

procedures (Approval no. SWU20140607). All participants gave
written informed permission. They were acquainted with the
experiment paradigm prior to the experiment. The fMRI data
were obtained using a Siemens 3.0 Tesla Trio scanner with
a standard head coil. The following parameters were used to
acquire functional images with echo planar imaging sequence:
255-mm-thick slices and 0.5-mm interslice gaps, repetition time
(TR) = 1500 ms, echo time (TE) = 29 ms, filed of view =
192 × 192 mm2, 64 × 64 matrix, 3 × 3 × 3 mm3 voxels, and
flip angle = 90. A high-resolution T1-weighted structural image
(1 mm3 isotropic voxel MPRAGE) was acquired after functional
imaging.

We produced 10 laser pulses in each of the 4 stimulus energies
(E1: 2.5 J, E2: 3 J, E3: 3.5 J, E4: 4 J) during the fMRI data
collection, making a total of 40 trials. The order of stimuli at
different energies was pseudorandomized. The interstimulus in-
terval (rectangular distribution) ranged from 27 to 33 s randomly.
The subject rated the intensity of pain perception elicited by the
laser stimulus using a visual analogue scale ranging from 0 (“no
pain”) to 10 (“the worst pain”).

B. Proposed CCSO–SOFLP Pipeline

In this section we present a new hybrid optimization CCSO–
SOFLP approach to pain intensity decoding. Fig. 3 shows the
pipeline view of the proposed CCSO–SOFLP approach for the
pain intensity prediction. Basically, the whole CCSO–SOFLP
approach consists of the following main phases.

1) fMRI Data Preprocessing: The aim of preprocessing is to
remove noise and artifacts from the fMRI data. In this study,
the fMRI data were preprocessed using Statistical Parametric
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Mapping (SPM12) [40] and followed the following proce-
dures: slice timing and head motion correction. The data were
realigned, normalized to the Montreal Neurological Institute
(MNI) space (voxel size = 3 × 3 × 3) by mapping T1-
weighted structural images to the MNI template, and smoothed
to reduce the effects of bad normalization and to increase the
signal-to-noise-ratio using 8-mm full-width half-maximum cri-
terion and Gaussian kernel. The default mask was used with
a threshold of 50%. Finally, the Friston 24-parameter model
was used to regress head movement impacts and to regress
out several nuisance signals from the data. A high-pass fil-
ter (cut-off frequency = 1/128 Hz) was introduced into the
blood-oxygen-level-dependent (BOLD) time sequence to re-
move low-frequency drifts. BOLD responses were modeled as a
series of events using a stick function and ratings were included
as a parametric modulator of each stimulus, which were then
convolved with a canonical hemodynamic response function.

2) Feature Extraction: BOLD responses have been normal-
ized by subtracting their baseline values and dividing the results
at stimulus onset [41]. The following equation was modeled to
normalize BOLD signals between the maximum BOLD signals
(MaxBOLD) and the BOLD signals at stimulus onset (StmOnset)

NormBOLD = (MaxBOLD)− StmOnset / StmOnset. (21)

The maximum BOLD MaxBOLD4th responses at the fourth
scan after stimulus onset were extracted as fMRI features for
prediction of subjective pain ratings as expressed in the follow-
ing equation:

MaxBOLD4th = |(StmOnset /TR)|+ 4 (22)

where TR is the repetition time that represents cycle time
between corresponding points, TR in this study was 1.5 s.

The dimension matrix of features extracted was 1240×56 260
voxels. Each subject had 40 trials, and 31 subjects had 1240
trials in total with number of voxels is 56 260. To normal-
ize the maximum BOLD signals at fourth scan after stimulus
onset (NormBOLD). The following equation was modeled to
normalize BOLD signals between the maximum BOLD sig-
nals (MaxBOLD4th) and the BOLD signals at stimulus onset
(StmOnset)

NormBOLD = (MaxBOLD4th)− StmOnset / StmOnset. (23)

After fMRI was normalized, the fMRI voxels were filtered
based on the correlation coefficient to rank the features and to
select the voxels with the top 4% highest P-value.

3) Augmentation of Imbalanced fMRI Data: We had 11
classes of pain intensity prediction from 0 to 10 where each
class had the following distributions of examples: Class 0: 59
trials, Class 1: 128 trials, Class 2: 119 trials, Class 3: 136 trials,
Class 4: 132 trials, Class 5: 106 trials, Class 6: 168 trials, Class
7: 152 trials, Class 8: 122 trials, Class 9: 82 trials, and Class
10: 36 trials. The number of samples in different classes was
largely different. In this case, the classification accuracy rate
can be degraded and biased to the majority classes because
the imbalanced data distribution with the classes have higher
majority instances than others. The best practical in this situation
is to apply the SMOTE technique to generate synthetic samples
from the minority classes, as described in Section II-A.

4) Feature Selection: CCSO was used to determine the sig-
nificant fMRI voxels in order to obtain the subset of pain-related
features from high-dimensional neuroimaging fMRI data. The
chaotic vector was initialized in the form of circle chaotic map
that was used in the iteration process as a random chaotic
motion instead of basic random behavior in the CSO algorithm
to balance between the exploration and exploitation rates. CSO
then generated the crow positions following chaotic motion as
well as assigned fitness value to each crow based on KNN as an
objective function. The KNN was used as a cost function for the
proposed CCSO algorithm and worked as a part of the optimizer
to assess every crow position in the search space. The main
criterion was satisfied by maximizing the objective function. The
good solutions were stored in CSO intelligent memory after the
position and fitness were evaluated and updated in every iteration
until the criterion was satisfied to attain the global best fitness
function as the global solution for the problem.

5) Multiclassification of Pain Intensity: The SOFLP multi-
classification approach was established to describe the relation-
ship between the levels of pain intensity perception and fMRI
patterns. SOFLP is able to learn consistently from newly arrived
data samples and only store the key information in memory,
which can be considered as memory- and computation-efficient.
Furthermore, the proposed approach is nonparametric and work
without prior assumptions for parameters and memberships.
SOFLP depends highly on the level of granularity (information
details) to increase the performance and decrease the compu-
tational time. SOFLP has mainly three phases (offline training,
online training/ evolving, and validation). In the offline training
phase, the examples are labeled, and the SOFLP classifier, as
shown in Fig. 2, identifies prototypes from each class separately
(i.e., each class has more than one prototype). SOFLP automati-
cally identifies the prototypes from the observed fMRI pain data
and forms clusters without prior information. Thus, for a train-
ing data set with labels, independent if …then AnYa-type FRB
subsystems are generated (one per class) in parallel, as shown
in (10). Once the training process is finished, each subsystem
generates one AnYa-type fuzzy rule corresponding to its own
class based on the identified prototypes. This AnYa-type fuzzy
rule is interpreted as a single prototype connected by the “OR”
operator. As a result, a massive parallelization is possible. During
the online training stage, the FRB system was recognized from
the offline training process, which was subsequently updated
with the new samples of the fMRI data. During the validation
stage, the SOFLP classifier provided the decision of pain inten-
sity based on firing strength of AnYa-type fuzzy rules with the
“winner-takes-all” strategy.

6) Performance Evaluation: The efficiency of the proposed
CCSO–SOFLP approach was assessed using various statistical
measures for feature selection and multiclassification tasks.
These measures included: mean fitness (μ), best fitness (BF),
worst fitness (WF), standard deviation (Std), and selected
feature size (SFZ) for feature selection task [14], accuracy
(ACC), precision (Pre), sensitivity (Sens), specificity (Spec),
false positive rate (FPR), F1-score, informedness (Informed),
markedness (Marked), Matthews correlation coefficient (MCC),
and k-kappa coefficient (k) for classification task [42]. The
efficiency of the proposed approach depends on the tenfold
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TABLE I
CCSO PARAMETER SETTING

Fig. 4. Subjects pain intensity distribution.

CV to reduce the variance and to decrease overfitting and
underfitting.

IV. RESULTS

A. Computer System Description and Parameter Setting

The proposed model was developed and tested in MATLAB
R2018b on an IntelCoreTM I7-8700 with 3.2 GHz CPU and
64 GB RAM.

CCSO started with setting adjustable parameters and ran-
domly initialized crow positions (solution) in the search space.
Each position represented a feature subset with different num-
bers of features and different lengths. The initial parameter
setting of CCSO is presented in Table I.

B. Behavioral Data Analyses

As we mentioned, one big challenge in fMRI-based pre-
diction is the imbalanced data, which means different classes
have largely different numbers of sample. Fig. 4 illustrates the
imbalanced data by showing the rated pain intensity scales of 31
subjects (each having 40 rated scales). As we can see, in response
to the same set of painful stimuli, the subjects had different rates
of pain perception. Average pain rates varied between 2.63 ±
2.11 and 7.63 ± 2.23. Using Pearson’s correlation coefficient
(PCC) analyses, we found no significant relation between age
and weight with averaged pain ratings (age and rating: R =
−0.175, P = 0.356; weight and rating: R = 0.0978, P = 0.607,
respectively), where R is the PCC between the fMRI features
and the rating class labels, and P represents the p-value of PCC.

In addition, there was no significant distinction between males
and females in their average pain scores (two-sample t-test,
P = 0.428). Therefore, weight and gender cannot explain the
relationships between pain perception and stimuli. Moreover, the

Fig. 5. Results of the preprocessing steps. (a) Original volume. (b) After
realignment. (c) After normalization. (d) After smoothing.

Fig. 6. Results of the BOLD signal extraction and feature analysis steps from
one subject. (a) Preprocessed volume. (b) Voxels represent pain perception.
(c) BOLD time series extraction. (d) Maximum BOLD signal at the fourth scan
after stimuli onset extraction.

number of subjects in this study is still small, and a large-sample
study should be carried out to generate outcomes that are more
potent.

C. fMRI Preprocessing and Feature Extraction

The outcomes of the fMRI preprocessing steps are shown
in Fig. 5: realignment, normalization, and smoothing. Fig. 6
shows the time-series BOLD signal extraction and local feature
analysis based on maximum BOLD signal at the fourth scan
(1.5 s TR) after stimuli onset, which was located around 6 s,
as shown in Fig. 6(d), whereas the deactivation regions were
located around fifth scan (7.5 s).

D. Augmentation of Imbalanced fMRI Data

The number of subjects and the number of trials per individual
in this experiment were not large, which limited the statistical
power of the results. In this study, we analyzed fMRI data for 31
subjects. Increasing the number of subjects will make the data
contain more possible variations across-subjects and within-
subjects, which will be carried out to produce more significantly
powerful results. Furthermore, more painful stimuli is needed to
be delivered in a wider range of intensities so that the pain rating
evoked can also have a wider variety, which can make class
labels of the classification model more complete and lead to a
more accurate and general classification model. We had 11 class
labels for pain intensity from 0 to 10. The distribution of these
classes had problem of imbalance, which means it had largely
different numbers of samples (fMRI images) for different classes
(pain scales) and degraded the accuracy of the prediction model.
Therefore, this article incorporates the SMOTE technique based
on KNN to overcome the limitation of samples and perform data
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Fig. 7. Results represent the number of instances for each class label before
and after the SMOTE technique.

Fig. 8. Behavior of CSO based on circle chaotic map for 20 iterations.

TABLE II
RESULTS OF THE PROPOSED CCSO-BASED SOFLP APPROACH

augmentation. In order to increase the number of samples in the
pain intensity data set, synthetic data samples were generated
from the minority classes, as shown in Fig. 7.

E. CCSO-Based Feature Selection

To identify the brain regions that significantly contribute to
pain perception, the CSO algorithm and circle chaotic map were
used. Fig. 8 shows the behavior of circle chaotic map for 20
iterations of the proposed CCSO algorithm. The behavior of
CCSO is reasonably simple, and the crows (agents) are moved
chaotically instead of stochastic behavior in the search space, as
shown in Fig. 8.

Table II shows the comparison results of the proposed CCSO
and CSO in terms of μ, Std, BF, WF, SFZ, and ACC. As we can
see, the proposed CCSO approach attained the better accuracies
in terms of ACC (≈0.89), AAS (≈0.22), BF (≈0.75), and μ
(≈0.73), all of which were better than the standard CSO for
pain intensity prediction. In addition, the proposed CCSO time
consumption (CPU average) was much lower than the CSO
algorithm. This proves that the proposed CCSO is robust and
can achieve the optimal solution in fewer iterations with less
time consumption.

The convergence speed evidence is provided in Fig. 9. The
CCSO showed a strong robustness and had faster convergence

Fig. 9. Convergence curve using CSO and CCSO.

Fig. 10. Brain regions with predictive pain-evoked BOLD responses extracted
by the proposed approach at the fourth scan after stimulus onset.

speed to find the optimal or near optimal solutions in less than
40 iterations for the fMRI subjects.

The identified pain-related brain patterns for a single-subject
data using laser-evoked BOLD responses are shown in Fig. 10
based on the CCSO–SOFLP approach. This figure shows
the brain decoding and the region of interests (ROIs) that
were most affected by stimuli. The general linear model was
used to assess the laser-evoked BOLD activation voxels by
CCSO–SOFLP and to extend the cluster neighbor voxels
[10], [43], [44]. The CCSO analyses revealed that the BOLD
responses within a wide range of brain regions are predictive of
pain perception, as shown in Fig. 10. These predictive regions
are the primary (S1) and secondary (S2) somatosensory cortex,
thalamus, anterior cingulate cortex, supplementary motor
area, mid-cingulate cortex, cerebellum, and insula, frontal,
post-central, supra-marginal, etc. Among these predictive
regions, SOFLP multiclassifier approach is proposed for pain
rating level. From the results, we can demonstrate that the
CCSO is able to solve the problems of high dimensionality and
multicollinearity, which are typical in neuroimaging data.

F. SOFLP-Based Pain Classification

In this section, the subset of the most predictive features of
pain perception were selected. These features were feed into the
SOFLP approach for pain-level prediction. The proposed pain
classification approach was trained to decode single-trial pain
perception intensity from pain-related patterns recognized by the
fMRI. We performed a multiclass pain intensity classification
based on the SOFLP approach to predict the level of pain
perception within the range between 0 and 10 for each trial (40
trials/subject). Ten-fold CV was used to validate the strategy of
the pain decoding by between-subject and within-subject levels.
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TABLE III
RESULTS OF THE PROPOSED CCSO–SOFLP APPROACH USING TENFOLD CV AND DIFFERENT GRANULARITY (L) LEVELS

TABLE IV
RESULTS OF THE PROPOSED CCSO–SOFLP APPROACH USING DIFFERENT STATISTICAL MEASURES AND DIFFERENT GRANULARITY (L) LEVELS

Solving the complex nonlinear fMRI pain prediction problem
via a granular computing can provide a good balance between
interpretable representation and precise approximation. The pro-
posed approach relies on the granularity level in order to improve
the efficiency and reduce the computational time. Table III shows
the results based on different levels of granularity (L) that lead to
fine details for the SOFLP approach. From Table III and Fig. 11,
we can see that the best accuracies can be achieved using 12th L,
which ensured that the SOFLP classifier can learn from sufficient
details. Furthermore, we compared the result of the proposed
approach at (12th L) with the results of different granule levels
in ten independent runs, and then we used paired-sample t-test
to compare their accuracy with that of L = 12. It was showed
that the results became more stable after the granular level

Fig. 11. Comparison results of the proposed approach using different levels
of granularity (L).
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TABLE V
RESULTS OF PAIN PERCEPTION WITHIN EACH SUBJECT

(31 SUBJECTS) USING THE CCSO–SOFLP APPROACH

L = 7 and there was only slightly difference between them
[p-value (L = 1−6) < 0.004 and p-value (L = 7−12)> 0.352].

Table IV shows the results of the proposed approach un-
der different statistical measures and different levels of gran-
ularity. The classification performances were significantly
estimated by ACC, Pre, Sens, FPR, Spec, F1-score, Informed,
Marked, and MCC. From the results, the highest accuracy can
be achieved (ACC ≈ 0.8833) using 12th L with low time con-
sumption≈38.2344 s (CPU time average/second). Also, the best

Fig. 12. Graphical representation for comparison between the performance of
CCSO–SOFLP and other ML methods.

or satisfactory values for other measures were Sens≈0.8755,
Spec≈0.9882, Pre≈0.8779, and F1-score≈0.8595, which rep-
resented a perfect precision and recall even if the data were un-
balanced. MCC≈0.8569 and Informed≈0.8638 measured how
the system was informed about positives and negatives, and
Marked≈0.871 measured the trust worthiness of positive and
negative predictions by the model. Therefore, SOFLP could be
potentially used as a core part of the proposed fMRI-based pain
prediction in clinical practice.

Table V shows the accuracy results within-subject perfor-
mance for 31 subjects to demonstrate significant variations in
BOLD responses for each subject and to examine whether the
proposed approach can achieve consistently good performance
for all subjects. From the results, we can see the proposed
CCSO–SOFLP approach had high classification accuracy and
achieved good performance for all subjects and showed variation
of BOLD response between subjects in pain intensity perception.

Taking Accuracy as an example, almost all of the subjects
had accuracy larger than 80% and some subjects had accuracy
of 100%. It shows that the performance of the proposed method
is consistent and robust.

G. Comparison With Different ML Techniques

This section provides the comparison results between the
proposed CCSO–SOFLP approach and different ML methods
for pain-level perception, including naïve Bayes (NB), support
vector machine (SVM) with quadratic and Gaussian kernels,
linear discriminate analysis (LDA), KNN, decision tree (DT),
Random Vector Functional Link (RVFL) [45], ensemble bagged
trees (EBAT), and ensemble-boosted trees (EBOT). Further-
more, one of the main objectives of this article is to make
a consistent comparison between the classification accuracy
obtained by the proposed model and the accuracy obtained by
other ML algorithms. Hence, in this section, comparison with
other algorithms are shown after using CCSO feature selection
on the same pain intensity data set using ten-fold CV.

The comparison results are shown in Table VI and Fig. 12.
It can be seen that the proposed CCSO–SOFLP approach can
achieve the highest ACC (≈0.8833), and its Sens (≈0.8755),
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TABLE VI
COMPARISON RESULTS USING DIFFERENT MEASURES OF DIFFERENT ML METHODS AND THE PROPOSED CCSO–SOFLP

APPROACH BASED ON TENFOLD CV FOR FMRI PAIN INTENSITY PERCEPTION

Spec (≈0.9882), Pre (≈0.8779), FPR (≈0.0118), and F1-score
(0.8569) were also the best or close to the best results. In
conclusion, the proposed CCSO–SOFLP approach is superior
to conventional ML methods.

V. CONCLUSION

In this article, we proposed a novel dynamic multiclas-
sification pain intensity approach, CCSO-SOFPL. First, the
CCSO method can select the optimal feature set, which con-
tains a small subset of the most discriminative features, from
high-dimensional, nonlinear, and complex fMRI data for pain
intensity decoding. Second, the SOFLP method is used for
multiple-class prediction of pain levels. SOFLP is adopted in this
article because as a powerful multilayer FRB method, it is fully
automatic, self-organizing, highly parallel, memory efficient,
and self-evolving. The advantages of SOFLP make it particularly
suitable for fMRI-based pain prediction, because we need a fast,
efficient, and automatic classifier to handle high-dimensional
and complex fMRI data. The evolving strategy is utilized in
this approach to make the system dynamically learn from new
cases to keep its stability and to avoid retraining from scratch.
Although the pain data set is not large and evolving in this study,
it could be large and incremental in clinical practice. Suppose
more data from patients are available in hospitals, we need
not train a new SOFLP classifier but can continuously update
metaparameters and structures of the classifier based on newly
arrived data. Therefore, SOFLP could be potentially used as a
core part of the proposed fMRI-based pain prediction in clinical
practice.

The efficiency of the proposed approach was evaluated on a
real fMRI data set with pain ratings acquired in a laser-evoked
pain experiment. Results showed that the CCSO–SOFLP ap-
proach can identify brain patterns that were nonlinearly corre-
lated with pain perception and achieved significantly higher pain
classification accuracy than conventional ML techniques.

In summary, the proposed CCSO–SOFLP approach is a pow-
erful feature selection and prediction framework for fMRI-based

pain prediction, which can overcome the limitations of con-
ventional feature selection and ML techniques. Therefore, the
proposed approach has a great potential to be used to develop
neuroimaging-based pain assessment tools for clinical uses.
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